Statistical Theories of Matter, Radiation and Electricity !
By KARL K. DARROW

The atomic or ** kinetic '’ theory of gases, with its interpretations of such
qualities as temperature, pressure, viscosity and conductivity, has ranked
for more than half a century as a very important part of theoretical physics.
A corresponding theory for radiation and for negative electricity i1s much
to be desired, since it is known that in many ways each of these entities
behaves as though it were atomic. There are, however, differences among
the three, and only within the last five years have these been formulated
suitably. This article is devoted to the resulting statistical theories.

HE major subjects of this article are two extensions of what

formerly was called atomic theory—that is to say, the attempt
to explain as many as possible of the properties of pieces of matter
large enough to be visible and tangible and ponderable, by visualizing
these as swarms of tiny particles each endowed with only a very few
and simple qualities. Among the properties of gases, for example,
are pressure and viscosity and entropy and temperature. Conceivably
one might invest the ultimate atoms with all four. The atomic theory
of gases as it stands today, however, is the outcome of a very different
procedure. It is the achievement of an effort to interpret these four
properties and several more as features of a hypothetical assemblage
of very many corpuscles all alike, and not possessing them nor
any others except position and velocity and mass (and moment of
inertia, sometimes) and the liability to make elastic impacts with
each other. On the whole the effort has been remarkably successful.
Therefore viscosity and temperature and entropy are not attributed
to single atoms, but pictures and expressions for them are derived as
qualities of the assemblage. The theory which leads to these results
is called sfatistical; it is based on certain assumptions which, in the
form in which they were originally made, constitute the classical
statistics. The successes of the classical statistics are a part of the
evidence that matter is corpuscular. Once they were nearly the
whole of the evidence, for they antedated the striking demonstrations
of individual atoms which now spring to the mind whenever one is
asked to state the reasons for accepting the atomic theory.

Radiation resembles a gas in some respects. Entropy and temper-
ature and pressure, for example, are properties displayed by radiation
when enclosed in a space surrounded by a wall of even temperature,
just as they are by a gas in a like situation. It seems quite natural
that one should try to interpret them in the same way as for a gas
they are interpreted by the atomic theory: imagining the radiation

1 Physical Review Supplement, Vol. 1, July 1929, pp. 90-155.
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as an assemblage of innumerable particles, a swarm of photons or
corpuscles of light. Nowadays at least the idea seems quite natural;
but of course, in the years when no one as yet had broken away from
the tradition that light is altogether wavelike, it would doubtless
have been thought a very wild one. Even after Einstein had ventured
such a breach with the past, nearly a score of years elapsed before
there was developed out of the theory of quanta an adequate conception
of the ‘‘radiation-gas.”” The historical sequence in the growth of
the atomic theory of matter was here inverted: there was abundant
evidence for the corpuscular theory of light, in phenomena such as
the Compton effect and the photoelectric effect showing the work of
individual photons, before the statistical theory of these corpuscles
was perfected. We now see that the trouble was, that even when
one accepts the notion of corpuscles of light without reserve, and even
when one knows the proper values of energy and momentum to be
assigned to these corpuscles, it still is not correct to apply to them the
same statistics as gives such good results when applied to the atoms
of matter. Bose discovered how to remodel the statistics, in order to
construct a competent atomic theory of the radiation in thermal
equilibrium in an enclosure.

The other of the new extensions of atomic theory is partly a revival
—the resurrection of the theory, first proposed some thirty years ago,
that part at least of the negative electricity within a metal acts like
a swarm of freely-flying corpuscles which collide now and again not
with each other but with the atoms. It was of course the classical
statistics which was always used in developing this theory. Moribund
because of several incurable discordances with fact, the theory was
resuscitated by Pauli and by Sommerfeld with a revision of the
statistics. It was not quite the same revision as enabled Bose to set
up an atomic theory of radiation, but a very similar one, invented
first by Fermi and later independently by Dirac. One cannot say
that the so-renovated ‘‘electron-gas theory’ is a perfect explanation
of all the multifarious phenomena of the flow of electricity and heat
inside of metals and outward through the boundaries of metals. Its
initial successes, however, are so auspicious as to suggest that the
hope of further progress lies not in renouncing it (as seemed to be
almost inevitable before the alterations) but in amending it in its
details.

Is the atomic theory of material gases to remain untouched by
these novel ideas? Apparently all three forms of statistics, the classical
and the two recent types, lead to very nearly the same conclusions
when applied to material gases. Only at remarkably low temperatures
and remarkably high densities do their predictions diverge; and under
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these conditions the experimental data are not easy to interpret for
that purpose. Suppose, however, that eventually the data are proved
to decide for one of the new forms of statistics against the old: what
then? Probably we shall merely remove one of the theoretical
foundation-stones of the kinetic theory of gases and insert another to
take its place, meanwhile leaving practically intact the great super-
structure of formula and equations whereby the kinetic theory makes
contact with experience. Happily this is an easier process in theo-
retical physics than in architecture.

Custom has lately changed the meaning of the term afomic theory,
making it almost synonymous with theory of the structure of the alom;
but the province which this latter has taken for its own is one to which
its forerunner disclaimed all right of entry. It was never supposed
that all of the properties of a gas can be interpreted as statistical features
of a swarm of corpuscles. The earlier atomic theory conceded some
of them to the individual atoms, thus in effect renouncing the ambition
to explain them; and among these were the spectra. Where the
statistical theory left off, the builders of atom models took up the
work. Bohr, for example, designed a model for the individual hydro-
gen atom, competent—at least to a great extent—to explain the
Balmer series and the rest of the line-spectrum of “atomic hydrogen.”
This model he constructed, following Rutherford, out of a pair of
corpuscles. What he and his successors thus developed was in a
way an atomic theory of the atom—a degree deeper, or further, or higher
perhaps, then the atomic theory of matter which had provided him
with the notion and the scale of the atom to begin with.

What then distinguishes this new ‘‘atomic theory of the atom"
from its ancestor? Well, the major differences in method and in aim
are traceable to the fact, that in the later theory the number of
elementary particles which constitute the system is quite manageably
small, while in the earlier, it is inconceivably tremendous.

Bohr constructed his model for the hydrogen atom with only a
pair of corpuscles, and those for all the other atoms out of not more
than a few dozen each. Now with a model consisting only of two
particles, one can specify positions and velocities for these with the
utmost of precision, and go merrily ahead predicting and describing
orbits with as much exactness as one cares to lavish. Ewven with
dozens of electrons and a nucleus one can attain at least a specious
accuracy of detail; remember the portraits of the electron-orbits of
massive atoms which six or seven years ago were so profuse. Perhaps
it is not wise to make such definite assertions; but it is feasible. Not
so, however, with the subjects of the older theory.
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The model proposed for a cubic centimetre of gas under the ordinary
conditions of temperature and pressure consists of something like 102
particles. Merely the mention of so extravagant a figure is sufficient
to persuade that it is vain to dream of making any progress by postu-
lating a definite position and a definite velocity for each of these.
The life of the human race would not be long enough to write down
even the postulates, to say nothing of the inferences.

This seems a fearful handicap; but it is not so at all. Adopting
the statistical method, one does not even begin upon the hopeless
task of fixing place and motion for every particle. We content our-
selves with writing down a function, which states how many among
the multitude of particles we assume to be situated in each small
(but not too small) element of volume; and how many we assume to
have momenta which lie in each small (but not too small) range of
momentum. These are specifications much more modest and vague;
but they are ample. For the things which we wish to interpret—
entropy and temperature, viscosity and conduction and diffusion—
the atomic picture need not be made one whit more definite.

In saying this I am understating the case. If the atomic picture
could be made more definite, say by stating the locations and the
velocities of all the atoms with absolute precision, the meanings
which we shall presently attach to entropy and temperature would
be dissolved. Our theory of these entities depends upon the vagueness
of the picture. Seemingly they appeal to us as physical realities
because our senses and our instruments are too obtuse to perceive
the atoms. Our minds must feign a somewhat similar obtuseness,
pretending not to fix the particles of the imagined swarm too sharply;
therefore it does not matter that they are so numerous that the
pretence becomes sincere. Exact knowledge of the individual atoms
is unattainable; but it is useless, is not desirable even. One remembers
Asop's tale of the fox and the inaccessible grapes; in this case it is
probable that the grapes really are sour.

For that matter, perhaps they do not even exist. One of the most
striking of the very recent ideas in theoretical physics is the thought,
that even for atom-models with but a few particles, even in thinking
of an isolated particle, it may be altogether pointless to assign exact
positions and velocities. In dealing with a swarm of particles by the
statistical way, we do in effect fix the position of each corpuscle,
but with a certain latitude; we fix the velocity of each, but again
with a certain latitude. Perhaps this latitude, this indefiniteness,
is something inherent in nature. Insisting as I am upon the contrast
between the theory of the structure of the atom and the statistical
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theory of matter and radiation, I may in effect be insisting on the
contrast between a faulty way of visualizing some phenomena, and a
correct way of visualizing all.

A function of the sort which I just mentioned, a so-called distribution-
function, is the goal of every statistical theory. I have said that it
states how many among the multitude of particles we assume to be
located in each small element of space and to have momentum com-
prised in each small range of values of momentum. So it does; but
the purpose of a statistical theory is, to derive it from assumptions
still more fundamental, in preference to assuming it outright. Of
course one might say instead, that the reason for deriving a distribu-
tion-function is to put the fundamental assumptions to their test.
Whichever viewpoint one prefers, it is the distribution-function which
is tested by experiment: indirectly, in that it supplies numerical
values for such things as conductivity, viscosity, specific heat; and
directly, for there are now immediate ways of observing it in certain
cases.

A distribution-function commonly appears in an equation of this
form:

AN = f(x, y, 3, by Py, P:)-dxdydzdp.dpdp:. (1)

Such an equation will as a rule refer to some particular assemblage
of particles, say NV altogether, occupying some definite region of space:
a gas in a tube, radiation in a cavity, electrons in a wire. It is to be
read as follows: “dN, equal to f-dxdydzdp.dp,dp. stands for the
number of particles having coordinates in dx at x, in dy at y, in dz
at 2, and components of momentum in dp. at ps, in dp, at p, in dp.
at p..”" The phrasing “in dx at x" is a succinct alternative for
“hetween x and x + dx.”

The function f is the distribution-function in the variables in
question—here the coordinates of the particles referred to some
Cartesian frame in the ordinary or ‘‘coordinate’ space, and the
components of momentum resolved along the axes of that frame, the
momenta. Heretofore it has been customary to use the components
of velocity rather than the momenta, but these are much to be pre-
ferred: partly because it is they which figure in the canonical equations,
but chiefly because we shall find when we pass over to the study of
assemblages of photons that the momenta play the same role in these
as they do in assemblages of atoms, while the speeds of all photons
are the same. There is a well-known formula for translating a
distribution-function from one set of variables to another set dependent
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on the first, which we shall use in special cases.? It is also well known
that to obtain the distribution-function in seme of the independent
variables from the distribution-function of all of them, it is necessary
to integrate the latter over the entire range of all the other variables:
in such a case as is symbolized by equation (1), the distribution in
p: would be obtained by integrating f with respect to the first five
variables over the entire range of each.

The product dxdydsz is an element of volume in ordinary or coordinate-
space; the product dp.dp,dp. is an element of volume in momentum-
space, in which each particle is represented by a point having for its
coordinates in a Cartesian frame the values of its momenta; the
product dxdydzdp.dp,dp. is an element of volume in phase-space.
The function f describes the distribution of the assemblage in this
phase-space of six dimensions. In some cases—for instance, that of
electrons in a metal not at an even temperature, and that of oscillators
—we shall have to think continually of this six-dimensional space.
In others—whenever we deal with photons, and whenever we consider
atoms or electrons in a region where neither temperature nor potential
varies from place to place—we shall be able to assume that the distri-
bution in the coordinate-space is uniform (that f is independent of «x,
v, 2) and to dismiss it from mind, and to derive the distribution in
the three-dimensional momentum-space quite separately as if there
were no other. Even in these simplest cases it would no doubt be
more consistent to operate always in the phase-space. Unhappily
the human mind is so constructed, that no matter how much it may
ratiocinate about space of six dimensions or six trillion, it always
visualizes in space of three.

In an equation such as (1), the differential element or the product
of such elements which terminates the right-hand member must be
neither too large nor too small. If it is so large that f varies con-
siderably from one point in it to another, then its multiplier, which
is by definition the mean value of f in the said element, must be com-
puted by the methods of integral calculus. If on the other hand it is
so small that it contains only a few of the corpuscles, then the product
of f into its size may be many times as great or many times as small
as the number which it does contain. This is easily perceived by
proceeding to the absurd limit of dividing the space into say ten
times as many elements as there are corpuscles, so that in at least

2 Let #, us, -+ represent the variables of the first set, v1, v, --- those of the
second; let f(uy, w2, -++) and F(vy, va, ---) stand for the distribution-functions in
the two sets; then (

A(ur, tta, -++)
Flyy. g0 «--) = ik Gt L kL EY
(v, v2y - ++) = flvs, 72, V3 o )
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nine-tenths of the elements the number of participles is zero while f
is greater than zero, and in the others the number is generally much
greater than f times the size of the element. To subdivide the space
so finely would be to make the atomic picture too definite, and ruin
it for the purposes for which we now require it.

It is not too early in this paper for me to say emphatically that the
differential elements which figure in equations such as (1) must not
be identified with the elementary compartments of the phase-space,
which we shall presently encounter, and which are so important in
the new statistics and in the old alike. It takes a great many of these
latter to make up an element large enough to be employed in an
equation like (1). Otherwise expressed: the subdivision of the phase-
space into the elementary cells or compartments of the forthcoming
theory is much too fine to be used in connection with the distribution-
function. Much confusion may arise from failing to realize this.?

In speaking of the distribution-function, I have been tacitly assuming
that there is such a thing as a stable, self-sustaining, changeless
distribution of the atoms of a gas, the photons in a cavity, the electrons
in a wire. This assumption must now be examined. It is scarcely
self-evident; one might guess at first that the more numerous the
particles, the more abruptly would the distribution vary from one
moment to the next, and that an assemblage of 10% particles would
be in such unceasing turmoil that it would be senseless to imagine
one single distribution for it.

Experience however shows the reverse. The gas in a tube remains
uniformly dense and stationary, it does not surge forever to and fro
nor huddle in a corner nor become spontaneously hot at one end and
cold at the other. In the radiation in a cavity with heated walls the
intensity comprised within any portion of the spectral range remains
unchanged so long as the temperature of the walls is constant. The
distribution-in-velocity of the electrons streaming from a heated
filament does not appear to change. Moreover, when by artifice the
gas in a tube is forced to assume uneven density, non-uniform temper-
ature, or any sort of flow or turbulence, it settles down very quickly
into a stagnant uniformity as soon as it is left to itself.

Now we know that while a gas is passing from an unstable state—
a state of non-uniform temperature, for instance—to its stable and
permanent condition, a property which we call its entropy and denote

31 am thinking particularly of the fact that in most expositions of the classical
statistics one is adjured that there must be many particles in each compartment,
and then in taking up the Fermi statistics one is told that there must be not more
than one in each compartment; yet the two lead to formula which in the limiting
case are the same,
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by S is increasing; in certain simple cases we can evaluate this rate
of change of entropy. We know that when a gas is in its stable
condition, its entropy is at a maximum; we know how to compute
the entropy (except perhaps for an additive constant) of a given
quantity of a gas in this condition, as a function of its temperature
and others of its measurable properties. And when we have evaluated
both the entropy .S and the energy E of a gas under any specific
conditions, we know that its absolute temperature is determined by

the following equation,
dS/dE = 1/T, (2)

~ which is the definition of absolute temperature.

If we had obtained by some independent way an adequate atomic
picture of entropy, so that whenever a distribution-function was
suggested we could compute the value of S: then necessarily the
stable distribution would be the one for which S has the greatest
value compatible with the given number of particles and the given
amount of energy. We do not have an independent way. But if
instead we adopt some tentative atomic picture of entropy, some
function S of which we can compute the value for any given distribu-
tion: then the test of our picture will be, whether the distribution
for which this tentative .S has its greatest value is verified by experi-
ment to be the stable one. It will be found that this distribution
“of maximum .S"" involves the derivative dS/dE, and therefore the
absolute temperature; so the temperature enters into the postulated
distribution-function in the course of its derivation, not by separate
assumption or by an afterthought.

This method is the very notable one invented by Boltzmann, and
continued by Planck. One choice of the function .S which is to be
identified with entropy leads to the classical or Maxwell-Boltzmann
distribution-law; another leads either to the Bose or to the Fermi
distribution, the difference between these two entering in at another
point.

Each of these suggested functions is logarithmic; it is proportional
to the logarithm of a function which is called probability. In theo-
retical physics it is a fairly general rule, that when a theorist introduces
the word probability he is abandoning all hope of explaining by cause-
and-effect the phenomena of which he is discoursing. This is the
disadvantage of Boltzmann’s method. The ‘‘distribution of maximum
S’ is baptized ‘‘the most probable distribution”; there is even a
numerical estimate of its ‘‘probability,” and in general it turns out
to have so much greater a probability than all the others put together
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that one accepts without demur the conclusions that in practice it
will be stable. But there is no proof that the ‘““most probable”
distribution is always or even usually followed by another exactly
like it, nor that an “‘improbable’ distribution is always or even
usually followed by another of greater probability; there is no study
of the way in which one distribution is transformed into another,
there are no assumptions about the collisions or encounters which
presumably offer to the particles their means of interchanging speed
and energy, and to the assemblage its means of approaching the
stable distribution. There are other statistical methods in which
account is taken of these things, and we shall have a glimpse of one
of them in the last section of this paper; but the notion of causality
is absent from the method which will be followed in deriving the
distribution-laws of Maxwell and Boltzmann, of Bose, and of Fermi
and Dirac.

These three distribution-laws will be applied to freely-flying particles
in regions which are either field-free, or else pervaded by a field
(electrostatic or gravitational) derivable from a potential. It may
surprise the reader to hear so little about oscillators, considering that
the statistics which Planck applied to these objects was the first of
all the modifications of the classical statistics, was the source of the
entire quantum-theory, and therefore the most important advance
of the physics of the last quarter-century. The history of this period
is very curious; but I cannot mention more than a couple of the
salient points.

