Contemporary Advances in Physics, XIX.
Fusion of Wave and Corpuscle Theories.

By KARL K. DARROW.

In this article certain of the simple and familiar phenomena of optics and

of electronics—for instance, refraction at a boundary between two media,

and diffraction by a grating—are interpreted by both of the theories, undu-

latory and corpuscular, which have so often been condemned as incom-

patible with one another; the attitude being, that the theories may be

brought into concordance by modifying one at least in ways which, extra-

ordinary as they seem, do not quite destroy its character.

OT quite five years ago I published in this journal an article

entitled Waves and Quanta, expounding there the data which

invited a corpuscular theory of light, regardless of the great array of
classical phenomena of optics which demanded with no less insistence
the long-triumphant undulatory theory. Today, not only are those
data still extant and undeniable; they have been reinforced by obser-
vations on electron-streams which have compelled a wave-theory of
free negative electricity, despite the very abundant evidence for free
corpuscular electrons. Most physicists expect that not only light and
negative electricity, but whatever other fundamentals there may be—
meaning, probably, positive electricity and nothing else—will be
found to conform in some ways to simple wave-theory, and in some to
simple particle-theory. Most physicists, I think, would concede that
the two ideas must be forced into one scheme, whatever violence it
may entail to others of our preconceptions, inborn or inbred. We
must stretch the theories and our minds, so that corpuscles and
waves shall appear no longer as alternatives of which election must
be made, but as complementary aspects of one reality.

To make a beginning with this process of stretching, I propose to
treat some of the very simplest and most familiar of the phenomena,
which up to lately have been interpreted by one only of the theories:
phenomena such as the refraction of light in passing from air to water,
the bending of the paths of electrons in passing from vacuum into
metal, the diffraction of light and electrons from a ruled diffraction-
grating. (None of these examples, incidentally, involves a theory of
the structure of the atom.) Each of them shall be interpreted by the
other theory—not in order to substitute the other for the one, but in
order to practice the art of using botk theories in alliance.
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REFRACTION OF WAVES AND REFRACTION OF CORPUSCLES.

I presume that every textbook of optics and every history of physics
informs its readers that anciently there was a controversy between a
wave-theory of light (attributed to Huyghens) and a corpuscular
theory (accredited to Newton) which was totally decided in 1850 by
an experiment of Foucault. Light is refracted toward the normal in
passing from air to water, and should therefore move more rapidly in
water than in air if it consists of particles, but not so rapidly if it
consists of waves—so runs the argument. Foucault and Fizeau
discovered that light does move less rapidly in water than in air.!
Let us analyze the argument more closely before deciding what was
proved.

The reasoning from the “‘wave-theory” is usually made in graphic
fashion by showing ‘“Huyghens' construction’ (Fig. 1) which should
remind many a reader of his high school days! This is a very crude
form of wave-theory, much too primitive to account for most of the
phenomena which the physicist has in mind when he says that light
(or electricity, or matter) is of the nature of waves; but for the present
purpose it will do.

In Fig. 1, AA' is the trace, on the plane of the paper, of a wavefront
moving through air (say) in the direction LM toward the boundary
between air and water. It is the trace of the wavefront at a par-
ticular moment, say ¢; at a later moment, say ¢/, the front has moved
on to another position BB’. Denote by v the speed of the wave-
front in air; then the perpendicular distance between BB’ and 44’
is equal to »(# — ). While the wave is advancing through this
distance, its intersection with the boundary of the water sweeps over
the distance 4B, which we will denote by D. Designate by @ the
angle between wavefront and boundary, the “angle of incidence.”
From the diagram one sees immediately:

sin 0 = o(t’ — H/D. (1)

Now in Huyghens’ view, whenever the oncoming wavefront passed
over an atom in the boundary-surface it incited that atom to emit a
“wavelet.”” The circles drawn around various points on the line 4B
are the traces on the plane of the paper, of halves of those spherical
wavelets—the halves expanding downwards into the water. Accord-

