Notes on the Heaviside Operational Calculus
By JOHN R. CARSON

This paper briefly discusses the following topics: (1) the asymptotic solu-
tion of operational equations; (2) Bromwich’s formulation of the Heaviside
problem, and its relation to the classical Fourier integral; and (3) the
existence of solutions of the operational equation., The paper closes with
some general remarks on the interpretation of the operator and the opera-
tional equation, emphasizing the purely symbolic character of the latter,

HE large amount of work done in the past thirteen vears, start-

ing with important papers by Bromwich! and K. W. Wagner,?
has served to remove whatever mystery may have surrounded the
Heaviside operator, and has placed his operational calculus on a quite
secure and logical foundation. However, certain phases of the prob-
lem still do not appear to the writer to have as clear or adequate
treatment as perhaps might be desired; these it is the object of the
present paper to discuss. The topics dealt with are (1) the asymp-
totic solution of operational equations; (2) Bromwich’s very important
formula and its relation to the classical Fourier integral; and (3) the
existence of solutions of the operational equation.

In the following it will be assumed that the reader has a general
acquaintance with the Heaviside operational calculus as well as the
Fourier integral, but a brief sketch of the former may not be out of
place. It will be recalled that the Heaviside processes were originally
developed in connection with the solution of electrical problems:3
more precisely, the determination of the oscillations of a linearly
connected system specified by a set of linear differential equations
with constant coefficients or a partial differential equation of the type
of the wave equation. This system is supposed to be in a state of
equilibrium at reference time / = 0, when it is suddenly acted upon
by a ‘unit’ force (zero before, unity after time ¢ = 0); the subsequent
behavior of the system is required. In the solution of this problem,
Heaviside's first step was the purely formal and symbolic one of
replacing the differential operator d/df by the symbol p, thereby

1“Normal Coordinates in Dynamical Systems,’” Proc. Lond. Math. Sec. (2),
15, 1916.

'a “Uber eine Formel von Heaviside zur Berechnung von Einschaltvorginge,”
Archiv, Elektrotechnik, Vol. 4, 1916.

3 Since this paper is addressed largely to physicists and engineers, we shall employ
to some extent the language of circuit theory rather than pure mathematics; no loss
of essential generality is involved. -
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reducing the differential equations to an algebraic form, the formal
solution of which we shall write

h 1= 0. (1)

1
= ")
Here & = h(t) is the variable with whose determination we are con-
cerned and H(p) is the Heaviside function, derived as stated from
the differential equations of the problem. This equation is as yet
purely symbolic, and its conversion into an explicit solution for %,
as a function of ¢, constitutes the Heaviside problem.
Bromwich ! formulates the problem as the infinite integral

R() ___1_ [Wm_ﬂpt_d )
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The writer's formulation of the problem is, that % is uniquely
determined by the integral equation *

" hertdi = L
fﬂ BOerdt = g 3)

This equation is valid for all values of p, for which its real part is
greater than some finite constant ¢; ¢ must be at least large enough
to make the infinite integral converge. In the majority of physical
problems this constant may be taken as 0; in some, however, the
equation is valid only when ¢ is greater than some finite constant.

The equivalence of (2) and (3) is very easily established in a num-
ber of ways; perhaps the simplest is to show, following March,® that
(2) is the formal solution of (3). Either can be deduced from the
other. The Bromwich solution can, of course, be derived directly
from the Heaviside problem, as shown below.

|

One of the most interesting and perhaps the least generally under-
stood of Heaviside’s methods of solving the operational equation is
the process whereby he derives a series solution, usually divergent
and asymptotic, in inverse fractional powers of £.  What I have termed
the Heaviside Rule ® for deriving this type of solution may be formu-
lated as follows:

4 ““The Heaviside Operational Calculus,”" B. S. T. J., 1922; Bulletin Amer. Math.
Sec., 1926.