The Planckian oscillators served two purposes: they enabled Planck
to derive the law of distribution of radiant energy at uniform temper-
ature in a cavity, by supposing the radiation to be entirely wavelike
and to be in equilibrium with myriads of oscillators in the walls of
the cavity; and they enabled various savants to develop, step by
step, a progressively improving theory of the specific heat of solids.
The Bose statistics made them quite superfluous for the first purpose:
by applying this statistics to the radiation supposed to consist of
corpuscles, we can derive the same law of distribution without invoking
the oscillators at all. As for the second: as early as 1912 (which
seems remarkable, now) Debye had replaced the concept of a solid
as a latticework of vibrating atoms by the concept of a solid as a
system of stationary waves agitating a continuum. I do not mean
to imply, of course, that the existence of the atoms was denied; I
mean no more than to say, that in these statistical reasonings the
individual vibrating atom was replaced by an individual pattern of
stationary waves. Today we are becoming familiar with the idea
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that in certain reasonings, a freely-flying electron or quantum or even
an atom in a region bounded by walls may be replaced by a pattern
of stationary waves filling the whole of this region. Thus it seems
that the free particle, the oscillator, the stationary wave-pattern, are
in close affinity with one another; they may simply represent different
ways of looking at the same thing. Though on almost every page
of this article I shall write in the language of the strictest corpuscular
theory, it is probable that every one of the results could be translated
into the language of oscillators or the language of waves.

There are still assumptions to be made about the individual particles.
They are to have position, momentum and energy. Momentum
may be separated into mass and velocity; often it is better left as
an elementary concept. It will turn out that one of the essential
differences between photons on the one hand, electrons and atoms on
the other—that is to say, between the particles out of which we shall
try to build a picture of radiation, and those of which we shall build
models of gases and of electricity in metals—Ilies in the relation be-
tween momentum and energy.

Experience with matter in bulk leads to the well-known equations
connecting kinetic energy K and momentum p with mass m and speed z:

K = Im?, p = mv (3)

and these are supposed to hold for the ultimate particles of matter
and of electricity.

During the years in which the corpuscular theory of light was
struggling into existence—for, it will be remembered, light was still
considered to be entirely wavelike even after Planck had founded
the quantum-theory by his statistics of oscillators—Einstein pro-
posed at two different times (1905 and 1917) the following formulz for
the energy and the momentum of photons in terms of their wavelength:

E = hefn, p=nh/\ 4)

Historically it is interesting that he proposed the latter formula
because of certain statistical studies which he had made of the equi-
librium between photons and atoms. The verification of the latter
by the Compton effect, of the former by the photoelectric effect and
many other phenomena, is too familiar to require comment.
Now from equations (3) we deduce, for particles of matter and of
electricity:
E = ot = o (02 + 57 + 52) 3)

- 2m
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and from equations (4) we deduce, for particles of light:
E = pc. (6)

The difference between these two relations is responsible for some of
the contrasts between radiation-gas on the one hand, electron-gas
and material gases on the other; but by no means for the major part.
The major difference lies in the statistical theory, as we shall now
find out.

TuE CLASSICAL STATISTICS

We are going to represent three kinds of objects—ordinary or
material gases, radiation in enclosures, negative electricity in metals—
as assemblages of particles possessing location and momentum. We
may visualize such an assemblage first as a swarm of points in ordinary
space, with a coordinate-frame along the axes of which the coordinates
x, v, z of the particles are measured; then as a swarm of points in
momentum-space with a frame along the axes of which the momenta
Pz, Py, P are measured.

I will first illustrate the method of classical statistics by using it to
ascertain the most likely distribution of particles in ordinary space,
a case where seemingly the result may be foreseen. TFor it seems a
truth of intuition that inside a box of ordinary space, with nothing
(e.g. no variations of potential) to distinguish one region from another,
the particles must tend to distribute themselves uniformly. This is
a conclusion to which the statistical method must lead. The uniform
distribution must be the most probable. How then should we define
the “probability” of a distribution so that it shall be greatest for
the uniform one?

But in the first place, what #s a uniform distribution? We must
divide the space—mentally, of course—into conpartments of equal
volume. The distribution will then be called uniform, if the numbers
of particles in the various compartments are about the same. But
this clearly requires that these subdivisions be of a certain size.
Their linear dimensions cannot for example be smaller than the
average distance between particles, as then a “‘uniform distribution”
would be impossible. To partition the space too finely would be
like studying a painting with a microscope. The quality which we
wish to define evades too sharp a scrutiny. The compartments
should contain large numbers of particles, both for the stated reason
and for the convenience of a certain mathematical approximation
which is made.

Denote then by N the total number of particles, by m the number
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of compartments into which the volume V is divided, by N: the
number of particles in the 7th compartment. A distribution is
described by stating all the numbers Ny, Na+ -+, Ny, « - N

The basis of the classical statistics is the fact that if the particles
have identities—if each of them is labelled by a distinctive letter,
for instance—there are different ways of arranging them in the same
distribution. One starts with any arrangement compatible with the
prescribed ‘‘populations’” Ny, Na, -+ Nn, and obtains all the other
arrangements by interchanging particles ad libitum among the com-
partments, respecting only the condition that each of these shall
always have as many as it had at first. The total number of distinct
arrangements, the number of permutations of the combination Ni, No,

-+ N,, is by a well-known theorem:*

N

W= )

This number has its minimum value of unity for a distribution in
which all the particles are crowded into one compartment, which
would be the most non-uniform conceivable; and its maximum value
for the uniform distribution, as I now proceed to show.?

Let us use the logarithm of W instead of W itself. If W has a
maximum for any distribution so also will its logarithm, which is
easier to handle, and will presently be chosen as the representation
of entropy. We have:

log W = log N! — 3 log Nl (8)

Now we introduce Stirling’s approximation for the factorial of a
large number—by far the greatest and the most frequently invoked

4 Imagine yourself stationed beside a set of m baskets and an urn filled with N
lettered but otherwise indistinguishable balls, which are to be lifted out at random
and dropped into the baskets under the following rules of the game: the first N,
which come to your hand are to be dropped into basket 1, the next N.: to come to
vour hand are to go into basket 2, and so on to the end. Having acted accordingly,
vou note down the assortments of balle in the various baskets, and repeat the process
ad infinitum. Now there are N! different orders in which the balls may come out
of the urn. When the inspection of the baskets after two drawings reveals different
results, the orders must certainly have been different. But two different orders
need not reveal two different results to the inspection. Take any order, to start
with; then there are (Q — 1) = (&,!Ns! -+ N, ! — 1) others which yield the same
result. For there are N;! orders in which the earliest N, balls emerge might come
out, without any of them losing its place among the first Ny; there are N! orders
in which the next N. might come, without any losing its place in the second basket;
and so forth. Each of the N! orders then is but one among Q altogether which
lead to the same result; so that there are only N!/Q different results.

& What will actually be shown is that for the uniform distribution the function
W is stationary; that it is maximum (not minimum) seems fairly obvious from the
physics of the case, and can be proved.
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of the mathematical aids in statistical theory. It is:

xl = (27x)12(x/e)7, (9)
log x! = xlog x — x + % log (27x).

The first two terms of this latter expression form an approximation
singularly good even when x is no greater than ten or thereabouts.
Using it we have:

log W = const. — > N;log N (10)

Denote by W9 the value of W for some particular distribution N°,
NS, ---N, and by W = W4 §W its value for some other only
slightly different distribution N° + 6Vy, N2° 4+ 6Ns, -+ - N,.° + 6N,,..
The difference between the values of log W for these two distributions
is to first order of approximation:

blog W = sW/W = — 2(1 + log N&)éN:. (11)

If W?is a maximum for the distribution N,*- - - N,,°, then the difference
between log W and the value of log W for any other slightly different
or “slightly varied' distribution must vanish to first approximation.
The quantity on the right of (11), the ‘‘first variation’ of log W,
must be zero for any permitted set of values of 6V, - - - 6V,,; meaning
by ‘permitted’’ any set of integer values adding up to zero, for we
consider an assemblage of an invariable number of particles.

Now one sees immediately that the right-hand side of (11) does
vanish, if all the populations N have the same value, say «; for then

log W= —3(1 + log «)dN; = const. 2_6N; (12)
7 7

and the permitted variations are precisely those, for which the sum-
mation >V, is zero.

We do therefore reach the result which was desired. Failing it,
this mode of “counting the ways in which a distribution may be
realized” would have been unprofitable. As it is, the quantities W
and log W are greatest for the uniform distribution which seems
intuitively the most probable and is the rule for gases, and least for
the utterly non-uniform one which seems the least probable. Tenta-
tively the former is adopted as measure of the ‘“‘probability” of a
distribution.

I point out in passing that while the foregoing result is mathe-
matically valid for any value of the constant «, the total number of
particles prescribed for the assemblage determines the value of «
which is physically permissible: viz. N/m.



RECENT STATISTICAL THEORIES 685

We proceed to apply this method to the swarm of points in mo-
mentum-space representing the assemblage.

Like the coordinate-space, the momentum-space is to be divided
into equal compartments large enough to contain each a multitude
of particles. We are to define a distribution by specifying how many
particles are in each compartment, and calculate as before the number
W which is to measure the ‘probability” of the distribution. The
values for W, for log W and for the variation of log W are obtained
just as before. There is however an important novelty. Since the
energy of a particle depends on its position in momentum-space,
different distributions usually entail different values for the total
energy of the assemblage. If we compute the variation of log W
due to a slight change in distribution, we shall usually be computing
a variation in log W correlated with a certain variation of the total
energy U of the assemblage.

We now take the very great step of identifying the quantity log W
with entropy.

More precisely, we assume that the entropy .S is proportional to

the logarithm of W:
S =Fklog W, (13)

introducing a constant factor &, and relying on subsequent experiments
to teach us its numerical value.

Now when a gas being initially in thermal equilibrium at temperature
T receives an infinitesimal amount of energy dE, and regains thermal
equilibrium with its augmented energy, its entropy ascends by the
amount of d.5 given by the equation:

dS/dE = 1]T. (14)

If then the foregoing model of the gas and the foregoing picture of
entropy are justified, the variation of log W in passing from the
most probable distribution consonant with a total energy E to the
most probable distribution consonant with a total energy E 4 dE
(the total number of particles remaining the same) must be equal
to (1/kT)dE.

If we start from the most probable distribution for energy E and
make any slight change in it involving an energy-change dE, the
new distribution will presumably differ but little from the most
probable distribution for E + dE. We therefore say: the most
probable distribution for energy E is the one of which the first variation
is dE/kT. This expression vanishes, if we are comparing distributions
for which E is the same; which is as it should be.
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It is now easily shown that such a distribution is the following
N; = aexp (— e;/kT), (15)

in which « stands for any constant and e; for the average energy of
particles in the 7th compartment, which is related to the average
momenta of these particles by the equation

1
e =5 (02 + b7+ ) (16)

for we have only to write down the expression for 65 as furnished
by equation (11), and introduce into it the value of log V; as supplied
by equation (15):

55 = — kX (1 + log N.)3N;
= — k(1 + log @)Y 0N; + Y edNy/T = SE/T, (17)

the result which was desired.

The value to be chosen for the constant « will be determined as
before by the total number of particles. Denote this number by N,
and conceive the compartments as tiny cubes of volume F, so that
there are 1/I1 of them per unit volume of the momentum-space.
The density p of the particles in momentum-space, which is no other
than the disiribution-function in the momenia, is given anywhere by
the value of V;/H computed for the value of energy there prevailing:

p = NiJH = Zrexp (= ¢/kT)
(18)

— 2 2mkT p—py 2 2mk T p—p.2 2mkT
e e P e

and it is the integral of this expression over the whole of momentum-
space which is equal to N:

N:f_:Lf_: odpudpydp.. (19)

The integration is easily affected; the triple integral is the product of
three identical single integrals, and we have:

= %[(2ka)”2 jﬂw e dw :Ia, (20)

w being a symbol for each of the three momenta in turn; so that

NH

&= Damk )R (21)
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The expression for the number of particles in any compartment thus
becomes:
NH

=Wexp (— e;/kT), - (22)

N;
involving the four constants m, N, k and K. The first three are
determinable by experiment, the third is the universal constant
known in Boltzmann's honor by his name, though he himself never
evaluated it. The fourth, the volume H assigned to the compart-
ments, drops out of the distribution-functions—out of the function
p, out of the distribution-in-energy soon to be deduced, out of the
fundamental distribution-function f in the coordinates and momenta
defined by equation (1), and which I now set down in place of p:

_ N AR i o i 23
I = VammeTy R P ( 2mkT ) ’ (23)

V standing for the volume in ordinary space of the enclosure which
contains the assemblage. This evasion of H is very deceptive; for it
suggests not merely that the exact volume of the compartments is of
no importance, but that the compartments themselves were invented
only as a momentary stepping-stone to the distribution-functions,
and should be allowed to shrink to zero like the infinitesimals of the
calculus. This however is precisely what is not allowed. It is of the
essence of the argument that there are compartments of finite size.
As will presently transpire, I suspect that the division of momentum-
space into compartments should be regarded as a quantum postulate,
even in this case of the derivation of the Maxwell-Boltzmann law
which seems to be at the opposite extreme from all the notions of
quantum-theory.

The next step is the derivation of the distribution-in-energy. In
preface I point out that the distribution which we are considering is,
in respect to the directions of motion of the particles in ordinary
space, isofropic. Mathematically, this occurs because p., p, and p.
enter symmetrically into all the distribution functions; physically it
occurs because we have made no assumption leading to a preference
of any direction over any other. Later on we may establish a preferred
direction by introducing a field of force, and then the impending
steps may have to be reconsidered. Until then the distribution
which we shall study will be described completely by saying that
they are isotropic and giving the distribution-function-in-energy.
This may be obtained from the distribution-function-in-the-momenta
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by transforming to a polar coordinate frame in the momentum-
space.®

I follow practically the same route.

Divide up the momentum-space into spherical ‘‘shells”’ by means
of a sequence of spheres all centered at the origin. Each sphere
corresponds to a value of ¢, each shell to a range de of values of e.
Take one of the latter at random; call it shell s, denote by ¢, and by
€41 OF €, + de the energy-values at its boundary spheres, by r, and
rs + dr the radii of these, by d 7 the volume of the shell. Then:

1/2
= (zmer)uzv dr = (g) de,

dV = 4daridr = (27m)*2(e,) 2de. (24)

)1[2
Suppose to begin with that each shell is large enough to contain very
many compartments. The number @, of compartments in shell s
will then be:

Qs =dV/H = (27m)* e, 2de (25)

—2__
H(w)12
and the average number of particles per compartment in shell s,

call it NV, will be:
Ny = aexp (— e/kT) (26)

and the total number M, of particles in the shell will be:

2N~

= Gy & e e = Flede @)

= Q,N,
This is the number of particles having energy-values in de at e,.
Hence the distribution-function-in-energy F is the factor multiplying
de (it would be well to discard the subscript s in writing it). I have
copied the value of « from (21), but it could have been derived by
integrating F from ¢ = 0 to ¢ = =« and equating the integral to N.
The separation of M, or F(e)de into two factors—(, the number of
compartments in the shell s, N, the average number of particles per
compartment—is highly advantageous in searching for the distinctions

6 Denote by p the quantity (p.2 + $,° + .22 which is the magnitude of the
momentum; and by 6 and ¢ the angles which with p constitute a spherical coordinate
system. We have

pdp.dpydps = pp* sin 8d0dedp = = 77 ¢ PP sin 0d0dgdp

and the distribution-in-momentum is obtained by integrating over all values of @
and ¢, the distribution-in-energy from it by means of the relation (5).
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between the various proposed statistical laws. We shall see that in
passing from one to another sometimes one of the factors is changed,
sometimes the other, sometimes both.

In particular, we may pass from the Maxwell-Boltzmann law to a
distribution like that which Planck derived for oscillators, simply by
changing the factor Q,. We have been dividing the momentum-space
into compartments of equal volume, so that the number comprised
in a shell s between spheres ¢, and e, + de, is proportional to e,'/*de,.
Let us instead divide it into compartments of which the volumes
increase steadily from the origin outward, at such a rate that the
number in a shell s is proportional to de, without the factor e,'/2.

This is, of course, not the way in which Planck’s postulate is ha-
bitually stated, though it is substantially the way in which Planck
stated it himself. Usually it is said, that Planck restricted the energy
of the particles of the assemblage to a set of “permitted values”
spaced at equal intervals: say the values a, a + &, a + 2b, a 4 30,

- where ¢ and b stand for constants. Each of these permitted
values corresponds to a sphere in the momentum-space. In the shell
s there are approximately de,/b of these ' permitted spheres’’; the
approximation being closer, the larger e, and de, are in comparison
to b. Now whether we conceive that the de,/b sets of particles in
the shell s are located on the surfaces of as many permitted spheres,
or alternatively that they are scattered through as many compart-
ments, is for the statistical results of no importance. There may be
other reasons for preferring one picture to the other; but the pre-
dictions of the statistical theory are the same, whichever is adopted.
I will therefore alternate between the two pictures, retaining for the
moment that of a subdivision of the momentum-space intc compart-
ments; but now it will be expedient to think of these as thin spherical
films, centered at the origin and increasing in volume from the inner-
most outward at the specified rate.

If the shell s is large enough to contain many of these compartments
or permitted spheres, we may use the first approximation for the
number which it contains:

Q. = de/b, (28)

and putting the expression (26) for the number of particles per com-
partment, we get:
43

M, = QN, = 5

exp (— e/kT)de, = F(es)des (29)

for the number of particles having energy-values between e, and
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¢s + de,. The value of the constant is fixed as heretofore by the
condition that the integral of F over the entire range of energy from
0 to <« shall be equal to N:

f Fe)de = ""’—T fo e—dw = N, (30)

so that we arrive at the following distribution-in-energy function:
F(9 = Trexp (— ¢/kT) (31)
€) = kTexP (— e .

This function certainly does not display any feature which suggests
the achievements of Planck! It looks as smooth and continuous as
the Maxwell-Boltzmann function itself, and the constant b, the step
or interval between the successive permitted energy-values or the
boundaries of successive compartments, is nowhere to be seen. The
constant & however has slipped out for the same reason as the constant
H from the function (23), and the apparent continuity is due in both
cases to the same cause. In preparing and effecting the integration
(30) in order to obtain a value for the constant @, we assumed that
the various permitted energy-values within the range de, are all
sufficiently nearly equal to be identified with the single value e,.
That is to say, we smoothed over the discontinuities which had
previously been brought in by the assumption of separate compart-
ments. No wonder that there is not a sign of them in the function
(31), even as there is not a sign of them in the Maxwell-Boltzmann
law!

