Asymptotic Dipole Radiation Formulas
By W, HOWARD WISE

HE analysis of the radiation from dipoles as given by Sommerfeld
and by von Hoerschelmann is deficient in one respect: it does
not give the true ' asymptotic expressions for the radiation leaving at
a considerable angle from the horizontal. The correct asymptotic
formulas have already been easily supplied by an appeal to the
Reciprocal Theorem; lately M. J. O. Strutt® has got them directly
from the boundary conditions and H. Weyl ? has derived the correct
asymptotic formula for a vertical dipole at the surface of the earth
by a method quite different from Sommerfeld's. In the present
paper it is shown how they can be got by merely improving the rigor
of Sommerfeld's analysis.

The present analysis begins with the formulas of von Hoerschelmann
for the wave potentials of vertical and horizontal dipoles at a finite
distance above the surface of the earth and generally follows Sommer-
feld. The derivation of an asymptotic approximation for the wave
potential of a vertical dipole is considerably different from Sommer-
feld’s and results in the simpler and more precise formulas deduced
from the reciprocal theorem.

Most of the analysis is somewhat simplified by taking the permea-
bility of the earth to be unity.

The notation used is chiefly that of Bateman.!

7 = variable of integration, throughout the paper.

k2 = euw® + dropiw
I =7 — k2 m= Vr* — k2

The subscripts 1 and 2 refer to air and ground respectively.
Ry, R, a, p, ¢, w, x, y and z are adequately defined by Fig, 1.

cos 0 = x/R, cos@,=y/R, cosb,=z/R, R>®= x4 y°®+4 22
The wave potential of a horizontal dipole is % ¢

1 See paragraph following equation (8).

2 M. J. O. Strutt, Ann. d. Phys., Bd. 1, p. 721, 1929,

3 H. Weyl, Ann. d. Phys., Bd. 60, p. 481, 1919,

4 “Electrical and Optical Wave Motion,” pp. 73-75.

5 H. v. Hoerschelmann, Jahrb. d. draht. Teleg,, Bd. 5, 1912, pp. 14-188,
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When kys= o, V= 2R, lexpikR: and EA is zero. When
ko= ki, V= 1Ry exp ik Ro and E.A just cancels the field of the
image dipole in E*,

The wave potential of a vertical dipole is ® 4

gihify eiklﬂz

-——+ V. (4)

L =% "R

V is the function II, analysed by Sommerfeld in Riemann-Webers
Differentialgleichungen der Physik. Sommerfeld transforms the inte-
gration from 0 to « into an integration from — « to + « by re-
placing the Bessel function by its equivalent Hankel functions and
then wraps the real axis path of integration around the zero of k%l
+ k.2m and the two branch cuts from k; and k; to + 4 . He thus
gets V= P + Q1 + Q: where P is the integral around the zero of
kol + k2m, Q. is the integral around the branch cut from ki, Q2 is
the integral around the branch cut from k; and the function inte-

grated is
ko?

- - 1 —wl
PO klzmHu (rp)evirdr. (5)

1 and m are pure imaginaries on the branch cuts, which are rectangular
hyperbolas, from k;, and k: respectively. As one carries 7 counter-
clockwise around the branch cut from k; to + i, I travels up the
right hand side of the imaginary axis from — i + € to + 1 + e
A similar statement holds for m.

Multiplying numerator and denominator of equation (5) by ks
— k2m and then taking out a factor (k:* — k*)~' our integrand
becomes

ke kT — ki — kNT — kS
ket — kit (T - S)(T + S)

Hyl(rp)e~ ¥ kirdr,

where s = + kiks = Vk? + k% Integrating around the pole at
T =5, we get

2 0 E — B2 — b2als? — pa? ‘
P = kg"'k—z kl427r7,' kz \iS k] = kl NS k_ I_Iol(sp)e.-w\,x_kﬂs
S0 i RN RS — kN = R =
kk1s .
= — Zfﬁﬂul(m)e_‘w”ﬂ“", (6)

k22 \'52 — k12 — k|_2 V52 — kg = 2k22 Vs“ - k12 = 2’1‘:k1k25.
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! and m must have their real parts positive and so in taking the
square roots of s* — k® = — kit + (ko + k%) and s — kP = — kot
=+ (ks 4+ k%) one halves the smallest angle with the positive real axis.
If they both lie on the same side of the real axis P is zero. In order
that they may lie on opposite sides of the real axis it is necessary that

arg k' < arg (k* + ko?) < arg ko
Writing k> = a 4+ i and ks> = x + 7y this means that

_ 2af 2+ B
E ag—ﬁ‘—’"—l_a"’—ﬁz

8.