& ¢ The Heaviside Operational Calculus,” Bulletin Amer. Muth. Soc., 1927,

6 In terming this process the Heaviside Rule I do not in any sense imply that
Heaviside himself would have applied it incorrectly. In fact in one case he adds
an extra term which contributes to numerical accuracy although the series itself is
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If the operational equation % = 1/H(p) admits of formal series
expansion in the form

h=as+ ap + ap +apVp + ap® + . . ., 4)
a solution, usually divergent and asymptotic, results from discarding the

terms in integral powers of p, and replacing p"Vp by% \‘,—17; , whence
kg
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As stated in a forthcoming paper, this divergent series is a true
asymptotic expansion, as defined by Poincare, if and only if, the
singularities in 1/H(p) all lie to the left of the imaginary axis in the
complex plane. Otherwise the series may require the addition of
an extra term or factor, or even be quite meaningless.

An excellent illustration of the preceding principle is furnished by
the operational equation,

(6)

For convenience and without loss of essential generality we take
IN|=1 and A = e¥; that is, the parameter A may lie anywhere on a

circle of unit radius in the complex plane.
Now the solution of (6) is easily derived by well known processes

of the operational calculus: it is

t —AT
) = %f A?df )
0 T - T
_ e:-'.\-l t e)\r .
T f = ®)

The solution is also known to be”

Bt = e—wmm.(

|

). ()

where Ij()A) is the Bessel function Jy(7x).

a true asymptotic expansion. On the other hand Heaviside in his frequent appli-
cations of the Rule gives no hint or indication of the restrictions imposed on its
applicability. Fortunately in most applications of the operational calculus to physi-
cal problems, the Rule leads to correct results.

7 See formula (p) of the table of integrals in Chap. IV, ‘' Electric Circuit Theory
and Operational Calculus.”
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Now return to the operational equation (6), and expand as follows,
without reference to convergence,

_i 2 —1/2
hkﬁ(l—i—)\) \p

L4 O @)

Application of the Heaviside Rule now gives the divergent solution

o~ {1 () I ()

By, 21\ AN, 1
~ S(AD. (10)

We have now to distinguish three cases:
1. Az > 0. (Real part of A > 0.)
In this case it can be shown from (7) that ?

W) ~ SO0 (11)

and that the Heaviside Rule leads to a true asymptotic expansion,
as defined by Poincare. When X = 1, by the known expansion of
the right hand function in equation (9) we find that the error com-
mitted by stopping with any term in the divergent series is less than
that term. This property, however, does not characterize the series
for all complex values of A for which the real part is positive.

2.M < 0,A= — g, ug > 0.

In this case, comparison of (8) with (7), gives by aid of (11),

h(t) ~ e*tS(ut), (12)

which again is a true asymptotic expansion. The expansion differs,
however, from that given by the Heaviside Rule, by the factor e,
and the alternation in sign of the odd terms of the series.

3. >\1e = 0, A= iw.

In this case it is easily shown that*

hi(t) = e~Uetd ], (5";) : (13)
where J, is the Bessel function of order zero. From the known
asymptotic expansion of this function, we find that

]l(t) ~ e—({wlﬂ)l:e(im!ﬂ!)s(iwt)]Rm] Part (14)

with an error less than the last term included.

8 L.c. by the process described in Chap. V.
9 L.c. formula (n) of table of integrals, Chap. IV.
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Perhaps the simplest way of establishing the Heaviside Rule for
the asymptotic solution of the operational equation & = 1/H(p) and
the conditions under which it is valid, is as follows: We start with the
integral equation

f " h(e-rtdt = 1/pH(p) (15)

and specify that the singularities of 1/pH(p) and its derivatives are
all confined to the left hand side of the complex plane, except at the
point $ = 0, in the neighborhood of which

1 __a Vp Vp+ - 16

PH(p) le;+al+a2 P+ asp + aipvp + . (16)

In other words, 1/pH(p) admits of expansion in powers of vp.
Now since

® p—pt

-1
= 5 17)

we have from (15)

fom(’“ﬁ;)"_""“ﬁ@*j—%- - (18)

By virtue of the restrictions imposed on 1/pH(p), equation (18) is
valid at p = 0, whence by (16)

fu (k—\[—;)dt—al (19)

Now differentiate (18) with respect to p; we get

d 1 dy
b= Yttty = — —(———). 20
Jr(r=g5)e ap \ 25 ~ N (20)
Now add f e o dt to the left of (20) and its value a/24p to

the right hand side; we have

fum(" Al LAl ~ 5w - Ef) to @
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Now set p = 0; from (16) we have

® [41)] 11 1
Iz——4+——)tdt=—a, (22
j.: ( ANrt 2t Axt ? )
a formula which again is valid by reason of the restrictions imposed

on 1/pH(p).