We might however avoid this smoothing-over, if we could attain
the value of @ by an actual summation over the various compartments
instead of by integration. Now with Planck’s postulate this is
mathematically feasible and indeed easy. For the number of particles
in the ¢th compartment being

N,' = a exp (— E‘/kT) (32)

the total number of particles is computed thus:

00

N = YN, = aeo/kTy g~z
i=0
ae—a/kT

I ——T (33)
by virtue of the very convenient consequence of the binomial theorem
that (1 + x4+ 2*+ ---) = (1 — x)7!; so that for « we obtain the
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exact value:
a = NeloDIkT(BbET _ 1) (34)

and for the populations of the various compartments, the formula:
N’, = Ne—b,'kTeﬂ—ﬁ.fkT(eb.’kT — 1)' (35)

Here the discontinuity implied in the classical picture of a momentum-
space divided into compartments is admitted and accepted, as it
never was in the process of deriving the Maxwell-Boltzmann law.
Planck did not put discontinuity into the classical statistics; it was
there already; he refrained from disregarding it. Instead of confining
his studies to the circumstances in which it can safely be ignored,
he extended them to ranges where it had to be taken account of,
and he took account of it.

As I intimated, the distribution (35) was proposed by Planck not
for freely-moving particles, but for oscillators. The ‘Planckian
oscillator” may be visualized as a particle which executes simple-
harmonic vibrations back and forth in a straight line across a position
of equilibrium, to which it is attracted by a force proportional to its
displacement. Itis like a free particle, in that its state at any moment
is described by giving the values of its position ¢ and momentum 2,
q being measured from its point of equilibrium; but it is unlike a
free particle in that its energy depends not on # alone but on both p
and g, being a function of the form (4p® 4 Bg¢®). Therefore we must
envisage not the momentum-space alone but the phase-space of the
variable p and ¢. In principle it would have been better, had we
envisaged the phase-space all along; but since for an assemblage of
free particles that space has six dimensions, it was impractical to
visualize more than the momentum-space, and since the energy
depended only on the momenta that compromise was not detrimental
except for one feature which I can later introduce. Here the compro-
mise would be ruinous, but it is unnecessary since the phase-space
has only two dimensions.

Visualize then this two-dimensional phase-space as a plane with p
and ¢ axes at right angles to each other. Suppose all the oscillators
to have the same mass and the same natural frequency, which is to
say, the same values of the constants 4 and B in the above-mentioned
formula for their energy; but let them differ in amplitude. The
point representing any oscillator in the phase-space runs round and
round in an elliptical orbit centered at the origin. Different ampli-
tudes correspond to different ellipses. The energy of an oscillator
depends on its amplitude; therefore different energy-values correspond
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to different ellipses, and reversely. If we divide the phase-space
into compartments by a succession of ellipses centered at the origin,
each of these compartments corresponds to a specific range of energy-
values. If the dividing ellipses are so spaced that these compartments
are of equal area (equal volume of the phase-space), they correspond
to equal ranges of energy-values—an important difference between
this case and the one which was previously treated.

If the dividing ellipses are spaced to form equal compartments,
they themselves correspond to energy-values forming a linear sequence:
call these a, a + b, a + 2b, ---a + ib --- as before. Whether we
call these the “permitted’ energy-values and allow the oscillators
only the choice among them, or whether we sprinkle the oscillators
uniformly through the compartments, makes only a secondary differ-
ence. In this case, in fact, we can easily see exactly what difference
it makes. If the oscillators are sprinkled uniformly in each compart-
ment, then by applying the classical statistics we get just the same
distribution (35) as when we assume them restricted to the energy-
values (a + 46). But when we undertake to evaluate the average
energy of all the oscillators, then in the one case we must put down
the mean energy of those in the 7th compartment as the arithmetic
mean of the values @ + 7b and a + (¢ + 1)b, while in the other case
we must put down the energy of those at the 4th permitted ellipse
as a + 7. Hence to change over from the picture of permitted
energy-values to the picture of compartments is the same thing as
to replace the original sequence of permitted energy-values by another
sequence of values located midway between them. I mention this
chiefly in order to emphasize that the subdivision of phase-space into
compartments is Zpso facto quantum-theory.

As every reader knows, Planck postulated that the quantity b—
the interval between the permitted energy-values, or the energy-range
within a compartment, whichever picture is chosen—is the product
of a universal constant () and the frequency of the oscillators ().
The area of the equal compartments is then equal to the universal
constant? whatever the frequency of the oscillators. From this
latter statement the general principle is derived: To state it one must
first adopt a symbol (say n) and a name (say number of degrees of

7 The point in the phase-space representing an oscillator of mass m, frequency »,
and amplitude C describes an ellipse having semi-axes C and 2rm»C and area 27*m»C?;
its energy is U = 27?ms?C?; hence the relation between energy U and area Fis

U =yF

and the area between two ellipses is equal to % if the energy-difference between them
is equal to hw.
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freedom) for the number of distinct coordinates g required to describe
the individual member of whatever assemblage one may be considering;
this is also the number of distinct momenta p, there being one p for
each g. Then the principle generalized out of Planck’s postulate for
oscillators is this: For an assemblage of individuals with n degrees of
freedom the phase-space is to be divided into compartments of volume hn.

We will now see what the classical statistics, supplemented by
this principle, proposes for an assemblage of particles for which the
relation between energy and momentum is € = ¢p as it js for corpuscles
of light, instead of € = $*/2m as it is for corpuscles of matter.

Different energy-values correspond as before to different spheres
all centred at the origin of the momentum-space, but the numerical
relations are changed. Instead of equations (24), we have:

€ = CFa de, = cdr,,

36
dV = 4arldr, = (d7/c) ede,, (36)

dV standing for the volume of the shell s covering the energy-range
between €, and e, + de;.  Divide the momentum-space into compart-
ments of equal volume H. We derive the “smoothed-over” distri-
bution-function for the case in which N; varies so little from one
compartment to the next that even when the shell s is thick enough
to comprise very many compartments the values of N; for all of
them may be equated to a mean value N,. Under these conditions
we may write for the number of compartments in the shell s,

Q. = dV/H = (47/H)elde,. (37)

Putting down the classical value (15) for the number of particles in
any of these compartments, remembering that N; is identified with
N,, we obtain for M, the number of particles in the shell s:

M, = Q,N, = a(dr/c?H)ele*Tde, = F(e,)de, (38)
and evaluate « by the same procedure as before. The result is:
N &
o) = g (39)

This is the smoothed-over distribution-in-energy predicted for the
radiation-gas by the classical statistics, it being assumed that the
momentum-space is to be divided into compartments of equal volume.
Experiment however supplies a quite different distribution-in-energy,
to wit:

‘8xV e
Fle) = ( =T )EEM:T —1 : (40)
45
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It looks as if (39) might be the limiting form of (40)—as if the
actual distribution-law might be obtained by avoiding the approxi-
mations whereby we came to the formula (39), as Planck’s law of
distribution for oscillators was obtained by refraining from approxi-
mation. Such however is not the case. True, the second factor in
(39) is evidently the limiting form, for very high temperatures, of
the second factor in (40). But the first factor in (40) contains nothing
but the volume of the gas and some universal constants, while the
first factor in (39) contains the temperature and an apparently dis-
posable constant standing for the number of particles in the assemblage.
The former is not the limit of the latter. It will be noted also that
although I said that the volume of the elements of phase-space was
to be set equal to /%, this assumption in no wise enters into the function
(39). Bose in fact found it necessary to upset the basis of the classical
statistics, in order to arrive at (40) instead of (39).

Tuar BosE STATISTICS

The momentum-space of the photons is to be divided as heretofore
into equal compartments, and various distributions of the particles
among these are to be compared, in order that we may elect one of
them as ‘‘the most probable” and make a picture of the entropy of
the assemblage. But the manner of defining a distribution, the
manner of “counting the ways'' in which it may be realized and
computing its ‘“probability,” is to be changed, and changed in a
most thoroughgoing and fundamental way.

Start with any distribution of the particles, defined as heretofore:
defined that is, by saying that there are Ny of the particles in the
compartment 0, Ny in the compartment 1, and in general IV; in the
compartment 7.

Count the number of compartments containing no particle; call it
Zo. Count the number of compartments containing one particle
apiece; call it Z,. In general, let Z; stand for the number of compart-
ments containing ¢ particles apiece. Put down the values of all the
numbers Z;.

Now change the terminology. Elect some neutral word, “arrange-
ment'’ say, to denote what we have heretofore denoted as a "'distri-
bution,” and use the latter word in the following new sense: a distri-
bution shall henceforth be described by stating the values of the
numbers Zo, Z1, Zs, * + +, Z1, - - - and the total energy of the assemblage.®

8 It is of course confusing thus to change the meanings of words, but in the long

run less confusing (I think) than to use some other word than distribution for the
concept always called by that name in the new statistics.
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This means that each distribution in the new sense comprises a
number of distinct distributions in the old sense. This we shall
regard as the number of different ways in which the distribution in
the new sense may be realized. Going over entirely to the new
terminology : we shall now identify the probability W* of a distribution
with the number of arrangements which are included init. Previously
we identified the probability W of an arrangement with the number
of permutations included in it, according to equation (7). This we
now must forget; we must proceed as if the probability of each arrange-
ment were the same.

The number W* is now to be evaluated. In doing this we must
remember that we have to count, not the total number of arrangements
yielding the prescribed set of values of the quantities Z;, but the
portion of these which give the prescribed value to the total energy
of the assemblage.

As before, we superpose upon the partitioning of the momentum-
space into small compartments of equal volume H, another partitioning
into spherical shells each of which is sufficiently large to contain many
of the compartments, yet sufficiently small so that the same value
of € may be assigned to all the compartments within it. The final
result is thus to be a ““smoothed-over” formula. It is rather singular
that whereas Planck introduced the quantum into physics by avoiding
the smoothing-over which had been customary in the classical statistics
the quantum-formula for radiation is now derived by a method in
which it is accepted.

Consider then any shell at random, say the “‘shell s.”” Denote by
Q, or by Z the total number of compartments in it; by Z;, the number
of these compartments which contain ¢ particles apiece; by M, the
number of particles in the shell. According to the scheme now being
tried out, the number of ways of attaining the particular distribution
characterized by the numbers Z,, is given by the formula:

Q.!
W =gz &=z (41)

As the energy-values for all the compartments in the shell are (by
hypothesis) approximately the same, these various ways of attaining
the distribution Z;, all corresponding to approximately the same total
energy, as well as the same total number of compartments and the
same total number of particles.

Suppose this process repeated for every one of the shells s. The
total number of ways of attaining the actual distribution, compatible



696 BELL SYSTEM TECHNICAL JOURNAL

with the conditions of constancy of total energy, total number of
particles and total number of compartments, is then the product of
all the quantities W *: call it T#*:

W+ = W, (42)

As before, and with the same end in view, we form the expression for
log W*, and employ Stirling’s formula (assuming thus in effect that
none of the quantities Z;, is smaller than ten or so):

log W* = 3 log W* = X[ Qs log Qs — 2 Zi log Zis].  (43)

We now take the very great step of identifying not log W of equation
(10), but log W*, multiplied by a constant k, with the entropy of the

assemblage.
S = klog W* (44)

Then, when the numbers Z;, are changed by small amounts 6Z,,
the ensuing change §E in the total energy £ of the assemblage must
be linked to the ensuing change in (& log W*) by the equation:

85 = 6(k log W*) = SE/T. (45)
The first variation of (k¢ log W*) is given thus:
s(klog W*) = — k2 3.(1 + log Z:)8Zs (45a)
s 1

Let us try the distribution:
Zie = aze kL, (46)

Substituting this expression into (45a), we get:

d(klog W*) = — k22-(1 + log a; — ie/kT)dZ:,

= — EX( + log @) 6Zs + 5 e TiiZa (47)
— E/T,

for the summation Y. :8Z;; vanishes because the number of compart-
ments in each shell is invariable, while the quantity e,2_iZ, is equal
to the total energy of the particles in the shell s.

The new statistics, in proposing a new conception of entropy as
embodied in equation (44), therefore leads to a new distribution for
thermal equilibrium. This distribution is expressed by equation (46)
in the new-fashioned way, by stating the number of compartments
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in each shell which contain each of the permissible quotas of particles.
We must translate it into a distribution-function-in-energy such as
we used to express the results of the old statistics.

Before undertaking this translation, we compute the values of the
constants a, by summing the numbers Z;; over all values of 7 for
each shell separately, and equating the sum to the total number @,
of compartments in the shell. We obtain:

0, = E.Z“ = auzeﬁe.rw = a,(1 — e/T)-1, (48)
1 i

On substituting these values of «, into (46) we get something which
begins to look familiar.
Next for the number M, of the particles in the shell s, we compute:

M, = 3iZi = ae (1 — g=4/kT)=2

1
= Qs AT 1" (49)

which begins to look very familiar indeed.

Now for Q,, the number of compartments in the shell s, we put
the value already stated in equation (37), derived from the assumption
that the compartments are all of the same volume I7:

4 €°

Mo =51 wir =1

de, = F(e,)de,. (50)

Here the function F(e,) is the “‘smoothed-over’ distribution-in-
energy in which the new statistics culminates. Unlike those which
we earlier derived from the old statistics, it involves the volume of
the elementary compartments directly. Whereas from the old sta-
tistics we obtained formula involving the quantum only by avoiding
the approximation, here we obtain a quantum-formula even when
we admit the approximation—a contrast on which, I think, it is
worth while to insist.

Let us then, in preparing for the final assumption, accept the
principle generalized from Planck’s assumption about oscillators: let
the elementary cell of phase-space be given the volume /3. This is
not yet an assumption about the compartment of momentum-space.
Supplement it, then, by supposing that the compartment of phase-
space h* is the product of the compartment /7 of momentum-space
and the entire volume V occupied by the radiation-gas. Then:

I = I3 V. (51)
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This assumption—let me remark in passing—takes a very elegant
form if we replace the compartments by the permitted energy-values,
and then the corpuscular picture by the wave picture; for then we have
a series of permitted wave-lengths, which are precisely those which
can form stationary waves in a cube of volume V.

'So the new statistics leads to the distribution-law:

2
Fode = 270 ot —de (52)

Dividing out the factor V, we get the number of particles per unit
volume having energy-values between e and e 4 de, in an assemblage
having the most probable distribution at the temperature T Multi-
plying this by e, we get the total energy per unit volume in the pos-
session of such particles. Identifying these particles with photons,
we observe that they have wave-lengths between ¢//e and chf(e + de),
frequencies between e/k and (e + de)/h. Transforming then from
the variable e to the new variables A and », we obtain distribution-
functions which give the density of radiant energy as functions of
wave-length and frequency. It turns out that these agree absolutely
with the observed distributions, except that they lack a factor 2.
This factor is at once imported, and is ascribed to the fact that light
is polarizable. So we arrive at the black body radiation-formula:

8rh  v'd
p(Ndv = " (53)

and the new statistics is justified by its success.

It will be observed that the new statistics leads to a precise value
for the number of photons per unit volume, at any prescribed temper-
ature; whereas the old statistics led to nothing of the sort, but to a
formula which contained the number of atoms per unit volume as a
disposable constant. This corresponds to a profound physical differ-
ence between radiation-gas and material gases. When I state the
temperature and the volume of a box containing helium, I am not
giving data enough to fix the quantity of helium inside the box;
on the contrary, the quantity and the density of the helium in the
box can be varied ad libitum while the temperature and the volume
are held constant. But when I state the temperature and the volume
of an enclosure containing radiation, I am giving data sufficient to
fix the amount of radiant energy and the number of quanta in the
enclosure absolutely. This is a fact of experience, and the new
statistics is evidently in accord with it. But if one were tempted to
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try out the new statistics upon a material gas, would there be any
way of avoiding the inadmissible conclusion that the number of atoms
in such a gas is also absolutely fixed by temperature and volume?
There is such a way. One might replace the distribution proposed
in equation (46) by a more general one involving a disposable constant

B, as follows:
Zis = o e BoielkT, (54)

On substituting this into the expression for (k log W) we get instead
of (47) the equation:

5(k log W*) = — EX(1 + log a,) Y62, + EBY i Z:,
+ ;—,ge,ziazi,. (55)

The right-hand member must as before reduce to §E/T if the distri-
bution (54) is acceptable; and this it will do, provided that not only
387 but also 3_,2.¢6Z;, is zero. Now the second of these quanti-
ties is zero for all variations in which the total number of particles
remains the same. The distribution (54) enjoys a greater entropy
than any other which is compatible with the same total energy and
the same total number of particles. The distribution (46) was still
more exalted; it enjoyed a greater entropy than any other compatible
with the same total energy, even including those for which the total
number of particles was somewhat different. But the distribution
(54) is sufficiently distinguished to be qualified as the most probable
distribution for a material gas. It seems rather singular that the
distribution (46) is required for radiation-gas. Here is evidently one
of the deep differences between matter and radiation.

Following the same routine as before, we arrive at the following
expression for the number of particles in the shell s:

1

M, = Q.m,

(56)
and in dealing with radiation-gas we have put B = 0 and have taken
the value of Q, from equation (37). If in dealing with a material
gas we take the value of @, from equation (25) instead and put H
= h*/V we obtain:

2V (ee)12de,

M, = W(gﬂ,m)m T = Fles)des, (57)

and now it is obvious that we must evaluate B in terms of the total
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number of particles N by the already so familiar way of integrating
F(e,) over the entire energy-range from 0 to « and setting the integral
equal to V.

Einstein proposed this as an alternative to the Maxwell-Boltzmann
law derived from the classical statistics. It is not easy to decide
which of the two is supported by experiment, as with increasing
temperature the formula (57) becomes more and more nearly like the
classical one, and it turns out that throughout the convenient ranges
of temperature and pressure the two are indistinguishable. It would
be very valuable to determine between the two, as then we should
know which of the two ways of defining a distribution and estimating
the probability thereof, which of the two pictures of entropy, is the
proper one for a material gas. The reader may have remarked that
if one were to apply Bose's method to the problem of determining the
most probable distribution of particles in ordinary space, one would
reach a result at variance with that of the classical statistics, and
therefore at variance with intuition. One must deal altogether with
the six dimensional phase-space, to be perfectly consistent. This is
to be regretted.