! Foucault usually gets all the credit, but Fizeau and Bréguet were working at
the same time, incited by the same suggestion of Arago, and using the same method
with differences in detail; and they announced their result only six weeks later.
Indeed, at the meeting of the Académie des Sciences (May 6, 1850) at which Foucault
reported his success, Fizeau said that if the sun had shone that day or the day
before, they too would have had data to present.
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ing to “Huyghens’ Principle”” the ongoing wavefront in the water is
the envelope of these spheres. In Fig. 1 they and the ongoing wave-
front are represented for the moment ¢ when the wave in the air
reaches B. The radius 4C of the wavelet expanding from 4 is then
the distance which light traverses in water during time (t' — 1), for
that wavelet started when the wave in the air reached 4. Denote by
v’ the speed of light in water and by ¢’ the angle between the new
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WATER

Fig. 1.

wavefront and the boundary, the “ angle of refraction '’; then from the

diagram:
sin 0" = o' (t’ — £)/D (2)

and from (1) and (2) together, we obtain:
sin 0fsin 8" = vfv’. (3)

From this familiar equation it follows in general, that the ratio
(sin 6/sin @) is independent of the angle of incidence. (It is called
the index of refraction of the second medium with respect to the first;
I denote it hereafter by N.) Also it follows in particular, that when
light is refracted towards the normal the wavefronts must move more
slowly in the second medium than in the first, which is what Foucault
verified, or rather, thought he had verified.

Now try it by the corpuscle-theory. 1In Fig. 1, I have the line LMN
redrawn as a heavy line, and the lines at right angles to it left out; for
the line LMN, one of the “rays” of light, is now to be interpreted as the
path of a corpuscle, and there are no wavefronts,

So long as the corpuscle is too far from the boundary-surface to feel
any force from the water, it moves in a straight line with unchanging
momentum: for the forces exerted on it by the air, being equally
applied in all directions, balance one another out. In the region near
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the boundary, this remains the truth for the components of force
parallel to the surface; but the components along the normal, applied
respectively from the direction towards the air and the direction to-
wards the water, need not be perfectly equal. After the corpuscle
has gone through the transition region and reached the depths of the
water, it continues in a straight line with a momentum of which the
component parallel to the boundary—the ‘‘tangential’’ component,
say—is still the same as it was in the air, while the normal component
is changed. Denote by #,and p, these two components of the original
momentum of the particle through the air, by p the magnitude of their
resultant which is the original momentum; by p.’, p.’ and p’ the corre-

sponding quantities for the final flight of the corpuscle through the
water. From Fig. 2 we see:

sin 0 = p/NpE + pa> = pi/p, sin 0" = p/[p, 4)

and since p, = p,":
sin d/sin 8’ = p'/p. (5)

The corpuscle-theory therefore leads to the statement that the sines
of the angles of incidence and refraction stand to one another as the
momenta of the corpuscle in the first medium and in the second; and
when light is refracted towards the normal, the corpuscles must move
with a greater momentum in the second medium than in the first.
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Comparing the equations (5) and (3) to which the two conceptions
lead, one sees that far from contradicting one another, they are both
acceptable, provided that:

plp’ = v'[v. (6)

We may hold both the theories simultaneously, we may interchange
the two at will, provided we assume that the momentum of the cor-
puscles varies inversely as the speed of the wavefronts. In spite of
the outcome of Foucault’s experiment, we may adopt either the wave-
theory or the corpuscle-theory or both at once to describe refraction,
provided we assume that when a beam of light is ref racted toward the
normal, the speed of the wavefronts diminishes but the momentum of
the corpuscles grows greater.

Why then did everyone concede that the corpuscular theory of light
was killed by the experiment of Foucault? Because everyone was
making two assumptions which seemed so obvious as to be hardly worth
the stating, and so certain that it would have been regarded as absurd
to call either into question:

(4) It was being assumed, that the momentum of a corpuscle must
always be strictly proportional to its velocity; in other words, that the
mass of a corpuscle must be invariant.