Proceeding in this manner we get the formula

f (h — S)-t7dt = (— 1)"nlasnan, (23)
0

=1 _ G I
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+ (=113 (2n — 1) (‘;))

= first (n + 1) terms of the divergent Heaviside series. (24)

Also since
B (2n 4+ 1D asne

(2,5) n+1 _\!ﬁ

we have from (23) by changing # to (n + 1),

i 13"‘(2‘11,—'—1) agﬂ+2)
h — Sﬂ — (— 1)»H? idt
IR =D @ v

= (= D™ (n + 1) lasnss.  (26)
Equations (23) and (26) establish the fact that (h — S,) converges,
for indefinitely great values of ¢, at least as rapidly as l,ft““wﬁ, since

otherwise the integrand of (26) would diverge; stated in mathematical
notation

San = Sp + (— 1)t L (25)

h — Sn = 0(1/m+302), (27)

Consequently the series S when divergent is a true asymptotic ex-
pansion, as defined by Poincare, of the function /.

The foregoing says nothing, it will be noted, regarding the error
committed when S, is employed to compute the function . Nothing,
in general, can be said about this question, which requires an inde-
pendent investigation in every specific problem. In some cases the
error will be less than the magnitude of the last term of S,, but this
is the exception rather than the rule. In other exceptional cases the
series may even be absolutely convergent.
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The foregoing results can undoubtedly be derived by integration
of the Bromwich integral (2) along the contour suggested by March
(l.c.). Wiener in his paper on “The Operational Calculus” (Math.
Amnnalen, Bd. 95, 1925) gives an entirely different treatment of the
problem. The operational calculus he deals with, however, differs
under some circumstances from that of Heaviside, as Wiener himself
remarks. A paper by Tibor v. Stacho on “Operatoren Kakiil von
Heaviside und Laplaceshe Transformation' (publication 1927 VI 15
by the Hungarian University, Francis Joseph) may also be consulted.

I1

Subject to certain well known restrictions a function f{f) can be
expressed as the Fourier integral

50 =3 | Fpremap. (8)

the path of integration being along the imaginary axis. We assume
for the moment that this equation is valid.

Now suppose that f(#) represents a force applied to an electrical or
dynamic system whose ‘‘steady state’ or forced response to an applied
force F(p)ertis

_E(_P). eprt,
H(p)

Then the forced response g(£) of the system to the applied force f(1)
is given by
1 (" Fp)

g(t) = Zl’; e H(P) glpdp‘ (29)

However, in applying the foregoing to the Heaviside problem we
encounter an initial difficulty. This is that if f(¢) is taken as the unit
function (zero before unity after, ¢ = 0) it does not admit of formu-
lation as the Fourier integral (28). The unit function, however, when
multiplied by ¢~** when ¢ is a positive real constant, does admit of such
formulation, and it is easy to show that the unit function itself is

given by o
1 100 Spt
2_7i"£-£—tw '-Z;-dp ¢ > 0. (30)

Consequently, if the unit function is the force impressed on the sys-
tem, the forced response is

1 = ot \
k(t} = —‘[_tm m)‘(l? c > 0. (31)

27
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If now all the singularities of the integrand lie to the left of the imag-
inary axis, then k(f) = i(f) and (31) is the formulation of the
Heaviside problem. Suppose, however, that the electrical or dynamic
system specified by II(p) is “unstable'; that is, it contains some
internal source of energy which makes its transient oscillations in-
crease with time f instead of dying away. In such a case H(p)
will have zeros to the right of the imaginary axis, and in order that
(31) shall be the solution of the Heaviside problem, ¢ must be taken
so large that all the singularities of the integrand lie to the left of
the path of integration. Consequently

B 1 c+1o0 Br’t (2)
h() ﬁm.[_,m i p) P

provided ¢ is so chosen that all the singularities lie to the left of the
path of integration in the complex plane. This is Bromwich'’s formu-
lation of the Heaviside problem.
From the foregoing it follows that the Fourier integral
1 ioo ot

Ziﬂl —dw pH(i)}

dp 2a)

is, in general, the formulation of the Heaviside problem if and only
if, all the singularities of the integrand lie to the left of the imaginary
axis. If there are singularities on the imaginary axis, the integral
is ambiguous, while if there are singularities to the right of the im-
aginary axis, the integral gives an incorrect solution of the Heaviside
problem.!