THE FERMI STATISTICS

The statistics invented by Fermi, and later independently by
Dirac, involves the same fundamental assumptions as that of Bose—
the same manner of counting the ways in which a distribution may
be realized, of defining its probability, of picturing its entropy. But
there is an additional assumption, of the nature of a limitation: it is
postulated, that a compartment may contain not more than some
specific maximum number of particles. In particular for a gas to
which no external field is applied, it is postulated that each compart-
ment must either be empty, or else contain one particle only.

The “‘exclusion-principle of Pauli” gave the hint from which the
Fermi-Dirac theory sprang. This principle may be paraphrased as
follows. In Bohr's ‘“‘atomic theory of the atom” the electrons be-
longing to an atom are forbidden to revolve in any except certain
specific orbits, set apart from the rest as the ““permitted”” orbits,
and labelled by specific “quantum-numbers.” In later versions of
the theory the *permitted orbits'" are less conspicuous, the *permitted
quantum-numbers”’ more so; but the picture is acceptable at all
events as a beginning. Upon this prohibition, then, Pauli superposed
another; not more than one electron is allowed in each orbit or to
each set of quantum-numbers. Perhaps it would be better to say
“not more than some definite small number of electrons . . ."
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instead of ‘“not more than one."” The affinity of this to one of Fermi’s
assumptions will soon be manifest. It would take much too long
to give an idea of the successes of the Pauli principle; they are however
so great as to increase the inherent plausibility of Fermi's idea very
much—or perhaps I should say, so great as to render the idea plausible,
which otherwise it might not seem.

The reasoning follows exactly the same course as when we were
deriving the distribution-law (56), except that all the summations
over the variable ¢ are now summations of two terms only, the term
for 2 = 0 and the term for 7 = 1. For each of the shells there are
only two numbers Z;, required to describe the distribution: viz. Zy,
the number of empty compartments and Z;, the number of compart-
ments containing one particle apiece. We try the distribution (54):

Zos = g Zie = aeBulkT, (58)

and easily find that it is the distribution of maximum probability,
by comparison with all the others compatible with the same total
number of particles and the same total energy. We arrive then at
the following expression for the number of particles in the shell s:

1
M, = Qam' (59)

There is no point in putting for (), the value appropriate to radiation-
gas, since the Bose formula has already proved adequate for that case.
Fermi put the value appropriate to material gases, and obtained:

8 lfzd 8.
’3( )U’ ——(27m)3 OT(:“_)"IT—-[E—I = F(e,)de,. (60)

M, =

This formula is the point of departure for the theory of the electron-

gas in metals revived and remodelled by Pauli and Sommerfeld, to

the experimental tests of which most of the rest of this article will
be devoted.

APPLICATION OF THE FERMI STATISTICS TO THE ELECTRONS
IN METALS

We are asked to conceive of a piece of metal as a region populated
with ‘“free’ electrons, and surrounded by a wall; the electrons being
distributed according to the formula of Fermi.

The Fermi distribution-function involves the total number N of
the electrons, which is a disposable constant. It also involves the
volume V" which this assemblage of N particles pervades. For this
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we set the volume of the piece of metal—a decision which is tanta-
mount to ignoring the atoms, to supposing the metal a vacuum
inhabited by free electrons only. So remarkable an assumption,
even though it be made only in approximation, requires some excuse.
Its strangeness may be mitigated by recalling, first, that slow electrons
may go through atoms (at least through certain kinds of atoms)
as imperturbably as if the atoms were not there; and second, that a
wave-train may go without being scattered at all through a crowd
of particles individually quite able to scatter it, provided that the
particles are arranged in a regular lattice having a spacing smaller
than the wave-length of the waves. The speeds attributed to electrons
in metals are so low and their wave-lengths are so great, that perhaps
they do behave in such a way.

The “wall" is the agency which prevents the electrons from escaping;
it is commonly imagined as a sharp and sudden gradation of potentia]
at the surface of the metal. Any electron moving towards it from
within, with a velocity of which the component normal to the bounding
surface may be denoted by #, is supposed to be driven back into the
body of the metal if the corresponding ‘“‘component of kinetic energy "’
1mu? is less than a certain constant W,; while if 3mu* > W, the electron
escapes, but with its kinetic energy diminished by W.. According
to newer ideas electrons may sometimes escape even when their
values of Imu? are smaller than W,, and may sometimes fail to escape
in the contrary case; but the earlier and simpler conception remains
approximately valid, and I will abide by it for a time. The constant
W, may be named .the work-function.

Like the constant N, the work-function figures as a disposable
constant in the theory. It is an ambition of physicists to explain
as many as possible of the differences between different metals, by
varying only the values of these two constants. Later we shall find
it necessary to introduce others, beginning with the one which in the
older theories appeared as the mean free path of the electrons; but
there are several results of value which can be obtained with no other
but these two.

I repeat now from (60) the Fermi formula for the distribution-in-
energy of an assemblage of N particles in volume V at temperature T',
with two changes made to bring the notation into harmony with that
of Sommerfeld:

2V 1
F(G) = Gwﬁ(zﬂm)sﬁ(e)lﬂ Wi (61)

Here the symbol 1/4 replaces ¢?, and a factor G to which we shall
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assign the value 2 is introduced for a reason which will be stated
later. The corresponding distribution-function in the coordinates
and momenta is this:

G 1
f(x, v, 2, Pz, Py, P2) = WAL (62)

The first step now is the same as in the classical statistics: to deter-
mine the constant A in terms of IV by integrating F(e) over the whole
range of energy-values from 0 to «, and equating the integral to N:

f " F(ode = N. (63)

This was an easy step in the classical statistics, but here it is very
hard. The integral of F(e¢) is not one of the common well-known
functions to be found in mathematical tables, nor a combination of
such; and we do not get a simple equation to be solved for 4 in terms
of N. Sommerfeld indeed found it necessary to compromise by
deducing two series-expansions for the integral, one being available
for values of 4 smaller than unity, the other for the opposite extreme.
By a stroke of luck which seems almost too good to be true, the first
one or two terms of one or the other of these expansions form an
approximation amply good enough for all the cases where as yet
theory and experiment can be compared.

I consider first the approximation which is of #e importance in the
theory of electrons in metals—the one for values of 4 so very small
that the second term in the denominator of F(e) is negligible by
comparison with the first. Then the distribution-law approaches
that of Maxwell and Boltzmann, and of necessity the constant A4
must possess the value which in the limit makes F(¢) identical with
the classical expression written in equation (27): to wit, the value:

3
4= %’{;mmkr)—w. (64)

It would however be a great error to suppose that this value of A
can be substituted into the function F under all circumstances. This
value is acceptable only if 4 is very small relatively to unity, which
is to say, if the quantity to which 4 is here equated is very small.
So the question arises: in any physical case, is the combination on
the right-hand side of equation (64) a small fraction of unity, or is
it not?

Now for any material gas under any conditions usual in the labora-
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tory, A is indeed very small. The new statistics leads to a result
indistinguishable from that of the old statistics. To discriminate
between the two by experiments on material gases, one would have
to work with temperatures so low and densities so high that the
gases would probably either be liquefied already, or at least would
be in a condition very different from that “‘ideal’’ state to which the
statistics is tacitly supposed to apply. Perhaps though it is not
impossible to make the test with helium or hydrogen.

A this point apparently Fermi stopped. But it occurred to Pauli
that if the new statistics were applied to an electron-gas as dense as
that which Riecke and Drude had supposed to pervade the interiors
of metals, the deviations from the classical distribution would be
much more pronounced. For, in the first place, the mass m of the
individual electron is smaller by several orders of magnitude than the
mass of the atoms or molecules of any material gas. And, in the
second place, if the number NV of free electrons in a piece of metal
is as great as or greater than the number of atoms, then it is thousands
of times as great as the number of particles in an equal volume of a
material gas. Now the quantity equated to A4 in equation (64)
contains V in the numerator and #%? in the denominator, and for the
hypothetical electron-gas within the metals it is no longer small.
The expression (64) for 4 is then no longer acceptable.

While the statement just made about m is based on a fact of experi-
ence, the statement about NV is not so firmly grounded. We have no
direct knowledge of the number of free electrons in a given volume,
say the number # (= N/V) in unit volume, of a metal. This as I
said above is a disposable constant of the theory. One of the tests
of the theory is whether one can obtain correct numerical values of
half-a-dozen properties of a metal by choosing a single value of n
for that metal. So long as the classical statistics was applied to the
electron-gas, this was impossible. If the value of # was put as high
as the number of atoms in unit volume, the predicted value of specific
heat (and we may now add, the predicted value of susceptibility)
turned out to be too large; if » was lowered sufficiently to avoid this
particular discordance, other predictions were impaired. It was
however the general impression, that one should put # equal to the
number of atoms or a small multiple thereof. I suspect that this
decision was largely due to a feeling that since the free electrons are
detached from atoms, and since all the atoms are alike, any atom
should supply as many free electrons as any other. However that
may be, it was natural though not inevitable for Pauli and for Sommer-
feld to link the Fermi statistics with the postulate that there are as
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many free electrons as there are atoms, and test the combination of
these two assumptions.

On putting for m the mass of the electron, for N/V the number of
atoms per unit volume of any metal, for 7" any temperature from
zero absolute up to several thousand degrees, and for G any small
integer, one finds that the quantity equated to 4 in (64) is very large.
Thus with N/V = 5.9:10* (the number of atoms in a cc. of silver),
T = 300° K., G = 2, Sommerfeld computed:

(nh?/G)(2amkT)~3* = about 2400 (65)

a result which invalidates equation (64).

We turn then to the other series-expansion of the integral J F(e¢)de,
the one which Sommerfeld proved applicable for large values of 4.
The first two terms of this expansion are as follows:

f” F(e)de=N= %EK%E (2mkT log A)*? (l—f— %‘2— (log 4)~2+4- - ) - (66)

0
Taking the first term only of this expansion and putting the aforesaid
values of N/V and T and solving for log 4, one finds a very large
value indeed (log. A4 = 325). Assuredly then we may use the first
two terms of this expansion by themselves when we are dealing with
the electron-gas in a metal, and indeed the first term will for some
purposes be amply sufficient.

We have thus the following first—and second—approximation
formulz for 4 in terms of n or N/ V:

2mkT log A = I*(3n/4nG)*? first approx.
, 2aemkT)? [ 3n \—3
2mkT ng A= }12(311/41I'G)""‘3 I: 1 - W (m) (67)
second approx.

(the second approximation being computed by putting the first-
approximation value of log 4 into the second term of the series
expansion).

On substituting one or the other of these into the distribution-
functions (61) and (62), we have the postulated distribution of the
free electrons expressed to as high a degree of approximation as we
require, with no disposable constant except #; and we are ready for
the applications.

The Specific Heat

As it was the notorious difficulty with the specific heat which

spoiled the old electron-gas theory in which the classical statistics
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was coupled with the assumption that there are as many free electrons

as atoms, let us first of all find out whether this difficulty remains.
Any distribution-law for an assemblage leads immediately to a

formula for the total energy E thereof as function of the temperature,

which is:

E =£ eF(e)de. (68)

Putting the distribution-in-energy (27) derived from the classical
statistics, we find:

E =3 NkT (69)

and putting the one just derived from the Fermi statistics with the
first-approximation value of 4, we find:
E = Ey+ 3vVT?

_ 27 VGB* [ 3n \**

75 2m \4xG)

Cw(27R)? [ 3n \1
‘YquG h? (47rG) ’

(70)

two exceedingly different formulee.

The derivatives dE/dT of these expressions are the formula supplied
by the two statistics for the specific heat of the electron-gas. The
classical theory predicts for the specific heat a constant value, while
the Fermi statistics makes it proportional to the temperature—being
thus in harmony with Nernst's heat theorem, while the other is not—
and gives it even at room temperatures but a small fraction of the
classical value.

Experimentally the specific heat of the electron-gas cannot be
measured separately from that of the lattice of atoms, which constitutes
the metal—an admission which seems to condemn as vain all hope
of testing these formule. Nevertheless one can conclude with fair
certainty that the classical expression is inadmissible; for the specific
heat of an ordinary metal agrees so well with the value attributed
by statistical theories both old and new fo the atoms alone, that there
is simply none left over for the electrons—no such great excess, that
is to say, as the amount 3nk/2 which the classical theory requires.
The device of reducing # to so low a value that 3nk/2 would be in-
appreciable makes trouble in other directions, as I have intimated.
But with the new statistics the theoretical value ¥ VT is inappreciable
even when 7 is made as great as the number of the atoms and T as
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great as many hundreds of degrees. Probably no one who did not
often lament the defeat of the old and so very desirable electron-gas
theory by that hard fact about the specific heat will ever quite realize
the rejoicing caused by this victory of the new, which by this achieve-
ment succeeded a se faire pardonner many deficiencies in other fields.

Features of the Fermi Distribution

I will now mention some of the features of the Fermi distribution
which has thus justified itself by passing its first test.

The most startling of these may be inferred from the distribution-
function (62) or (61), by inserting the first-approximation formula
for A presented in equation (67), and a new symbol W;:

1 B [ 3n \M
f=gm: W|=ﬁ(m) : (71)
At the absolute zero the exponential term is either infinity or zero,
according as the variable e is greater or less than W;. Therefore the
density of the electrons in phase-space is constant and equal to G/h?
for all energy-values less than W, zero for all values of energy greater
than W,

This striking result can easily be deduced from Fermi's basic
assumption, without any statistics at all. Absolute zero is by defini-
tion the temperature of the state, being in which the assemblage
can give away no energy whatever. If not more than one electron
may occupy any compartment of the phase-space, absolute zero is
attained when there is an electron in every compartment from the
origin outwards to a sphere which is centered at the origin, and which
has just the volume needful to contain as many compartments as
there are electrons. The number of electrons in unit volume of the
phase-space is and remains equal to the number of compartments in
unit volume, 7.e. to the reciprocal of the volume of the elementary
compartment, from the origin outward to this sphere; there it suddenly
sinks to zero, and so continues. Cooling-down of an assemblage is
settling-down of the particles into this the most condensed of all
permissible arrangements; it is like crystallization upon a lattice,
only the lattice is in the phase-space.

The foregoing statements may all be repeated, with the words phase-
space replaced by momentum-space. In the momentum-space, a sphere
of radius p, consequently of volume 4xp?%/3, contains (47p%/3)/(h%/ V)
of the elementary compartments. If we set this number equal to the
total number of electrons N, and solve the resulting equation for p,
we get the radius of the sphere which would just contain all the
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electrons if there were one in each compartment. If we set the vol-
ume of the sphere equal to N/#*/ VG and solve for p, we get the radius
pm of the sphere which would just contain all the electrons if there
were G of them in each compartment. But this is the maximum
value of the momentum of the electrons, it is the momentum of the
fastest of the electrons. The corresponding speed v,, of the fastest of
the electrons is pn/m, therefore is given by the expression:

h [ 3n\13
T = (E) (71a)
and the corresponding kinetic energy zmu,’ is the same as W,.

It is expedient to set down for future reference the mean values of
speed v and of several integer powers of v, for a gas distributed according
to the Fermi law at the absolute zero. The general formula for
the mean value of any power #° of v is this:

= 1 f vf(v)dv = 1 (47G|m*h®) f " v t2dy
n n A

and in particular:

T = 320 0= 3vd; P =305 0= ud (72a)

The corresponding values for the Maxwell distribution are these:

v=l = 2(m[27kT)"?;  v* = (2kT|m); (72b)
202kT[xm)¥2; v = 4x(2kT7m)*.

v

Plotted as functions of e the distribution-function f in the co-
ordinates and momenta starts out as an horizontal straight line at a
distance G/h* from the axis of abscissae, while the distribution-function
F in the energy starts out as a concave-upward parabolic arc; these
continue as far as the abscissa ¢ = W, and from then on the curves
coincide with the axis of abscissa.

The foregoing statements are valid for absolute zero; what happens
as the temperature rises? Sommerfeld has proved that the sharp
angles in the distribution-curve are very gradually and slowly rounded
off, the curve always traversing the midpoint of the vertical arc BC
(Fig. 1). The far end of the curve sinks down to the axis of abscissa
in the fashion of the Maxwell law. Even at room-temperature and
even far above, however, the distribution departs so little from the
absolute-zero form that many phenomena may be interpreted in a
qualitative way, simply by imagining the absolute-zero distribution—
the completely degenerate distribution, it is called—to persist all
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through the observable range of temperatures. Indeed, in calculating
electrical resistance and certain other properties of metals, one may
use the mean values of the various powers of v which are tabulated
in (72a). There are however other properties of metals, thermal
conductivity for instance, for the estimation of which it is not sufficient
to assume that the mean values of the powers of v are always the same
as at absolute zero, and one must derive more nearly approximate
values for them; for these however I refer the reader to Sommerfeld.

1.0

0.5

o}
0.90 0.95 .00 1.05 (Ale]

Fig. 1—Graphs of the Fermi distribution-function f plotted against ¢/W; as
independent variable, for an electron-gas having 6.5 - 10 particles per cc., at
temperatures zero (rectilinear curve) and 1500° K. (rounded curve). The value of
W; 1s 6 equivalent volts,

In practice, the values of W; are rather astonishingly great; no less,
for example, than 5.6 equivalent volts for silver, 5.7 for tungsten,
6.0 for platinum. Obviously they depend on the compactness of the
lattice, being greater the more closely-packed the atoms are. In
potassium and sodium the atoms are relatively widely spaced, and
the corresponding values of W; are about 2.1 and 3.2 in equivalent
volts.

46
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The contrast between this and the classical situation is evidently
enormous. Where formerly we were asked to think of the electrons
in a metal at usual temperatures as being distributed Maxwell-wise
about a very modest mean energy, say about 0.02 of an equivalent
volt, we are now invited to conceive them as distributed all through
a range of energies extending from zero up to as much as half a dozen
equivalent volts, and more abundantly the nearer one approaches
to the top of this range, abruptly though the distribution ceases
when the very top is reached. This is ‘“‘zero-point energy’’ with
a vengeance !

The pressure of the electron-gas is related to the energy-per-unit-
volume by the equation valid also in the classical theory:

and therefore varies like the total energy—starting from a value
absurdly high at the absolute zero (hundreds of thousands of atmos-
pheres) and increasing therefrom very slowly at first, though according
toa 7?law, as the temperature rises. I do not know of any manometer
for measuring internal electron-pressures, but if anybody should
invent one he had better make it strong.