(B) It was being taken for granted that in a wave-theory of light
the speed of the waves, and in a corpuscle-theory of light the speed of
the corpuscles, must be identified with the actual speed of light as
measured in any actual experiment.

When these assumptions are made, equation (5) goes over into the
form,

sin 8/sin 6’ = p'jp = ¥'[v, (7

which is contradictory to equation (3) and disproved by the experiment
of Foucault.

But it no longer seems radical to change the first of these assump-
tions, for it is known from observation that there are particles—elec-
trons, for example—of which the mass is not invariant, but depends
upon the speed. For such a particle the momentum is not exactly
proportional to the velocity. It is then not quite so revolutionary to
go further, and suppose that the corpuscle of light is of so strange a
nature that its velocity and its momentum are in magnitude inversely
proportional to one another. If one made this supposition then one
could accept the second assumption, and still explain the refraction
of light by the corpuscle-theory.

Even the second assumption, however, is not sacred. It may seem
absurd to set up a wave-theory of light, and then say that the speed of
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the wavefronts is not to be identified with the measured speed of light.
It does seem absurd to set up a corpuscle-theory, and then say that the
speed of the corpuscles is not necessarily the same as that of light.
Yet it may turn out in the end that a theory of either kind is strength-
ened, and made more competent to account for a variety of facts, by
abandoning that easy and natural identification. I will try to prove
by actual examples that it does so turn out. Meanwhile I summarize
this section in a sentence:

If we wish to interpret light, or electricity, or maltter, by both a corpuscle-
theory and a wave-theory, the momentum of the corpuscles must be supposed
to vary inversely as the speed of the waves.

I have omitted the special reference to refraction, for any more
general theory must include that particular case, or fall down com-
pletely; I have added allusions to electricity and matter, for the test
of any alteration of the two classical assumptions will depend chiefly
on whether it helps in understanding the wavelike properties of these
two, and not of light alone.

We now carry the wave-theory a great step beyond the primitive
form in which Huyghens left it, by introducing the ideas of frequency
and wave-length.

WAVE-LENGTH OF WAVES AND MoMENTUM OF CORPUSCLES

Instead of the single “wavefront” of Fig. 1, suppose a train of sine-
waves of frequency », period T'(= 1/v), wave-length A and wave
number u(= 1/\) travelling through air along the course LMN. For
definiteness, think of sound-waves. The condensation! of the air
conforms to the equation:

p = pgsin 2m (vt — ps + a), (8)

wherein s stands for distance measured from some arbitrary plane
perpendicular to LM, and « for some constant. [ write the equation
down because one like it (or more than one) occurs in every wave-
theory. In that of light there are six such equations, with components
of electric and magnetic field strength replacing p; but it will be
sufficient to think of one. In the wave-theory of matter there is one,
with a quantity of very abstract meaning replacing p.

Now when the wave train passes through into the water, its fre-
quency remains the same. With sound-waves, or any mechanical
vibrations of matter, this is obvious; two pieces of matter in con-
tinuous contact must vibrate in unison, or not at all. We generalize
this statement to cover light-waves, and waves of other varieties later

1 The excess of the density over the normal value, divided by the normal value.
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to be considered. Using primes to designate the values which things
have in the second medium, we put:

v = (9)

The speed of the waves is the product of their wave-length by their
frequency:
= ¥\, v =\ (10)
consequently:
v'jv = N[\ (11)

The wave-lengths of the wave train on the two sides of the boundary
vary directly as the speeds.

Return now to the last section, and introduce this result into equa-
tion (6); one gets:

p'lp= NN (12)

which means: we can interpret refraction of light (or of electricity, or of
matter) by both the wave-theory and the corpuscle-theory, provided
that we make the momentum of the corpuscle vary inversely as the
wave-length of the waves.