As a simple example consider the operational equation

ho=1/H(p) =P—f3,

where the real part 8. of 3 is positive. The correct solution as given
by either (2) or (3) is
h =20 t <0
=M t>0,

10 The appropriate mathematical methods of solving the infinite integral (2) are
dealt with in great detail by Jeffreys in his ‘Operational Methods in Mathematical
Physics'” (Cambridge University Tracts).

11 To prevent misunderstanding it should be stated that the application, when
permissible, of the classical Fourier integral (2a) to the Heaviside problem, was
known long prior to the work of Bromwich. Bromwich's essential and important
contribution lay in showing that the path of integration must be shifted to the
right of all the singularities, together with a verification of an important form of
solution, first given by Heaviside, of the operational equation.

11
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whereas the Fourier integral (2a) gives

= — < 0.
=0 t> 0.

There is another reason why care must be exercised in applying
the classical Fourier integral to the Heaviside problem. This is that
in solving the operational equation, k& = 1/H(p), the appropriate
expansion of 1/H(p) may introduce singularities on or to the right of
the imaginary axis in the component terms. This offers no difficulty
if either (2) or (3) is employed, but renders the Fourier integral (2a)
inapplicable. As an example consider the equation

1
CApH 1

One form of solution is gotten by multiplying numerator and denomi-
nator by Vp — 1, whence

h

NP 1

=P

T p—1 p—1

and each term has a singularity at p = 1.

A physical interpretation of the foregoing may not be without
interest. Suppose that an elementary force F(p)er'dp, where p =
¢ + 1w, is applied at an indefinitely remote past (negative) time to a
system specified by H(p). The response of the system is then

Fp) 0
FH5 e ap + To(0dp,

where T,(£)dp is the concomitant transient or characteristic oscillation
of the system. If ¢ is chosen sufficiently large then at least for ¢ > 0
the transient term can be made as small as we please compared with
the first term. Finally if the impressed force is the unit function
(zero before, unity after, time ¢ = 0) and it is written as

et ,
.l_f e_pdp,
278 Je—tw b4

the total response and therefore k(¢) is given by

1 i etp
27 Joswo PI(P)
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provided ¢ is sufficiently large to make the transient term \/ \/

ct1a0
| wap

—io

negligibly small. Analytically this requires that ¢ be so large that
the zeros of plI(p) shall all lie to the left of the axis pp = c.

III

The foregoing discussion tacitly assumes the existence of an unique
solution of the operational equation. On the part of the physicist
this assumption is entirely proper because if the operational equation
is the symbolic formulation of a correctly set physical problem an -
unique solution must and does exist. When approached from the
purely mathematical standpoint, however, the case is different and
there is no assurance of the existence of a solution. As an example
consider the operational equation

h = e?

The corresponding integral equation

er ®
— = h(t)e ridt pr >0
P o
has no solution, while Bromwich’s formula
1 ¢+ix e .
h(t) =il ;e dp
gives h=0 t< =1
=1 t> —1

which is obviously incorrect. As a matter of fact the operational
equation itself has no solution.

To formulate the necessary and sufficient conditions for the exis-
tence of a solution we may proceed as follows: If a solution exists
it is given by either of the equations

1 c4-fo0
h(t) = 5— J(p)etrdp, (2)

27l Joim

Jp) :jﬂ- h(f)e rdt Pr = ¢, (3)
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where f(p) denotes 1/pH(p). Substitution of the value of i(f), as
given by (2), in (3), gives the transform

c41loo
fp) = ——f e Pidt f f(2)etds. (32)
o/ e—1m
In addition, since 2(f) = 0 for ¢ < 0, we must have
1 ]
77 f(p)etrdp = 0 when { < 0. (33)

Equations (32) and (33) formulate the necessary and sufficient
restrictions on f(p) for the existence of a solution of the operational
equation

h = pf(p) = 1/H(p).