There is manifest ground for doubting these remarkable proposals:
thermionic data seem to show that the work-function which opposes
the egress of the electrons from a metal is itself less than half-a-dozen
volts (in the usual measure), for some metals less than two—what
then keeps these fast electrons confined within the metal? It turns
out, however, that in augmenting the vis viva of the electrons the new
theory also raises the top of the wall which they must overleap.
Here indeed we meet with the first of the new experiments which tend
to confirm the new theory.

Thermionic Emission

The simplest theory of the thermionic current is, that it consists of
all the electrons belonging to the interior electron-gas which fly
against the boundary-surface of the metal with velocities such that the
component % thereof perpendicular to the boundary-surface is great
enough to make the ““energy-component’’ 3mu® greater than a constant
W,—the said constant being interpreted as the work-function or the
retarding potential-drop at the edge of the metal. The thermionic
electrons are those which swim up to the surface with an outward-
bound velocity-component so large, that by means of the kinetic
energy of their outward motion they can climb over the wall.
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Evidently any thermionic emission must distort the distribution of
the electron-gas inside the metal, as it is an unbalanced outflow of
electrons. The situation in which the efflux is balanced by a corre-
sponding influx from an electron-gas outside the metal is much
regarded in thermodynamic theory, but one cannot measure currents
in that situation any more than one can measure heat-flow between
two bodies at equal temperature. In assuming, then, that the
distribution of the internal electrons is that of Fermi or that of Max-
well, we shall probably be invalidating our conclusions except for the
limiting case of an infinitesimal emission. It seems probable, however,
that with the thermionic currents of practice the approximation is
good enough.

The simplest theory of the thermionic current, then, consists
entirely of the equation:

. m\? ® ® © 1
1= e(I) G'L;Wduj_‘mdwj_‘mdw-uA——_leﬂm T (73)

This is a restatement of the first sentence of this section, plus the
assertion that even when electrons are leaking out through the wall of
the metal the distribution within remains practically that of Fermi.
The factor e stands for the electron-charge; the symbol ¢ thus for the
thermionic current-density in electrostatic units. The factor m?®
enters because, in conformity with usage, I have translated from the
momenta into the velocity-components u, v, w as independent variables.
The quantities #o and W, are related by the equation:

Wa = Tmu. (74)

In the integrand we are of course to put 3m(u® 4 2* + w?) for e
Setting for A the first-approximation value from (107) with the
symbol W; defined in (71), we obtain:

. m 3 '« w @ 1
i=e(5 ). _mum}—ﬁdudvdw. (75)

The integration is perfectly straightforward if the second term in
the denominator may be neglected relatively to the first. This seems
unnatural, for we have just been noticing that over part of the energy-
range, from ¢ = W; downwards, the second term is larger than the
first. But if W, is considerably larger than W, —and by this I mean,
if (W, — W))/kT is positive and considerably larger than unity—
then the electrons which escape are those which belong to the extreme
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upper part of the energy-range, where the first term is much the
larger. Writing then u-exp [— (e — W,)/kT] for the integrand,
we integrate with ease by well-known formulz, and get:

. 27emG
T

(kT)Ze—(Wa-W.')IET. (76)

The experimental test consists in plotting (log 7 — 2 log T') against
1/T; we should get a straight line provided that W, does not vary
with temperature. The experiments do lead to precisely this result.
The slope of the line varies from metal to metal, and depends on the
state of the metal surface; identifying it with (W, — W,)/k, one finds
that W, exceeds W; by amounts ranging from one equivalent volt
upward to five or six; so the approximation just mentioned is abun-
dantly justified, even up to temperatures of incandescence.

The contrast with the predictions of the classical theory is peculiarly
interesting. Assuming the Maxwell distribution for the interior
electrons, one arrives easily (the reader can do it by substituting the
value of 4 from (64) into (73)) at the formula:

i= ﬁi (kT)Y2e=WelT, (77)
On testing this formula by plotting (log ¢ — § log T') against 1/7, it
is found that the experiments yield lines as beautifully straight as those
obtained by plotting (log z — 2 log T'). Indeed—as everyone knows
who has dabbled in thermionics—a function of the type exp (— ¢/T)
varies so exceedingly rapidly with 1/T that it makes no perceptible
difference to the graph whether or not the function is multiplied by a
constant or by any modest power of 7. One cannot then use the
graphs to distinguish between the theories, even if one could be sure
that W, is not a function of 7. But the classical theory proposes
that we identify the slope of the aforesaid line with W./k; and it
has been the custom so to do.

Now if the Fermi distribution-function is the right ome, physicists
have been wunderestimating the work-function all along. They have
plotted experimental curves which agreed in shape with (76) and (77)
and from these they have evaluated the constant figuring in the
exponent, a constant which they have denoted usually by — &/k;
and then they have equated & to W, whereas if it is right to apply
the new statistics they should have added W; to b and then equated
the sum to W,. Nor is the alteration slight: for if there are as many
free electrons in the metal as there are atoms, then W; is six volts
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or thereabouts, and the quantity to be added to the observed constant
b is larger than b itself.

Is there then any other way of determining the work-function than
out of this apparently ambiguous current-vs-temperature curve? If
there is a direct and independent way, it may serve not only to decide
between the two statistics, but also—if it favors the new by yielding
a value for W, greater than the thermionic b—to give an experimental
value for (W, — b) = W; and hence for the disposable constant n
which is the one uncertain quantity in the theoretical formula for W..
It may, that is to say, serve to determine the number of electrons
per unit volume of the electron-gas.

Now it seems that the diffraction of electrons by crystals provides
an independent and direct way of determining the work-function.
For in the phenomena in which negative electricity behaves as a
wave-motion, the work-function figures in the index of refraction;
and the index of refraction of a metal may be determined from the
diffraction-patterns which it forms when irradiated with slow electrons.
Ample data concerning one metal—nickel—have already been acquired
by Davisson and Germer, and from these it transpires that the work-
function is much in excess of the thermionic constant b—so much
indeed, that the corresponding value of W; implies that there are
twice as many free electrons as atoms in the metal, or even more.’
The values deduced for the work-function from the refractive index
vary however with the speed of the electrons; and it is evident that
much remains to be understood.

The factor which multiples 72 exp [— (W, — W)/kT] in the
right-hand member of (76) involves universal constants only (sup-
posing that G is such) and is therefore the same for all metals—a
principle derived by Richardson from the first and second laws of
thermodynamics twenty years ago, without any assumptions at all
about the distribution of the electrons. Its actual value 27k*meG/h
differs only by the factor G from the value derived by Dushman,
which is numerically equal—in the customary units—to 60.2 amperes
per cm.? per degree squared. There are several metals for which the
experimental value of this quantity—commonly known as A, a
symbol which in this article is monopolized by another meaning—
agrees well with 60.2. One might infer that G must be unity, a
choice which would demolish the theory of paramagnetism; but there
is another recourse; one may suppose that half the electrons which

9 L. Rosenfeld, E. E. Witmer (. c. infra). From Rupp they cite values of re-
fractive index for six other metals (Al, Cr, Cu, Ag, Au, Pb) and compute values of #.
In considering these, however, the reader should assess G. P. Thomson's criticism
of Rupp's values.
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come up to the bounding surface from within with energy sufficient
to escape are nevertheless reflected. A factor (1 — r)—r being
called the coefficient of reflection, and being put equal to 3—then
enters into the formula, and balances out the factor 2 introduced by
giving the preferred value to G. Moreover one may explain values
of the constant still smaller than 60.2, or between 60.2 and 120.4,
by adjusting 7 accordingly. But there are also recorded values
enormously greater than 120; so evidently something remains to be
understood.!®

The methods of wave-mechanics have been applied by Fowler and
Nordheim to the problem of evaluating this coefficient of reflection.
They have attained some notable results in the fields of thermionics,
cold discharge, and photoelectric effect. These however are conse-
quences not of the new statistics only, but of a combination of the
new statistics with the new way of considering the transmission and
reflection of electron-waves at surfaces. There is not space for me
to deal with the latter, beyond indicating its point of departure and
its chief results.

Thus far I have been speaking of a metal as an equipotential region
surrounded by a surface at which there is a sharp potential-drop,
and beyond which there is the equipotential region of outer space.
Fowler and Nordheim however, like Schottky and others before
them, conceive a metal as an equipotential region surrounded by a
surface, beyond which lies a region in which there is a field (or at all
events an image-field) the strength of which is a function of the
distance from the surface. The quantity W, appears as the integral
of this field-strength, from the surface to infinity. Electrons of a
given kinetic energy being supposed to fall against the surface from
within, the fraction which fails to pass completely through the region
of the field depends upon the kinetic energy of the electrons and
upon the shape (not solely upon the integral) of the field-strength-vs-
distance curve. The average value of this fraction for all the electrons
of all speeds coming up to the surface from within—the average
being taken with due regard to the relative proportions of the electrons
of various speeds, that is to the distribution-in-velocity—is the
coefficient r aforesaid. For certain simple shapes of the field-vs-
distance curve it may be calculated. One thus arrives at the be-

10 [f the empirical equation is of the form 7 = aT™ exp (— b/T), then whatever
may be the values of the constants @ and b, one can always claim that it agrees with
the foregoing theory provided one assumes that W; or r or both vary with temperature
in just the proper way. But, as Fowler puts it: ‘‘the variety of possible uncon-
trollable hypotheses (if such assumptions are to be admitted) becomes too large
for profitable discussion."”
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ginnings of a theory of the effects of surface-conditions on thermionic-
emission, and of the cold discharge.

The Cold Discharge

Suppose that a potential-difference is now applied between the
metal and a neighboring electrode, such that near the metal the
resulting field-strength is very great. Does it penetrate the region
which I have just been describing? Assume that it does penetrate as
far as the ‘“surface’ just defined. Then, everywhere beyond the
surface, the actual field is the resultant of this “‘applied” and the
previously-mentioned ‘“‘intrinsic” field. The shape of the field-
strength-vs-distance curve is thus changed, in a way which is calculable
if we have postulated some particular original shape; and in certain
simple cases it is possible to calculate the consequent change of the
coefficient 7, and therefore the electron-current—or the additional
electron-current—which the applied field causes to emerge from the
metal. This is the current known as the “cold discharge.”

Nordheim adopted for the field-strength-vs-distance curve, in the
absence of applied P. D., the shape which is most commonly proposed
—the inverse-square curve, the law of the ‘image-force” which a
charge in the vicinity of a conductor experiences because of its “elec-
trical image’’ in the conductor. For the current 7 of the cold discharge
he then derived this approximate formula:

i = c'SFtexp (— &’/ F), (78)

in which F stands for the applied field, .S for the surface-area of the
metal exposed to it, ¢/ and ¢"’ for constants which can be calculated
when W;is known.

There are certain experiments (for an account of which I refer to
Nordheim’s paper in the Physikalische Zeitschrift) which indicate
that the actual relation between the current and the field-strength
agrees in form with (78), but that the predicted values of ¢’ and ¢"
are too large—too large by a factor of the order of ten in the latter
case, by several orders of magnitude in the former. However it is
possible to explain away these contradictions. One may assume,
for instance, that the actual surface concerned in the discharge is a
collection of small spots which altogether have but a small fraction
of the total area of the metal surface; and that over these small spots,
the field-strength is much higher than it would be if the metal were
everywhere uniform and smooth. The ratio of the observed to the
predicted value of ¢’ then gives the fraction of the total surface which
is covered by these “active’’ spots, and the ratio of the observed to
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the predicted value of ¢’ gives the reciprocal of the factor by which
the field-strength must be multiplied.

This explanation has the disadvantage of being not only plausible
but much too easy. So long as there is not any independent evidence
about the area of the effective spots or the field-strength prevailing
over them, the theory simply delivers an equation with two disposable
constants, which is not very valuable for testing the underlying
assumptions. It appears from the data examined by Nordheim,
however, that the ratio of the predicted to the observed value of ¢’/
is always between 10 and 20, and the ratio of the observed to the
predicted value of ¢’ is always about 10~ (at least for tungsten).
This uniformity of the two quantities which figure in the theory as
the disposable constants may be taken as a confirmation of some
weight.

Photoelectric Effect

According to the former theory, the elementary process of the
photoelectric effect runs thus: a quantum dives into a metal, and gives
its whole energy (say Ep) to an electron initially at rest, which then
may escape from the metal after suffering a reduction of kinetic
energy equal at least to W, and possibly more (more, that is to say,
if the electron loses kinetic energy on its way to the surface). Even
if we suppose that the electron originally belonged to an electron-gas
conforming to the classical statistics, its initial energy would almost
always be quite negligible compared to that which the quantum gives
it. But if the electron-gas obeys the new statistics, it comprises
electrons with energy-values ranging up to W;. However if the new
statistics is valid, then the reduction of kinetic energy at the boundary
is also greater by W, than we have hitherto supposed. The net
result is, that by the new statistics as by the old we derive Einstein's
equation for the maximum kinetic energy of the electrons expelled
by quanta of frequency »:

Emnx = Eﬁ + W:‘ - Wa b ]”" + const. (79)

only the additive constant is now (W; — W,) instead of (— Wa).
This additive constant should as before agree with the thermionic
constant b.

The new theory has one marked distinction, probably an advantage,
over the old: it implies a sharply definite maximum kinetic energy—
that is to say, the distribution-in-energy function of the escaping
electrons should jump suddenly from zero to some definitely higher
value at the energy-value E = E,.x prescribed by (79); the slope of
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the curve representing this function should make an acute angle with
the axis of E where they intersect at Fmax. The Maxwellian distribu-
tion predicted by the classical statistics for the interior electrons
suggests however that the curve in question should approach the
axis asymptotically. The new statistics leads also to certain inferences
about the shape of the curve for values of E less than En.x. A great
quantity of data bearing on this subject has been obtained by Ives
and his collaborators; but the interpretation is made difficult by the
presumption that some allowance must be made for the energy-
losses suffered by electrons after they absorb quanta but before they
reach the surface, and will require much study.

Paramagnetism of the Electron-Gas

The susceptibility of the electron-gas was calculated by Pauli even
before the specific heat was evaluated by Sommerfeld, but as it
involves an extra complication I have inverted the historical order.

The complication is due of course to that assumption which is made
in order to explain why the electron-gas should be magnetic at all—
the assumption that electrons are magnets. Perhaps I am too cautious
in referring to it as an assumption, it being so well authenticated
by the gyromagnetic effect and by the general usefulness of the
“spinning electron'’ in the explanation of spectra. These phenomena
impose a special value on the magnetic moment pg of the electron,
to wit, the value,

o = eh/8wmyc, (80)

mp standing for the rest-mass of the electron. Further they require
that when the electron is floating in a magnetic field, its moment
(considered as a vector) shall be either parallel or anti-parallel to the
field. Denote by 8 the angle between the moment of the electron
and the magnetic field: then # must be either 0 or 7.!! Now when a
magnet of moment A/ is inclined at an angle 6 to a magnetic field H,
its ‘‘extra magnetic energy’’ is — MII cos 0.2 In dealing with the
electron-gas, then, we are in effect assuming that when a field H is
applied to it the energy of every electron is either increased or decreased
by the amount:
= ehH/8mmc. (81)
1 It comes to the same thing, and may on other grounds be preferable to assign
uo twice the value given in (80), and to 6 the values 60° and 120°.
12 The magnetic energy, or energy due to the *'interaction between the magnet
and the field " is put equal to zero when the magnet is transverse to the field, which
is consistent with the picture that the field alters the energy of the magnet by speedmg

up or slowing down the revolving electricity. The formula here given is a first
approximation.
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As I mentioned earlier, the idea of compartments in the momentum
space may be replaced by the idea of “permitted energy-values,”
at least in some situations. Let us for convenience return to the
latter conception. Then we may say that when a magnetic field is
applied to an electron-gas of which the particles are magnets, each of
the permitted energy-values is split into two. To any previously-
permitted value e correspond a pair of new ones, e + A and ¢ — A;
or let me say e + mA, using m as a symbol which may have only
the values 4+ 1 and — 1.

Pauli assumed that the most probable distribution of the electrons
among this doubled set of energy-values is to be determined by the
new statistics, including Fermi’s postulate so modified as to state
that not more than one electron may possess any one of the permitted
values.

Previously I used the symbol 2, to denote the number of compart-
ments or permitted energy-values which lie in the shell s and are
occupied by 7 electrons apiece; and the symbol (., to denote the total
number of permitted energy-values in the shell s. Now there are Q,
permitted values which are shifted upward by A from the original
ones, and Q, more which are shifted downward by A from the original
ones. Let Z;y stand for the number in this upward-shifted group
which are occupied by ¢ electrons apiece, and Z;_; for the corre-
sponding number in the downward-shifted groups; Z:,» shall be the
general symbol for the two.

Now consider the distribution:

_15_1(e,+m.\)fyp, m=+1 -1,
7= 0, 1.

Zt'a'm = Qg€

(82)

This answers the standard requirements for thermal equilibrium.
For if we define W* in Bose's way, and then say that the entropy is
k log W*, we find that when the energy of the assemblage is varied
by 8F—the total number of cells and the total number of particles
remaining constant—the first variation of the entropy is 6E/T, as it
should be. I leave it to the reader to prove this statement as corre-
sponding statements for other distributions (e.g. (47)) were earlier
proved, and to determine the values of the quantities a,»; on doing
which, and substituting the results into this distribution, he should
obtain

Ziy o = ?ﬁ‘i&*ﬁ 2 v
0. Q. = 3 g (2m) (e, (83)

Z L = —- 1
Lor =1 = L BHe—aWkT +1
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It is best, perhaps, to regard these formule as the descriptions of
two electron-gases, one composed entirely of magnets parallel to the
field, the other of anti-parallel magnets; the actual electron-gas is a
mixture of the two. The quantity Z,, -1, for example, is the number
of parallel magnets having energy-values shifted downwards through
A from the (, originally-permitted energy-values which lay in the
shell s. True, these magnets are no longer themselves in the shell s,
owing to the shift; their energies lie between (e, — A) and (e, — A
+ de,), not between ¢, and ¢, + de,; but for ease of integration it is
better to think of them as being associated with the original unshifted
energy-values. The total number of magnets comprised in the
parallel gas is then given by the equation:

2V ©  (e)l2de
Nl = W F (27!'?”)3"21)‘ m . (84)

For brevity denote by L the constant before the integral; and use the
symbol ¢ for the function defined as follows:

0 ( )11'2d
P(u) = Iﬁugﬁ' (85)

Then expanding N; as a power-series in the variable A/kT which is
uoH kT, we find:

Ny =L [qb(B) — %;—Iqb’(B) + terms of higher order in H] - (86)
Similarly one obtains, for the total number N, of electron-magnets in
the ‘‘anti-parallel gas,” a formula:
N = L [qS(B) + %{q&’(l?) + terms of higher order in H] (87)
Now the total magnetic moment of the “parallel gas™ is Ny, in
the same sense as the field, and the total magnetic moment of the
“anti-parallel gas’' is Naug in the sense opposed to the field; so that
the net magnetic moment of the entire assemblage of electrons is
(Ny — Na)uo. We will carry out the computations only for values
of H so low that we may ignore all terms beyond the second in the
expansions for N; and N,. The net magnetic moment is then approxi-
mately proportional to I7; its quotient by H, the susceptibility x of
the electron-gas, is constant. It is a fact of experience that with
nearly all paramagnetic substances the susceptibility zs independent
of H up to the highest attainable values of this variable. The limi-



720 BELL SYSTEM TECHNICAL JOURNAL

tation which we are here accepting will probably therefore not prove
serious. Qur approximative formula for x is then as follows:

2Lu¢® |, __ Nu® ¢'(B)
wr Y B = 3T 5By

x = (N1 — No)po/H = — (88)

and all that remains is to make the step made in every previous case
—to determine the last remaining unspecified constant, B, in terms
of the total number &V of the particles of the assemblage.