The goal of the paper being asymptotic formulas for the sky waves
of vertical and horizontal dipoles the ground wave, P, will hereafter
be ignored. This is possible because at the high frequencies for which
dipoles are useful the ground wave is very highly damped.

Sommerfeld gets an asymptotic expression for (; by noting that if
we are at a great distance from the source most of the value of the
integral comes from that portion of the path of integration very close
to k;.  The solution he arrives at is

el']nR kn2 0
204+ @4+ 4+ - where Q= ——o=—onut —.% (7
( )R povie =g )

Neglecting higher powers of 1/R than the first, equation (7) sums
up into

01 ~ 2ks? cos 8, el 8)
' kga Cos 32 + kLnge — klﬁ R

But in getting equation (7) Sommerfeld has replaced v7* — ks* by
vk — k. This is a needless approximation which ruins the sym-
metry, damages the utility and tends to hide the physical meaning of
the final result. To get the true asymptotic formula for Q, it is
necessary to confine the approximations to the purely operational
variety, i.e. make no approximations of substitution before integrating

but let the approximation reside wholly in the manner of integrating,
as follows

Ql. = f L2

I S— 1 —wl
kol 4+ ki*m M (rp)etadr

—wl
S %fﬂ&(fm)%(cﬂ + G+ Colt A+ - )rdr

¢ Annalen der Physik, Band 28, 1909, page 705.



666 BELL SYSTEM TECHNICAL JOURNAL

where
Co+ Cid + Col2 4+ -+« = ka® + (k™ + kNP + ki® — kd?).

To the extent that most of the value of the integral comes from
that portion of the path of integration very close to 7% = ki* the
expansion in powers of / is valid. Replacing each ! by — (9/dw)
we have then

d a 02 eikiRe
Q1~—2?£}(C0—C16_W+C2%:‘;_+) R2 (9)
Now
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2 2
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WT;—(‘Y +27—R2 + 124 IR, 4+ Fou
3 etk [ ,Cos f: .0k sin® 6, eikiR
_@7@2__(7 HEEAS TR RE L7 S b oo
etc., and so
ik1Rs
01~ 2(4'Co + ¥Ci + ¥Ca - + )
ika R
+ 2 cos 0:(14°Co + 24Cy + 392Ce + + -+ ) _‘ﬁi
2
ik Rz
+ ik sin® 6.(1 - 29°Ci + 2 - 39'Co + 3 - 44°Cs + + -+ ) _%_2_
2
+ higher order terms
_ 2kyy eihiRe
by + kPNyE + kit — ket R
d |, ik sin® 6. 9 ) 2ko2y eikiks
0, — —_— - ———
+ (COS 5y T 2 0% ) kiy + kiNa F kR — k2 P

+ higher order terms. (10)

The second order term can be neglected if kR, >> 1, say if
R > 20A. It will hereafter be supposed that this is the case.

Multiplying numerator and denominator of the first order term by
i and canceling a k; we have finally
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2ks% cos 6, gifilt:

~ . [1
ko? cos 8, + kiVks? — EiEsin? 6, Re ()

This Q; behaves as one would rightfully expect a true asymptotic
formula to behave. Itis 2(exp ¢k, R.)/Rsat ks =  and 1(exp 7k:1R,)/
Rz at kz = kl-

In so far as ks is considerably larger than k; and the expansion in
powers of /is valid Q. is negligible in comparison with (,.” Perhaps
the easiest way of seeing this is to note that equation (10) might just
as well have been obtained directly from V instead of from Q,.

Substituting equation (11) in equation (4) we get

Q1

I ~ ( 1 ky? cos 8, — kﬂ’keg — k7 s‘inz azeihuzrm} ) eihm' (12)
ko cos 0, + kiVks? — k2 sin? 6, R

whence

. L
Er= —'Lw(Hz”—I-kl "azzﬂz)

. ik
~ —idwsin? 6,(1 + Riethenay S0 (13)

where
_ kzz cos @, — kl'\kzz - k12 sin? g,

' R cos 0, + EiVk? — EEsin® 6,

Substituting equation (11) in equation (2) and adding E,* we get

R

. N gifIR
E ~ — qwcos 0 cos (1 — Rjei1acest:) =

(14)

R, is the coefficient of reflection for a plane wave polarized in the
plane of incidence.
The horizontal fields of a horizontal dipole are
d [0

h = : h -2~ [ =
Eu ’MJJIiHI,- +k1 ay<ax

|

a a
h h h
LY 4 oI+ 5o, )]

I
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a? d [/ d
— 'y —2 o0 —_ —_ A —_ A
twk [dyax II.* + 3y ( Y A + e 11, )] (15)
and
. 9 /0 d d
Ehf_ Hh -2 __ __”h Hhi ”h
g “"[ 1 ax(ax T hoy v T s )]