To correlate the transform (32) more closely with the classical
Fourier transform, write = u + dw and

flu + iw) = ¢(w) 1 and w real.

Then the transform (32) becomes
= 1 N —iw " it an
P(w) = 2'"_‘]0‘ e~ @ty - p(x)eitrdx (34)

for all values of u > ¢. Also since i(t) = 0, for ¢t < 0, the lower
limit of integration with respect to ¢ in (33) may be replaced by — «,

whence
b(w) = %f gﬂ‘wr(ﬁf p(x)ei=dx, (35)

which is the classical Fourier transform.

The foregoing naturally suggests a few remarks regarding the mode
of approach to the operational calculus. If we regard, as Heaviside
certainly did, the operational equation as the symbolic formulation
of a definite physical problem, it is not permissible to define the sig-
nificance of the operator p a priori. The meaning of the operator p
and methods of solution of the equation must be so determined as
to give the correct solution of the original physical problem. Heavi-
side's procedure here was purely heuristic and ‘' experimental’’; equa-
tions (2) and (3), however, provide a sound logical basis for the de-
velopment of the operational calculus. On the other hand, from the
purely mathematical standpoint it is possible to develop an opera-
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tional calculus on the basis of certain mutually consistent definitions
and conventions adopted at the outset, just as it is possible to develop
different geometries and algebras. An operational calculus so devel-
oped, however, may or may not agree with that of Heaviside and
may or may not give the correct solution of the Heaviside problem.
In a number of recent papers on the Heaviside operator this procedure
has been adopted. To the writer this appears both illogical and
doubtful, and is certainly not the method of Heaviside himself, as is
sometimes implied.

In the interpretation of the operational equation 7 = 1/H(p) it is,
in the writer's opinion, extremely important to recognize the fact that
it is not a true equation and has no litera. significance of itself, but is
simply and solely the symbolic or shorthand way of writing down
equation (2) or its equivalent (3). If this fact is kept clearly in mind
the ‘operator’ p loses the mysterious character it seems to possess for
so many students and all real danger of misinterpretation and incorrect
solution is eliminated. In the writer's opinion, Heaviside's achieve-
ment in the development of his operational calculus does not consist in
inventing a novel and mysterious kind of mathematics, but in formu-
lating a body of rules and processes whereby recourse to the actual
equations of the problem is rendered unnecessary.

There is another fact which it is also important to clearly recognize.
In the original differential equations from which the operational equa-
tion is derived, the symbol p* denotes d*/di" and its reciprocal p~,
corresponding multiple integration, and the index n is always integral.
If, as in the case in important electrotechnical problems, non-integral
or fractional powers of the symbol p occur in the operational equation,
it is due to algebraic manipulations and operations, which in essence
rob p of its original significance. That is to say, in such cases it is not
permissible nor indeed possible to assign to the operator p its original
significance. For example the operational equation

h=Ap
does not mean

. d\? . .
() = (d_t) -1 (1 = unit function)

which is itself meaningless, but simply

h(t) = I r ;Edf c >0
Je—tm
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or
1 fm h(f)e ridi pr >0
o Jo
More broadly stated, the operational equation is the shorthand state-
ment of true equations in which $ has lost its original significance and
is simply the complex argument of functions which obey all the laws of
algebra and analysis.

Failure to recognize these simple principles is responsible for a large
amount of confusion, loose reasoning and profitless discussion of so
called ‘fractional differentiation,” a term which, to the writer at least,
is quite meaningless. On the other hand, their recognition should go
far towards removing whatever mystery may have surrounded the
Heaviside operator and the Heaviside processes.



CORRECTION SLIP FOR ISSUE OF JANUARY, 1930

Page 153: Equation (10; should read

= {1 ) 5 )+

h(t) ~ S(\t) (10)