This number N is the sum of N; and N.. Ignoring the terms of
higher order in H, we have:

N = 2L¢(B) (89)

and this is substantially the equation which was used to determine
Sommerfeld’s constant 4 in terms of N; for ¢# and 1/4 are one and
the same. To make this equation identical with (63), or rather to
make (63) identical with this one, we must there put G = 2, as we
did—this is the reason for having introduced that factor G.

The procedure is then as follows: put — B for log 4 in the right-
hand member of equation (66)—differentiate it with respect to B—
insert into the derivative the value of B obtained by equating to NV
the right-hand member of (66), 7.e., the value given in (67)—and
substitute into (88). The resulting value for x is this:

T 2/3
x = 12 (3) patntmgh. (90)

To pass now to the experiments: is it permissible to suppose that the
susceptibility of any metal is due entirely to the electron-gas within it?
This is the same sort of uncertainty as confuses the question of the
specific heat. Here we have every reason to expect that the magnet-
ization of an ordinary paramagnetic metal is a threefold effect, in-
volving not only the orientation of the electrons but also the orientation
of the atoms, and finally that alteration of the electron-orbits in the
atoms which gives rise to diamagnetism. To disentangle these three
contributions to the net magnetic moment seems almost beyond the
powers of any theory. With the alkali metals, however there is
strong evidence that the second may be absent. Spectroscopic data
show quite definitely that the magnetic moment of the alkali-metal
ion—the atom minus its valence electron—is zero. If every atom
in an alkali metal has surrendered its valence electron to the electron-
gas, then there will be no orientation of the ions by the magnetic
field, and the number of electrons forming the electron-gas will be
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equal to the number of atoms. The values of x computed with this
last assumption should then be not less than the actual susceptibility;
they may be somewhat greater, because of the diamagnetic effect
which is opposed in sign to the paramagnetic effect and therefore
neutralizes it in part. Of this diamagnetic effect we can predict the
order of magnitude, and we may expect that it will be greater, the
higher the atomic number of the metal.

The value of x proposed above is the value for absolute zero; for
higher temperatures a closer approximation can be obtained by using
two terms of the expansion in (66), instead of the first term only,
It appears, however, that the alteration is slight. Like the average
energy and the pressure, the susceptibility of the electron-gas should
be very nearly the same at all temperatures from absolute zero up
through room-temperature and far beyond. Now it is a fact that the
susceptibility of the alkali-metals is independent of temperature—a
fact so surprising, that the desire to explain it seems to have been
Pauli’s principal incentive in undertaking this research. For if the
electron-gas were governed by the classical statistics, and the electrons
were as many as the atoms, the susceptibility of a metal would increase
as the temperature diminished and attain enormous values near the
absolute zero.

When Pauli published the theory to which this section is devoted,
the experimental data indicated that the susceptibilities of potassium
and sodium were somewhat lower, those of rubidium and ceaesium
markedly lower than the predicted values—divergences which might
be charged to the diamagnetic effect or to faults in the theory. Recent
Canadian work, coming out very much a propos, has improved the
situation remarkably. This tabulation (taken from E. S. Bieler,
to whose article I refer for the sources) shows the comparison:

Na K Rb Cs
Theoretical (Pauli).............. 0.66 0.52 0.49 0.45
Experimental:
McLennanetal............... 0.61 0.42 0.31 0.42
Lane........cccvviuiiennn.. 0.65 0.54

(All numerical values to be multiplied by 107%)

Singularly enough, the agreements are too good! one would expect
the diamagnetic effect to be more considerable than the very slight
discrepancies between the experimental and the theoretical values for
sodium, potassium, and caesium. Perhaps further work on the theory
of the diamagnetic effect would now be desirable.
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Returning once more to the meaning of G, one sees that the placing
of the value 2 for G in equation (61) and all of its descendants amounts
to the making of the assumption that the electron-gas is really a
mixture of two equally numerous and entirely independent assemblages
of particles, each for itself obeying the Fermi statistics. This seems
a rather odd idea, but inevitable.

T heory of Conduction

The new theory of conduction developed by Houston and Bloch is
based upon the wave-theory of negative electricity, in which the
interior of a metal is conceived to be filled not with darting corpuscles,
but with stationary waves—as many distinct patterns of loops and
nodes, it may be, as in the corpuscle-picture there are free electrons.
It is not a consequence of the Fermi statistics alone, but of the Fermi
statistics plus the wave-theory. Of course, if we come to decide that
the Fermi statistics implies the wave-theory and vice versa, this warning
will seem superfluous; but it is not superfluous, so long as the new
statistics is used with reference to corpuscles. Now the corpuscle-
picture of negative electricity is not only familiar, but seems likely to
survive as the most convenient for describing most of the phenomena
in which electrons figure. I will therefore express as much as possible
of the new theory of conduction in the language of corpuscles, although
eventually I shall be forced to make an assumption which will come
to the same result as converting the corpuscles into waves.

To realize the things to be explained, conceive a slab of metal,
having a thickness d measured along the x-axis; suppose a potential-
difference ¥ to exist between its faces, so that a field £ = V/d directed
along the axis of x pervades it.

If the electrons in the metal moved perfectly freely, then any
which was introduced without kinetic energy at the negative side of
the slab would fall forthwith to the positive side, arriving there with
the full kinetic energy eV and the full corresponding velocity of
magnitude (2eV/m)'? directed along the axis of x. Certainly nothing
of the sort occurs. When a potential-gradient exists along a wire,
for instance, heat is developed uniformly everywhere and there is
nothing to suggest that the electrons are moving more rapidly at the
positive than at the negative end.

We must then suppose that the free flight of the electron is inter-
rupted at frequent intervals, and that at every interruption it loses
the kinetic energy and the component of velocity up the potential
gradient which it has acquired from the field since the last one previous.
Or at least, the average loss of kinetic energy and of “drift-speed”
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at interruptions must be balanced by the average gain between
interruptions.

In the corpuscle-theory these interruptions are pictured as actual
impacts or collisions of the electrons with the atoms. Evidently,
if we could assume that whenever an electron hits an atom it rebounds
in some direction perfectly transverse to the field, then we should
have a mechanism in which the drift-speed of the electron up the
potential-gradient is annulled at every impact. This would be much
too artificial. But if we think of both the electrons and the atoms as
elastic spheres, the latter being so massive that they never budge
when struck, the result is in effect the same. For then, the angle
between the direction along which an electron approaches an atom
and the direction along which it flies away after collision is on the
average 90°. The rebound is as likely to be backward as forward;
the rebounding sphere retains on the average no memory of its former
direction of flight. This I will prove later.

There is a difficulty, which I must not leave unmentioned, although
in this place I can do nothing to clear it away. In the development
of these ideas we shall in effect assume that at the end of each free
path the electron loses not only the forward drift-speed but the whole
of the kinetic energy which it acquired while traversing that free
path under the influence of the field. But if it collides with infinitely
massive spheres it does not lose kinetic energy at all. If it collides
with spheres of the mass of an atom, it loses kinetic energy, but does
not completely lose its drift-speed. The theory of this latter case
has been developed by Compton and Hertz for use in the study of
conduction in gases, and might be applied to the problem presented
by metals, but probably fits them no better than does the other
hypothesis.

With this elastic-sphere model, then, the average interval between
impacts is the average interval during which the electron is piling up
drift-speed, only to lose it all at the end of the interval and be forced
to start afresh from scratch. Denote by /o the length of this average
interval. Since the acceleration of the electron is eL/m, its drift-
speed at the end of the period f, is (eEto/m), its average drift-speed
is half as great. Now I must dispel the impression that the drift-speed
is the whole of the speed which the electron has. On the contrary,
the mean speed of the thermal agitation—Ilet me call it #—is immensely
larger than the small contribution which any ordinary field (indeed,
any not very extraordinary field) can impart to an electron over a
distance comparable with the distance between atoms. The field
must not be supposed to do more than bend very slightly the rectilinear
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paths of the electrons from impact to impact. This statement is
true with the classical statistics, a fortior: with the new. Denote by
! the average distance traversed by an electron between impacts.
Then {y is I/7, and the average drift-speed is 3(eEl/m#).”® The corre-
sponding current-density is the product of this by the numer of
electrons in unit volume multiplied by the charge of each. So, for
the current-density produced by unit-field-strength, which is by
definition the conductivity ¢, we obtain the formula:

o = inetlmi. (91)

The constant I, the mean free path, is the third disposable constant
of the theory of electrons in metals.

I fear that the foregoing passage sounds very old-fashioned; but
nevertheless it expresses the corpuscle-theory of conduction. The
notion of elastic spheres is only accessory—an image which may or
may not be the best to represent the central idea, the idea that the
life-history of a corpuscle in a metal pervaded by a field is an alter-
nation of gradual gain and sudden loss. The mean free path is the
average distance of uninterrupted gain.

The common test of the formula (91) is the test by the temperature-
variation. The result of this, incidentally, was regarded as quite as
grave a demerit of the old electron-gas theory as the difficulty with
the specific heat.

It is a fact of experience that the resistivity p = 1/¢ of any metal
varies rapidly with temperature. For many metals it varies directly
as T over quite a wide range; at low temperatures even more swiftly,
not to speak of the strange phenomenon of supraconductivity. Now
in equation (151) we have p set equal to a combination of two universal
constants with three quantities #, n,  between which last the responsi-
bility for these great variations must be divided.

According to the classical statistics & is proportional to 742, This
is a variation in the right sense, but not fast enough. To make p
vary as I" we must then make nl vary as 1/T"2. With the Fermi
statistics the requirement is harder. The mean speed of thermal
agitation is almost independent of temperature, and the burden of
the whole responsibility for making p proportional to I' must be
loaded upon nl. The first step with the new statistics is a step
backward.

Can we reasonably assume n to be the cause of the variation?

13 It is the mean of the reciprocal of the speed, not the reciprocal of the mean
speed, which should figure here; but with so rough a formula the distinction is
scarcely worth making.
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If so, then it must diminish with rising temperature. It would seem
reasonable enough for n to increase with rise of temperature, for
presumably the free electrons arise from ionization of the atoms, and
jonization is promoted by heat; but for z to decrease would seem very
odd, notwithstanding Waterman's successes in accounting for some
of the data by such a theory.

Part of the burden, then, must be cast on the mean free path—
indeed the whole of it, if we adopt the new statistics so that 7 is held
constant, and suppose in addition that z» does not vary with tempera-
ture. But the elastic-sphere conception cannot stand the strain.
It gives for the mean free path a value independent of temperature,™
except insofar as the metal dilates with increase of heat. This is
pretty nearly checkmate.

If however we might suppose that an electron may sometimes go
clear through an atom without being reflected or deflected, and that
the chance of such a piercing is relatively smaller and the chance of
a rebounding relatively greater, the more violently the atom is vi-
brating—then by this theory the mean free path would diminish as
the temperature rises, which is what is desired. This is an idea
proposed long since by Wien.

The new idea is in result the same. The probability of the re-
bounding, or let me say of the scattering of an electron by an atom,
is supposed to increase with the vigor of the vibrations of the latter.
But for this a new reason is advanced. the reason, that while vibrating
the atom is most of the time away from its equilibrium-place in the
crystal lattice, and its relations with its companions are distorted.
The probability of scattering is made to depend not only on the
presence of the atom somewhere along the path down which the
electron is rushing, but also on the relative positions of all the other
atoms in the crystal.

To make such an assumption is, in effect, to compromise between
the corpuscle-theory and the wave-theory. For what is the evidence
from which it is inferred that a beam of light falling upon a grating,
say, or a beam of X-rays falling upon a crystal, are undulatory?
Essentially this: the way in which the beam is scattered or diffracted
by the regular array of rulings on the grating or atom-groups in the
crystal is different—greatly and strikingly different—from the way
in which we know that it would be scattered by a single ruling, or
suspect with good reason that it would be scattered by a single atom-

4 The value 1/N7R? familiar in the kinetic theory of gases, N standing for the
number of fixed spheres per unit volume, R for the sum of the radii of a fixed and
a moving sphere.

47
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group. For instance, there are directions in which no light at all is
sent by the regular array, though assuredly light would be scattered
in those directions by any member of the array if it were solitary.
These facts are explained by invoking interference of waves. The
wavelets expanding outwards from the various rulings or scattering
particles are supposed to arrive in opposite phases at the “dark
fringes”’ of the diffraction-pattern, so that they cancel each other.
But one might also say that the beam of light is a stream of corpuscles
which are deflected or scattered by the atom-groups or rulings which
they happen to strike, and that the law of scattering of the individual
atom-group is altered by the marshalling of the scattering elements
into a regular pattern, so that in particular the probability of a
deflection towards one of the dark fringes is reduced to zero.

I am not prepared to say that such a compromise is a full alternative
for the wave-theory, though modern theoretical physics seems to be
tending in that direction. But if we wish to describe with the language
of the corpuscle-theory the phenomena of diffraction by a crystal,
whether of waves of light or waves of negative electricity: then we
must certainly adopt the idea of a probability-of-scattering, of a
mean-free-path, which varies with the irregularity of the placing of
the atoms.

The principle is especially simple and especially startling, if we deal
with a beam of which the wave-length—considering it as a beam of
waves—exceeds the spacing of the lattice. Waves of such a magnitude
would not be diffracted at all by scattering particles placed exactly
at the points of the lattice. Though any particle singly would scatter
them, they flow through the lattice intact. If then we wish to interpret
the beam as a stream of corpuscles, the probability of deflection of
any corpuscle by any atom must sink to zero when the arrangement is
made perfect; the mean free path must then be considered infinite.

The resistance of a perfect crystal of an element should then be
zero when all the atoms are stationary in their places on the lattice—
if they ever are, which apparently they are not; and should increase
steadily with increasing temperature, in a way which can be computed
if we know two things: the way in which the scattering of waves by
particles on a lattice varies with the amplitude of the quiverings of
the particles about their lattice-points, and the way in which the
amplitudes of the particles vary with the temperature. The second
of these questions is the subject of the theory of specific heats of
solids, developed principally by Debye. The first has been profoundly
studied by Debye and by several other physicists interested chiefly
in the scattering of X-rays by crystals. Transferring their results
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into the theory of the diffraction of electron-waves, Houston demon-
strated that over a wide range of temperatures the resistance of a
perfect crystal should vary as the absolute temperature.

To determine not only the law of variation of resistance with
temperature but the actual value of the resistivity for any metal,
it would be necessary to evaluate the mean free path of the electrons.
By the thoroughgoing corpuscular theory, this depends on the size of
the atoms from which the corpuscles rebound; by the wave-theory,
it depends on the scattering-power of the individual atom, which thus
takes the place of the ‘‘size of the atom.” The problem of computing
the scattering-power of an atom for electron-waves belongs to the
new mechanics. Houston was able to obtain good numerical agree-
ments for several metals.

Another way of introducing irregularity into a crystal of an element
consists in replacing a small fraction of the atoms, chosen at random
here and there on the lattice, by atoms of another element. Certain
alloys, known as ‘‘solid solutions,” are of this type; and it is not
only known that the resistance of such an alloy is greater than that
of the element which is most abundant in it, but it has been shown
by Nordheim that the dependence of resistance on percentage of
substituted atoms follows the rule to be expected from the diffraction
theory of resistance.!

Since then the conception of mean-free-path can be reinterpreted
in terms of the wave-theory, and since it appears to be possible to
deduce from the wave-theory a law of variation of mean-free-path
with temperature which can be incorporated intact into the corpuscle-
theory it is permissible to return to the corpuscle-picture to set up a
theory of conduction of heat and of electricity, and of the thermo-
electric effects in crystals.

We shall apply what I may call the method of the perturbed distri-
bution-function, developed by Lorentz. The idea is, to begin by
deriving a distribution suiting the actual case. The functions which
we have hitherto employed, that of Maxwell and that of Fermi,
are isotropic; it is only in the combination (£ + #* 4 {%), hereafter
to be called 22, that the velocity-components £, 7, { appear in them.!
These “‘standard’ functions may be appropriate to a uniform metal
in which the temperature and the potential are uniform. Evidently
they are not appropriate to a metal in which there is an electric field,

15 The idea that the free paths of electrons extend from one irregularity of the
crystal to another was propounded before the advent of the wave-theory of negative
electricity. Lo

16 T shall use the velocity-components hereafter in lieu of the momentum compo-
nents, to conform with the custom.
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or a temperature-gradient, or which varies in its chemical nature
from place to place, as might an alloy. If in such a case we orient
the axis of x parallel to the gradient of the variable quantity—be it
electric potential, temperature, or whatever else—we must expect
to enter differently into the distribution-function from % and £.

Various arguments show that as a rule the departures from the
standard function must be rather small. Lorentz therefore postulated
that in the presence of a gradient directed parallel to the x-axis,
the actual distribution should differ from the standard function fo (7)
—this he of course assumed to be Maxwell's—by virtue of a small
additive term, a new function of v multiplied by the velocity-compo-
nent £:

I = flv) + £(v), (92)

and he proceeded to determine the new function g by the condition
that f should remain constant in time despite the collisions of the
electrons with the atoms. More precisely, he found for each of the
three cases with which we shall be concerned a function g, such that
the distribution-function obtained by adding #¢ to f, conforms to
that condition. This justifies the procedure.