R ® _, 0° w
= 7,w|:H1- —!—kl“@H; ]

7 Riemann-Weber's ‘' Differentialgleichungen der Physik,"” p. 356.
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. J a _ d
_ A —a Y qa 11,5
tw I: I ks dx ( dx I dz )]

cos . A
¥
cos

= — (I, + I1,%) + cot oB,*; (16)

~ = iw(Hzm + HIA) +

E,t= Etsin ¢ — Eb cos o ~ — dwsin o(IL® 4+ ILA).  (17)

Evidently the procedure which yielded the true asymptotic expres-

oe

90°
1.25

Fig. 2—Vertical dipole polar diagrams computed for A = 6 meters,
e=9 p=1ande =101
sion for V will do the same for II,2. The details are not interesting.
The result is
2k, cos 8, gik1R2

. 18
kl CcOs B; + \'k22 - k12 sin? a2, RE ( )
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Substituting equation (18) in equation (17) we get

ik R
E,)' ~ + iw sin (1 — Roeiki2acost:) iﬁ', (19)
where
_ ‘\,kgz - klg Sin2 Hz - kl COSs 62_

Ri—= oo
Vb2 — ki sin® 0, + k; cos 68,

R, is the coefficient of reflection for a plane wave polarized perpen-
dicular to the plane of incidence.
Formulas (13), (14) and (19) are just what one would get by applying

o°

Fig. 3—Polar diagrams of the horizontal fields of horizontal dipoles computed for
A =6 meters, e =9, =1land ¢ = 1071

the coefficient of reflection from an imperfect reflector to the reflected
waves of the corresponding electrostatic formulas.
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Returning to equation (15)

. , 0° ® 2 (ko — k%)l
E h — -2 || W __ —_ ? —wl
Y twks dydx |: * jol m—+i (1 k2 + kf’m) o(rp)e Tdf]

__ 9 o W L —2
= Tw ayf)x (k]_ H,;; kz V)

ikyr

. ki )
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(20)

Usually one cares only for E,* at ¢ = 7/2 and E,* and E,* are of
no particular interest. Figs. 2, 3 and 4 are polar diagrams in the

o°

75¢°

: = 90°
o 0.25 050 0.75

Fig. 4—Polar diagrams of the vertical fields of horizontal dipoles computed for
A =6 meters, e =9, p =land e = 1079

vertical plane of equations (13), (14) and (19). Assuming the con-
ductivity of the air to be zero and the dielectric constant to be unity

B = k(e + i2cAa), k1= 27/,

where ¢ is the dielectric constant of the ground referred to air as
unity and o is the conductivity of the ground in electromagnetic units.
The values of € and ¢ used in computing the polar diagrams are
generally supposed to be somewhere in the neighborhood of their
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average values for earth but they vary so much with the locality that
the diagrams can scarcely be regarded as giving more than a general
idea as to what may be expected of the formulas.

The number attached to each curve is the height of its dipole in
quarter wave-lengths.

Formulas (13), (14) and (19) are just what one would get by applying
the Reciprocal Theorem to two dipoles, one near the earth and the
other far away. The electric field acting on the one near the earth
is composed of a direct field and a reflected field which is R; or R,
as the case may be, times the direct field.

When the depth to groundwater, bedrock, an orebody or any
marked discontinuity in the electrical properties of the ground is
known and is not too great the effect of this discontinuity on the polar
diagram ought not to be ignored. The asymptotic formulas for any
stratified ground are got by putting the coefficients of reflection for
a plane wave reflected from the surface of that ground in place of the
corresponding coefficients in equations (13), (14) and (19). For a
number of rather obvious reasons it would usually be out of the
question to deal with more than one plane of discontinuity; one is
bad enough. The coefficients for a single plane of discontinuity at a

depth A are
! Rl = ks® cos 6. — mikiNks® — ki® sin® 6,
kg Ccos 8 + ﬂlkl’V‘kg — kl sin? 9
and
Ry = Vko* — ky* sin® 6. — 52k, cos 6,
ket — ky? sin® 6, — qoky cos 0,
where

#21+61 M21+62

Fll_é’ N wl— 8’

kz uaVNks® — ki sin® 0. — kiuaVko* — ki?sin® @

d i"A\IL 2—k)? sin? 9

kz #3'\J‘k3 —_ kl sin?® 6 - ka p‘.z'v’kz' _— kl sin® @

1

and

ﬂa’V‘kg - kl sin? ﬁ - #g"}ka —_ k12 sin?® 8,_ 12.‘.\\]/;;!-1:;—51!110
paVks® — ki sin® 0, + pavVks® — ki sin? 6,

by =

If A is not large and k; is considerably different from k; then n,
and n. will differ considerably from unity.