Much the simplest case of the three is that of a uniform metal at a
uniform temperature, subject to an electric field; for here the distri-
bution-function need not vary from place to place. It will be well
to go through the reasoning in this instance, though the formula for
conductivity in which it leads differs but little from (91).

It is required, to find a function g of the combination (8 + »* + {*)'?
such that if at any moment the distribution (f, -+ £g) prevails, it
continues unchanged throughout time—the number of particles in
any compartment or cell of the velocity-space (the momentum-space
of the earlier pages, with its unit of length altered in the ratio m : 1)
stays constant. Choose a compartment enclosed between planes &
and £ + d§, nand n + dn, { and ¢ + d¢. Call it the compartment C.
Its volume is d&dnd{, which to save a profusion of Greek letters I
will usually denote by dr. The number of particles in it is f-dr.
This number must remain unchanged, though individual particles
are constantly moving into and out of C in either of two ways—by
“drift" and by “collision.”

Owing to the field E, all of the particles have a steady acceleration
a = eE/m, because of which they are continually and continuously
drifting from cell to cell. One easily sees that the number which
thus drift out of C per unit time (it is best to think of “unit time"
not as one second, but as a period small compared with the mean
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time between impacts) is equal to first approximation to af(¢ + d§,
n, {)dndi. " This loss is partly balanced by an inward drift of particles
which are accelerated into the compartment from the one lying
beyond the plane £; the balance is not perfect, for the number drifting
in per unit time is equal to af(#, #, {)dnd¢ and there is a difference
a(df/df)dr outstanding.'®* This difference must be balanced by the
entrances and exits of particles which undergo collisions.

Let adt represent the number of electrons which, being initially in
the compartment C, suffer impacts during unit time and are thus
suddenly bumped out of it; and bd¢ the number which, being initially
in other compartments, suffer such impacts during unit time that
they suddenly turn up in C. The function g must be so chosen,
that the lack of balance between the electrons drifting out and the
electrons drifting in is just compensated by the lack of balance between
those bumped into the compartment and those which are bumped out:

eEd_f_

Ed&—b—a. (93)

We must therefore evaluate (b — @) in terms of the distribution-
function.

We already have a formula ready-made for the number of impacts
experienced per unit time by the particles of speed v; it is v/l for each
particle, so that:

a = (v/l)fdtdndy. (94)

Since however we have also to compute b, we shall find it expedient
to classify these impacts according to the destinations of the particles,
so to speak—according to the compartments of velocity-space into
which they are bounced. A particle of speed v is located, in the
velocity-space, on a sphere of radius v centered at the origin. Collision
with an immovable atom changes the direction, but not the magnitude
of the velocity; in the velocity-space, the particle suddenly moves to
some other point on the same sphere. When electrons jump out of
the compartment C because of impacts, they land in the other com-
partments which with C form a spherical layer around the origin.
When electrons jump into C because of impacts, they come from the
other compartments of that same layer. We shall derive an expression

" During a time df so short that ad! is small by comparison with dt, the particles
which initially lie between the plane (¢ + di — «dt) and the side (¢ + df) of the
compartment move out of it, while the particles which initially lie between the
side £ of the compartment and the plane (£¢— edf) move into it; these two classes
of particles number f(¢ + d¢, 9, {)adt-dnd¢ and f(£, 1, )adt-dnd{ respectively.

. '® This expression figures in the equations as a net loss, but in fact has a negative
sign (since df /d¢ < 0) and therefore is actually a gain.
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for the number of particles leaping from C into any other cell C’ of
the layer, and an expression for the number leaping reversely. The
difference or lack of balance between these numbers, integrated over
all the cells C’, will be the required quantity (b — a).

We begin by inquiring how many particles make such impacts that
their paths (in the coordinate-space, of course—not the velocity-space)
are deflected through angles between say 6 and 6 + d8. To be
deflected through an angle 8, an electron must strike an atom at a
point where its surface is so oriented, that the normal (which is the
line of centres at the instant of collision) is inclined to the line of
approach of the electron at the angle ¢ = (= — 6). Denote by R
the radius of the atom, and suppose that the radius of the electron
is negligibly small.® Think of all the f-dfdyd{ electrons which at
some particular moment of time are in unit volume of the metal, and
belong to the compartment C of the velocity-space. Imagine each of
these to be the centre, in the coordinate-space, of a pair of circles
lying in the plane perpendicular to its path, and having radii R sin ¢
and R(sin ¢ + d sin ¥) =R(sin ¢ + cos ¢dy). As time goes on, let
these circles travel in the direction normal to their plane with the
speed 2. During unit time each pair of circles traces out a pair of
cylinders of length v, containing between them a cylindrical sheath of
volume v-27R? sin ¢ cos ¢dy. Multiplying this by the number
f-dédydi of the electrons, we get the total volume included in all of
these sheaths. Multiplying this by the number N of atoms in unit
volume, we get the number of atoms located with their centres in these
sheaths—which is the number of atoms so placed that in unit time,
electrons of the stated cell impinge on them at angles between y
and ¢ + dy—which is the number of impacts per unit time in which
electrons are deflected through angles between @ and 6 + d6, which

accordingly is this:
N-fdtdnd-27vR? sin ¢ cos ydy = fdtdnd{ - NwR%- 5 sin 6d6. (95)
It will be convenient to express this as a fraction of the total number

of impacts—call it ZdT—experienced per unit time by all the electrons
in question, which by integrating (95) is found to be:

Zdt = tNR%-f-dr, (96)

substituting which into (95) we get:
Z-2 sin ¢ cos ydy = Z-% sin 0d0. (97)
19 The formule remain valid even if the diameter of the electron is supposed

not negligibly small, provided that we interpret R as the sum of the radii of atom
and electron; but the generalization is not, so far as | know, of any practical value.
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It will be observed that deflections smaller than 90° are equally
numerous with deflections greater than 90° so that on the average
the electrons after impact have no reminiscence of their prior direction
of motion, as I mentioned earlier. Also, comparing (96) with (94),
one derives the expression for mean free path,

| = 1/N=R2, (98)

cited already in a footnote. To appreciate the most important
feature of the expression (97) we must however return to the velocity-
space.

In the velocity-space, the electrons of which the paths in coordinate-
space are deflected through angles between 20 and 26 + d26 execute
leaps from the compartment C into other compartments of the spherical
layer aforesaid, located on a certain region thereof. These occupy
a belt or collar on the sphere, intercepted between two cones drawn
with their common apex at the centre, their common axis pointing
towards C and their apical semi-angles equal to ¢ and 6 + 48 respec-
tively. Now the area of this belt is itself proportional to sin 0df.
This is very important: for it means that the electrons which are
bounced out of C by collisions are sprinkled uniformly over all the
rest of the sphere. More yet: it means that the electrons which
are bounced out of any cell of the spherical layer are sprinkled uni-
formly through all the rest of the layer.

Consider then the interchange of electrons between two cells of the
layer, say C at (¢, », {) with volume dr, and C’ at (¢, #', {’) with
volume dr’'. The number leaping from C to C’ is equal to the total
number of impacts occurring in C multiplied by the ratio which the
volume of C’ bears to the volume V of the layer. The number
leaping from C’ to C is equal to the total number of impacts occurring
in C’, multiplied by the ratio which the volume of C bears to the
volume of the layer. The excess of the latter over the former is then:

Z(E, 0, dr'(de|V) — Z(& », Hdr(d'|V), (99)
which with the aid of (96) and (98) may be written thus:
I, 0, ¢ — G n, (100)

This is the quantity of which the integral with respect to ¢, ¢/, {,

extended over the spherical layer, is equal to (b — a)dr—the net

rate at which compartment C gains particles through impacts.
Making Lorentz' postulate about the form of the distribution-
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function f, and remembering that throughout the spherical layer the
combination (£? 4 72 + "2)? is confined within a narrow range of
values around 7 we obtain:

b—a= (v/l)-3(v)- f(f’ — £dr'[V. (101)

To effect the integration it is expedient to change over to polar
coordinates in the velocity-space. Leaving the origin where it was,
and directing the polar axis towards C, we make the radial coordi-
nates and the colatitude-angle identical with our v and 6, and for the
meridian-angle we use the symbol ¢. Dividing up the layer into
compartments by latitude circles and meridians, we have for any one

of them:
d7'}V = (1/4w) sin 6déd¢. (102)

Consequently we obtain:
Ed 27
b—a= (z'/4wl)g(71)-f df sin 6 de(g — §). (103)
0 0

Everything therefore hinges on the evaluation of (¢ — ¢)—the change
in the x-component of velocity which the electron incurs when it
leaps from C’ to C—as a function of # and ¢. Now it may be shown

without much difficulty,?! that:
g —t= — 2vcos ¥ cosw = — 20sin 30 cos w (104)

wherein ¢ stands as before for the angle between the line of approach
of the electron and the line of centres at the instant of impact, and w
stands for the angle between the line of centres and the axis of x.
There is also a standard formula * relating cos w to ¢, ¢ and the

20 [est someone be disconcerted by the apparent difference between this equation
and that given by Lorentz, I remark that I am using 0 to designate an angle twice
as great as the one which he denoted by 8.

2 Let v, v’ represent the vector velocities of the electron before and after impact,
¢: the unit vector along the line of centres at the moment of impact. The components
of v and v’ along the line of centres are equal in magnitude and opposite in direction;
the components perpendicular to the line of centres are equal in magnitude and
direction. Writing these statements down in vector notation:

veey =v e v — (e = v — (v'-e)er = v’ + (v-ci)ey, hence,
v —v=—2(vc)cr = — 2vcos gecy; £ — £ = — 20 COS ¥ COS w.

2 Jmagine two planes P; and P. intersecting along a vertical axis, the dihedral
angle between them being ¢. Through a point O on the axis draw a horizontal
plane N, and from O draw two lines of unit length OR, and OR:, the former in plane
P, and inclined at 8 to the vertical axis, the latter in plane P, and inclined at
to the vertical axis; w is the angle between them. The points R; and R. are at
heights cos 8 and cos ¥ above the plane H. On the vertical line through R, put
a point R, at distance cos g above H. Expressions for the sides of the right-angled
triangle R1R2R; are easily obtained, and (214) is derived by applying the theorem
of Pythagoras to them.
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angle 8 = arc cos (£/v) between the initial path of the electron and
the axis of x, as follows:

cos w = cos (8 cos ¥ + sin 8 sin ¢ cos ¢. (105)
We now have everything necessary to do the integration in equation
(103), and we find:
b —a = (v&/Dg(v). (106)
Substituting this into equation (93), the condition that the distribution-
function (fo + £g) shall be stable by virtue of perfect balance between
the rates at which electrons are shifted from compartment to com-
partment by the impacts and by the accelerating field, we get:

(eE/m) (%.(fo + tg) = (/g (107)

If the term £g(v) is truly small by comparison with the term f,(v),
we may neglect the second term on the left; and since (dfy/dv) =

(dfo/dv)(dv/dE) = (&/v)(dfo/dv), the culmination of all the argument is
in the formula:

Egv) =35 — = (108)

for the alteration which the applied electric field imposes on the
distribution. Notice that g involves £ and n and { only in the combi-
nation v; this justifies the procedure of Lorentz.

Now each electron which during unit time crosses any surface
imagined in the metal contributes an amount e to the current through
that surface; but the contributions made by electrons crossing in
opposite senses are opposite in sign—what we perceive as current is
net current, the excess of the flow of charge one way over the flow the
other. Conceive a plane surface-element of area da, normal to the
field, therefore normal to the axis of x. We must classify the electrons
which traverse it according to their values of ¢ Let H(f)dtda
represent the number passing through in unit time, and having at the
moment of passage x-components of velocity in the range d& at &.
This is equal to the number which at any instant have their x-compo-
nents of velocity in this range, and are situated in the right prism
having da for its base and extending a distance ¢ down the direction
of x:%

H(g)dtda = tdads f dy f dsi(g, m, §). (109)

% This would be immediately obvious, if all the electrons were moving parallel
to the x-axis and made no impacts. Electrons having y and z components of velocity
in addition to the x-component will drift obliquely out of the prism, and electrons
making impacts will be thrown out of the range dE; but each electron thus lost will
be balanced by another coming in from outside.
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Since for electrons crossing in opposite senses £ is of opposite signs,
the integral of this expression over all values of & multiplied by e,
gives the net current through da when the proper distribution-function
is inserted. Evidently the integral will vanish when f is isotropic;
there are enormous flows of charge both ways through da, but they
are balanced. Unbalance is brought about by the non-isotropic
perturbation-term in the distribution-function. Making the postulate
of Lorentz, we obtain for the net current through unit area perpen-
dicular to the field, the current-density J, the expression:

J=e[m@ae=c | [ [ dsnc-gew). (110

Set for g(v) the expression in (217), and to effect the integration
transform into polar coordinates in the velocity-space, orienting the
polar axis along the axis of £; integrating over the angles, one obtains:

IeE 4z ™ dfo
= 3 A vgadv. (111)

The final integration is easy if one chooses for fo the Maxwell function,
not quite so easy if one chooses that of Fermi. A further step will be
of some advantage. Integrating by parts, and noticing that » vanishes
at the lower and fy at the upper limit, we find:

J = — (8wle*E[3m) Sovdv (112)
/0

and the integral remaining, divided by # the number of electrons per
unit volume, is seen to be 1/4# times the mean value of v=!—the
average of the reciprocal of the speed of the electrons, in the absence
of the field. Denoting this by v}, we may write as the general

formula for conductivity:
lePn —

J -
= pol L (113)

T E
The analogy with (91) is obvious, but we must not be misled into
identifying the average of the reciprocal speed with the reciprocal of
the average speed; they are not quite equal.

The actual final formule obtained by the old and the new statistics
—substituting, that is to say, the appropriate values of v—* from (72b)
and (72a), and putting G = 2—are as follows:

4 etln
T3 (2amkT)2

) 23
o= 83—7r %‘(g—g) (new). (114b)

2
3

(old), (114a)

a
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As Sommerfeld has shown, all of the reasoning by which (108) was
reached remains intact even when it is supposed that ! is a function
of v; in that case, ! remains under the integral sign in (111), and the
integral itself is equal to n/4r times the mean value of v=d(lv?)/dv.
This generalization may be of some value.

Uniform Metal with a Temperature-Gradient; Thermal Conduction

We have now to find a function g such that the distribution (fy + £g)
is stable in a metal in which there is a constant gradient of temperature
along the axis of x. When we find it, we shall be able to evaluate

the integral
W = %mfjfdfdndg‘-g(v)v??, (115)

which is like the integral in (219) except for the differently-chosen
form of g and the substitution of $m® for e, and therefore represents
the net rate of flow of kinetic energy borne by electrons through unit
area perpendicular to the gradient—the contribution of the electrons
to the flow of heat, under the circumstances stated.

The standard distribution-function f,, involving as it does the
temperature T is in this case itself a function of . One might expect
that this dependence of fo on x would be sufficient to fulfil the require-
ments. An isotropic distribution which varies from point to point
cannot however be stable; the particles conforming to such a one at
any given moment would proceed to drift off down the gradient.
A stable distribution cannot be isotropic. We must repeat the
process of balancing the rates at which particles enter and leave each
compartment of the phase-space through collisions and through drift.
I say the phase-space now, instead of the velocity-space; for this
case is made more complicated than the previous one by reason of
the fact, that we now must make the balance separately for the
electrons contained in each of the six-dimensional cells d&dyd {dxdyds,
whereas previously we could make it en bloc for all of the particles in
the entire metal comprised within any velocity-cell dédqdy.

Consider then the six-dimensional cell d¢dndidxdydz = ds, and the
f(&, m, €, x, v, 5)ds electrons in it. The first three factors in ds denote
the range of velocity, the last three the range in position, within
which an electron must lie if it is to belong to ds. Electrons in the
proper range of position are continually entering or leaving the proper
range of velocity, because of impacts. The net rate at which ds
gains electrons in this way is given, as before, by (106). Electrons
in the proper range of velocity are continually drifting into the proper
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range of position, coming into dxdydz from the region adjacent to it
on the side towards smaller or greater values of x, according as £ is
positive or negative. By the same sort of reasoning as led to the
term adf/d&in (93), one sees that the net rate at which ds loses electrons
in this way is &df/dx. Equating the two, we have:

tdfjdx = b — a = (fv/D)g(v), (116)

and when we put f for f as before, on the ground that the term (£g) in
the full expression for f makes but a small contribution to the left-hand
member, we have all that is required for computing g from (116)
and W from (115) for whatever standard function we elect.

At this point, however, there arises a difficulty. If having adopted
this way of determining g we proceed to compute the electric current
J in the metal by formula (110) we find that it is not zero. The
reasoning has led to the conclusion that wherever there is a net current
of heat in a metal, there is also a net current of electricity. This
conclusion is not in accord with experiment. Yet there is apparently
no other way to circumvent it, than to suppose that when a gradient
of temperature is maintained in a metal there arises a spontaneous
internal electric field, of just such a magnitude as to counteract the
electric current which would otherwise persist. The gradient of
temperature calls forth a gradient of potential; the actual distribution-
function is the one which is stable under both these gradients com-
bined. In the bookkeeping of the compartment ds, the net gain
from impacts (b — a) is balanced against the sum of the net loss
through drift in the coordinate-space (¢df/dx) and the net loss through
drift in the velocity-space (edfjdf). Putting these statements into
the form of equations, and denoting by E the hypothetical electric
field and by a(= eE/m) the acceleration which it imparts to each
electron, we have:

a(df/dg) + &dfjdx) = b —a = (&/l)g (117)

J/e=fffd£dﬂd5'£2g -0, (118)

a pair of equations for determining 7 and the function g.
Lorentz, adopting the Maxwell-Boltzmann function for fo, solved
the equations, and obtained:

8 alirT (g
3 QomkT)" \ dx

IS

1k dT
W= “Imds’ (119)
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Sommerfeld adopted the Fermi function, and obtained for the

degenerate case: !
8w BT [ 3n\*3 (dT
W‘TT(E) (a) (120)

The coefficient of dT/dx in these expressions for W is by definition
the thermal conductivity, usually denoted by k. One notices that
these expressions for « like those for ¢, involve the more or less dis-
posable constants » and /. This however is not true of the ratio of
the conductivities.

The Wiedemann-Franz Ratio

For the ratio of thermal to electric conductivity, the old statistics
and the new supply expressions involving nothing but 7 and the ratio
of the universal constants k and e, and differing only by a slight
numerical factor:

kjo = 2(kje)*T(= 4.2 X 10~1tat T = 291° K) (121)
by the old statistics, and
kfo = Fm2(k/e)?T(= 7.1 X 100" at T = 291° K) (122)

by the new.

This “Wiedemann-Franz ratio’’ seems to have been predestined to
encourage the devotees of the electron-gas theory. Every other
formula offered by the theory contained either # or I or both, and
therefore could not serve as an ultimate critical test; for any discrep-
ancy with the data could be removed by adjusting these constants.
True, the ensemble of the formulae provided by the classical theory
ran counter to the data in so many different ways, that the net result
was quite unfavourable; but one could not point out any single predic-
tion which was certainly wrong. If however the Wiedemann-Franz
ratio had departed by an order of magnitude or more from the value
of 2(k/e)*T, the electron-gas theory could hardly have survived the
blow. But in this one case where disagreement would have been
fatal, there was agreement; not perfect, but rather too good to be
discarded as fortuitous. For many of the familiar metals the ratio,
when measured at room-temperature, turned out to be around 6 or
7-10~1, This more than any other one fact was what kept alive the
feeling, that in spite of all its difficulties the electron-gas theory must
be fundamentally right.

# To derive this formula it was necessary to proceed to the second-approximation

expression for the Fermi distribution-function; the first approximation merely
yielded zero for W.
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For the twelve metals Al, Cu, Ag, Au, Ni, Zn, Cd, Pb, Sn, Pt, Pd
and Fe, the average of the values of x/o at 291° K is 7.11-107™.
The agreement with the prediction of the new statistics is more than
good. It is so very good, that it must be partly accidental, especially
as the individual values from which the average is formed depart
from it by varying amounts. One may still doubt whether it is to
be admitted as one of the items which compel the adoption of the
new statistics. Drude, be it recalled, obtained the value 6.3-10"*!
out of the crude assumption that all of the electrons in any volume-
element have the same speed.? It used to be regarded as rather
amusing that the elaborate calculations of Lorentz merely impaired
the agreement which Drude had attained in a naively simple way.

Both theories require that the ratio be proportional to I; this is
fairly well satisfied over wide ranges of temperature, but at extreme
degrees of cold there is marked divergence, which is inconvenient.
It may be desirable to invoke other mechanisms of conduction to
supplement the free electrons—as for instance the passing-along of
electrons from atom directly to atom to assist in the conduction of
electricity, or the transmission of elastic vibrations to aid in the
transfer of heat. Indeed, when one reflects that insulators though
they lack free electrons yet have some device for the transmission
of heat, one wonders why this device should not be available to
metals also, and exalt their values of « and of x/e above the predictions
of the electron-gas theory.

Intrinsic Potential Difference

We have scen that in a metal where there is no electric current and
yet there is a current of heat, an internal electric field must be imagined.
We shall now see that in a metal where there is no electric current,
but the number of electrons per unit volume varies from point to
point, there must also be an internal electric field. This sounds
plausible to intuition, for one would expect the electrons to diffuse
from regions of higher to regions of lower density unless they were
impeded by some force. The equations (117) and (118) enable us
to evaluate this force.

Returning to these equations, introduce polar coordinates z, 8, ¢
in the velocity-space as we have formerly done; then £ = v cos 6.
Multiply both sides of equation (117) by cos #; the right-hand member
of the new equation is then proportional to £g. Integrate both

% Drude of course could evaluate the ratio k/e without knowing either % or e
accurately or at all, since it is the same as the ratio Nok/Noee — N, standing for the
number of molecules in a gramme-molecule, the Loschmidt number—and Nk is
the gas-constant R while Noe is the Faraday constant of electrolysis.
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members of this new equation over the entire velocity-space. The

integral on the right then vanishes by reason of (118), and for the
integrals on the left we have:

oef dr(dfo/dE) cos 8 + fdrs(dfu/dx) cos 8 = 0. (123)

By obvious transformations we get:

arj‘ahr(i—‘?cos2 6 + ;—xfdrfozr cos? 6 = 0. (124)
Integrating over the angles:
L L 4_7rif sy =
3afdyvdzr+3 o fov*dv = 0. (125)

Leaving the second term as it is, but integrating the first by parts,
we find that as fo vanishes (whichever statistics we use) at one limit
and v at the other limit of integration, we get:

2 Y 1d ”
- gaf%rfuv“-v—dv + gaur{lﬂ'fo‘v'ﬂ"dﬂ = 0. (126)

The integrals are written in this curious fashion, to bring out the
feature that they are proportional to the mean values of functions—
the functions 7! and 7, respectively—averaged over the electrons in
question; which is to say, all the electrons contained in the compart-
ment dxdydz of coordinate-space, to which equation (117) has reference.
They are in fact equal to the products of these mean values, to wit
the mean reciprocal speed and the mean speed, by the number ndxdydz
of the electrons in the compartment dxdydz. Rewriting (125) accord-
ingly, with overlinings to signify averages, and dividing out the
factors dxdyds and 1/3, we get:

— 2anv~! + d(nd)/dx = 0, (127)

and this is the equation for the acceleration « or the accelerating
field E = maj/e, required to counteract the electric current which
otherwise would be produced in the presence of the gradient d(n?)/dx
of the quantity n#. This is the gradient which evokes the hypothetical
electric field; gradients of temperature or of concentration act indi-
rectly, by making n? vary.

With the classical statistics the development is extremely simple,
for 7 depends on temperature only, while # may be varied at will.
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Heretofore we have tacitly assumed that »# remains the same while
T and therefore 7 vary along the axis of x, so that:

d(nd)/dx = ndb/dx = n(dv/dT)(dT/dx), (128)

and the reader can verify the expressions for & and W given in (119)
by starting from this point. But now we will assume that 7" and 7
remain the same while 1 varies along the x-direction with a gradient
dn/dx. Then:

d(nd))dx = -dn/dx. (129)

Putting this into (127), and recalling that in the Maxwell distribution
the mean values of » and v~ ! are thus related,

7= (2kT/m)vT, (130)

one perceives that # disappears by division from the two sides of the
equation, leaving this:

an = (eEjm)n = (kT [m)dn/dx, (131)

the desired equation for the necessary electric field. Integrating it,
we obtain another of very familiar aspect:

n = ngexp (eE/kT)(x — x) = noexp (— [V — Vol/kT). (132)

This is the celebrated equation of Boltzmann embodying the
statement that if in an assemblage of particles at uniform temperature
there are variations in the number-per-unit-volume from place to
place, then there must also be a field of force against which work
must be done to move a particle from place to place—and vice versa.
Specifically: if at any two points P and O the number-per-unit-volume
of the particles has values n and o, there must be a field of force
such that when a particle is moved from O to P its potential energy
is increased by — kT-log(n/n,). If the particles are electrons and
the field of force is electric and derived from a potential having values
V at P and Vy at O, then of course this change in potential energy is
expressed by e¢(V — Vo).

Boltzmann’s equation is so deeply rooted in modern physics, that
it seems strange and suspicious that the new statistics should substitute
another but it does. The reason for the innovation stands out very
clearly in (127) when the absolute-zero extreme of the Fermi distri-
bution is applied. Owing to the dependence of  on n, owing to the
interrelation between average speed and number per-unit-volume which
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distinguishes a system conforming to the new statistics, the second
term in (127) is no longer proportional to dn/dx. Instead, we have:

'—énﬂ —Slﬂ _ﬁ.
U= = m \ 4xG

substituting which values into (237), we obtain:

2/3 S
); vl = 3/20,, (133)

Bim = o = L5 (2 (34
¢ =T e\ 4G " n/dx, (

and integrating:

— Elx — x) = — vy = (3N (3 )

El —x) = + (V= Vo = 2me [(4#6') (4#6) ] (135)

This is the formula which supplants Boltzmann'’s equation.
Consulting (71), we see that (135) may be rewritten thus:

e(Vi = Vo) = (Wi — (Wi, (136)

which is to say: if there is equilibrium between two samples of electron-
gas, both being at absolute zero and distributed according to the
Fermi law, and the fastest electrons of the two having values of kinetic
energy Wa and Wy, respectively—then there is a potential-difference
between the two, such that if the fastest electron of either group
were to cross over to the other, its kinetic energy on arrival would
be equal to that of the fastest electron of the group which it joins.
So stated, the proposition is easy to remember, and one might even
come to think it obvious.

Consider now a pair of pieces of different metals, in contact with
one another. One may conceive that they are welded together by an
alloy in which the proportion of either varies continuously from zero
to one hundred per cent, if one feels the need for a mathematical
continuity. If the two pieces were separate, the number of electrons
per unit volume would probably not be the same for the two; certainly
it is not the same if the number of electrons is equal to the number
of atoms per unit volume, for this varies from metal to metal. If
the process of welding the metals together does not alter the concen-
tration of the electrons in either at points remote from the junction,
then a potential-difference given by (132) or (135)—according as the
old or the new statistics is the proper one—must arise between the
metals. Taking Sommerfeld's example of potassium and silver: if in
unit volume of each of these metals there are as many electrons as
atoms, and if this state of affairs continued when the two are welded

48
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together, then between the interiors of the metals across the weld
there must be a potential-difference of 4.2 volts,® potassium being
negative. This figure is calculated by the formula (135); the classical
formula gives a value considerably lower, about 0.04 volt. This
contrast is characteristic. Both the new and the old statistics associate
an internal or intrinsic potential-difference with a difference in electron-
concentration, and vice versa; but the amount of the P. D. associated
with a given pair of concentrations is by no means the same by the
two theories; and in actual cases, the new statistics gives much the
larger amount.

Though it is not actually possible to measure the potential in the
interior of a metal, there are phenomena which indicate that between

A
2
Py* |
Ps,
3
B
Fig. 2.

two metals touching one another, or between two parts of a metal
maintained at different temperatures, there is a difference of potential.
These are the thermoelectric phenomena—Peltier effect, Thomson
effect, thermal electromotive force. The internal potential-gradient
reveals itself through the fact that when an electric current is sent
through the region where it exists, the rate of generation of heat
departs from that which is calculated by Joule’s law. We must
therefore apply the statistics—this will be the last application which
I shall consider—to the problem of evaluating the transport and the
generation of heat in an electron-gas, in which the distribution-
function is perturbed by an electric field and simultaneously by either
of the two other influences—varying temperature, varying concen-
tration of electrons—which we have heretofore considered separately.

2% Sommerfeld originally computed 5.7 volts, having put G = 1; the value 4.2
corresponds to G = 2,
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Before undertaking this I had better dispel any notion that the
“contact’ or ““Volta’ potential-difference between a pair of metals
is the measure of the P. D. between their interiors for which we have
just been deriving theoretical expressions. It is in fact a measure of
something else, as one sees by examining an arrangement like that of
Figure 2, where 4 and B signify pieces of two metals which are in
contact at 1, and face one another across a gap between 2 and 3.
Consider an electron anywhere inside 4, and estimate the potential-
barriers which it must cross in order to arrive at the point P, just
outside of the boundary 2, and also those which it must cross in
order to pass through the metal B and reach the point P; just outside
of the boundary 3. Recalling the symbols and the relations introduced
in the section on thermionics, one sees that there is a potential-
difference between P2 and P; given by the expression

(WuA - T/Vaﬁ) - (Wu - W{B) = b4 — bs. (137)

This is the contact potential difference; and we see that if the new
statistics is correct, it is equal (at the absolute-zero limit) to the
difference between the values, for the two metals in question, of that
quantity & which appears in Richardson’s equation and used to be
regarded as the surface work-function. By the old statistics, it differs
from (b1 — bg) by the amount of the internal potential-difference
between the metals across the junction 1. Perhaps this difference
between the consequences of the two theories could be tested by
experiment.
Theory of the Thermoelectric Phenomena

We turn now to the problem of evaluating the rate of generation of
heat in a metal through which an electric current is flowing, and in
which (according to these theories) there is an intrinsic electric
potential-gradient due to a temperature-gradient, or to a gradient of
electron-concentration, or both together. The process leads to
formulae which can be tested by experiment, furnishing thus some
additional ways of finding out whether these ideas of the new statistics,
of the perturbed distribution-function and of the internal electric
field are justifiable.

The expression for the rate of generation of heat per unit volume
in a conductor traversed by currents of electricity and heat flowing
along the axis of x and having current-densities J and W respectively,
is (JE — dW/dx). Here E stands for the electric field—not in general
for the applied electric field alone, but for the sum of this and the
hypothetical internal field. I denote the corresponding acceleration
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by «, as before, and the rate at which heat is generated per unit
volume by 7; then:

— r = (maje)J — dW/dx. (138)

The current-density of heat is given by the formula (115), which I
repeat:

W = %mfw" cos® fgdr. (139)

Here g stands as always for the non-isotropic perturbation-term in
the distribution-function. This and the acceleration a are to be
determined from the two equations,

a(dfo/dt) + E(dfo/dx) = (v/D)g = (v* cos 8/D)g; (140)
Jje = ffﬂgdf = Iwz cos? fgdr, (141)

which are the same as (117) and (118) except that the electric current
is no longer set equal to zero.

Multiply both sides of (140) by 3mz? cos 8, and integrate over the
entire velocity-space. The integral of the right-hand member is
W/l; developing the integral of the left-hand member, we find:

W = iml(— dand + d(m®)/dx). (142)

Multiply both sides of (140) by cos 8, and integrate over the entire
velocity-space; the integral of the right-hand member is J/le; de-
veloping the integral of the left-hand member, we get the equation
of which (127) was a special case, to wit:

— 2amv~t + d(nd)/dx = 3J/el. (143)

Evidently these equations suffice to translate (138) into an expression
for » in terms of the mean free path, the universal constants, and
the averages of various powers of v.

Postulating the Maxwell-Boltzmann distribution-function for fo;
working out the expressions for a and for dW/dx, and importing the
formule for o (equation 114a) and & (equation 119), one finds:

2 edx T
AW |dx =di;<xd—T) 4 oykdl

dx edx’

(144)
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so the value predicted for the rate of generation of heat per unit
volume amounts to this:

J* d { dT 3kdT
’=+7+&(“a)+§;a1 (145)
The first term is obviously the Joule heat; the second is not directly
a consequence of this current-flow, as it would occur whatever the
agency which set up the temperature-distribution in question. It is
the third term which concerns us; this is a ““reversible heat,” pro-
portional to the first power of the current, so that when the current
flows in one sense heat is absorbed and when it is reversed heat is
evolved. The sign is such, that heat is absorbed when the electrons
are flowing towards the hotter part of the metal; the magnitude is
such, that as the electrons move onward they acquire just enough
energy to raise their temperature to that of the regions which they
enter. The coefficient of this term therefore represents the specific
heat of the electron-gas, which is the same as that of any other mona-
tomic gas when referred to equal numbers of particles.

Adopting instead the Fermi distribution, and inserting into (142)
and (143) the values of # and »~! and #* prevailing at absolute zero,
we find on making the substitutions in the expression (138) for r that
the terms containing the first power of J balance one another out.
This might have been expected; for we have just seen that these
terms form a sum which is proportional to the specific heat of the
electron-gas; and if this result may be extended to an electron-gas
conforming to the Fermi distribution, then since the specific heat
vanishes at zero so also must this ‘“‘reversible heat.” Working
through the second approximation, Sommerfeld found that the net
coefficient of the term in J in the expression for 7 is in fact proportional
to the specific heat of the electron-gas, being therefore proportional
to T, and given by the formula:

2otk (206" 4o
3 eh* \ 3n

Now it is a fact of experience that when an electric current flows
along a uniform wire of uneven temperature, heat is generated at a
rate which involves a term proportional to the current and which
changes sign when the current changes sense. This “ Thomson heat,”
like the maximum value which experiments allow us to admit for the
specific heat of the electron-gas, has always been much smaller than
the value which the classical statistics requires provided that the free
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electrons are about as numerous as the atoms. For the Thomson
heat as for the specific heat, the new statistics sharply reduces the
amounts demanded—to about one per cent of those on which the
classical theory insists, at room-temperature that is to say and as-
suming always that the free electrons are equal in number to the atoms.
Agreement in order of magnitude is now attained, and for some metals
the advantage is possibly greater; there are indications, too, that the
Thomson heat is proportional to T" over wide ranges of temperature.

Finally we consider the ‘‘Peltier heat”—a term proportional to the
current and changing sign when the current changes sense, observed
when there is a flow of electricity across a weld or area of contact
between two metals. This is clearly to be interpreted as a term in
the first power of J, occurring when into the combination J(ma/e)—
all that remains of the expression (138) for #, when the gradient of
temperature is annulled—we substitute the value of « derived from
(143) with the assumption that # varies continuously across the weld
from the value appropriate to the one metal to the value appropriate
to the other. Using the classical statistics, we find that there is such
a term; denoting by » and #, the electron-concentrations in the two
metals, we find for its value:

(kT/e) log (n{no)J. (147)

Its value for unit current is obviously the intrinsic potential-difference
between the metals. Using instead the new statistics, we find that
at the absolute zero there is no such term; we must proceed to the
next approximation, doing which, Sommerfeld obtained the expression:

222 m(kT)? [(‘HG)QM _ (%LG)M] _ (148)

3 el* In 3nq

Putting the current equal to unity, we find a value very considerably
smaller than the intrinsic potential-difference between the metals—
a fraction of a millivolt. This is the order of magnitude of the Peltier
heat as it is actually observed in many cases. Curiously enough,
this fact by itself is in accord with both the theories. By the classical
statistics, the intrinsic potential-difference between two metals is
generally small, and the Peltier heat for unit current gives its value
directly; by the Fermi statistics, the intrinsic potential-difference is
generally large, but the Peltier heat for unit current is only a small
fraction of it.
OMISSIONS

Among the subjects omitted from this article there are several of
much interest, which the reader may trace from the annexed bibli-
ography; in particular:
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Sommerfeld’s theory of the Hall effect;

Houston'’s extension of Sommerfeld’s theory of intrinsic potential
difference, including especially an explanation of the Peltier heat
arising when current flows between two differently-oriented crystals of
a single substance;

Bloch’s use of the new methods of quantum mechanics to make
allowance for the influence of the atoms on the conduction-electrons;

Fermi’s application of statistical methods to the problem of deter-
mining the distribution of electrons in the individual atom;

Fuerth’s work on the fluctuations in the new statistics.

The bibliography will indicate other interesting advances in a
variety of problems.
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