Write accordingly,
$N = constant. (13)

Now there are several remarkable experiments which show that this
relation actually holds, and moreover that the constant which appears
in it is the universal constant / of Planck:

b=\ (14)

For instance, one may pour a stream of X-rays—that is to say,
high-frequency light—into a gas, after having measured its wave-
length in the known and reliable way depending on one of the phenom-
ena in which X-rays behave as waves. A certain portion of the rays
is scattered; it is scattered as though it consisted of corpuscles, each of
which strikes an individual free electron and bounces off, the electron
meanwhile recoiling from the blow.? Further analysis of the data
shows that there is conservation of momentum—that the momentum
which the electron gains is equal to that which the corpuscle of light
has lost, provided that the momentum of this latter is equal to the quotient
of h by the wave-length of the rays. For the wave-length of the scattered
X-rays, measured in the same way as that of the primary rays was
measured, is not the same as theirs; and the difference between the
values of i/\, before and after scattering, is equal to the momentum
which the electron received.

2 The Compton effect (cf. the seventh article of this series).
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Again, one may pour a stream of electrons against a crystal or an
optical ruled grating, after having measured the speed of the electrons
in one of the well-known ways depending ultimately on the deflection
of such a beam in known electric and magnetic fields.® The mass
of the electrons being known, one knows also their momentum. Now
the crystal or the grating, whichever it may be, forms from the primary
beam a diffraction-pattern of new beams. Well! the formation of a
diffraction-pattern is the primary reason for saying that light is wave-
like, and it gives the primary way of measuring wave-length of light.
One is equally obliged to admit that a stream of free negative elec-
tricity is wavelike, and to accept the value for its wave-length which
the diffraction-pattern gives. Again it turns out that the wave-length
is equal to the quotient of % by the momentum of the electrons.

It may be objected that in all of those experiments, the corpuscles
were observed in a vacuum. Compton measured X-rays before and
after scattering, but during the measurements they were in vacuum
or at any rate in air. Davisson and Germer, Thomson and Rupp,
observed electrons returning through the same evacuated space as
they had crossed on their way to the diffracting lattice. One might
emphasize that all these savants compared momenta and wave-lengths
for different beams in the same medium instead of comparing them for
the same beam in different media. The distinction is certainly worth
noticing; but happily there are experiments which bear directly on
refraction. Davisson and Germer measured, not precisely the
refraction of an electron-stream passing from vacuum into nickel, but
a minor perturbation of the diffraction-pattern which is due to that
refraction. We will analyze their result, for nothing shows more
clearly the relations—or lack of relation, the reader may think—
between speed of waves, speed of corpuscles and measured speed of
stream.

Davisson and Germer came to values of the index of refraction
(sin @/sin ¢) which were greater than unity—which corresponded
therefore to a bending of the stream towards the normal, as it passed
from vacuum into nickel—which therefore signified that the speed of
the waves is not so great in nickel as in air.

On the other hand, it is known that when an individual electron
passes from vacuum into a metal, its kinetic energy and its velocity
increase as it goes through the surface. We have in fact the situation
described in the corpuscle-theory picture of refraction, a few pages
back. Return to equations (4) and (5), and consider a corpuscle for

3 The experiments of Davisson and Germer, of G, PP. Thomson, and of Rupp (cf.
the eighteenth article of this series).
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which the momentum p, the velocity #, the kinetic energy K, the
mass m are related to one another as in Newtonian mechanics—
properties which are practically those of electrons except when these
are moving much more rapidly than any involved in these experiments:

p = mu, K = amu. (15)

Use #, and u, to denote tangential and normal components of speed;
use primes to designate the values which things have in the second
medium (nickel). Starting from equation (5), we continue:

sin 8/sin ' = N = M'|M = u'[u;
N —1= (u? — u)ut= (K' — K)/K. (16)

The quantity (K’ — K) is the gain in kinetic energy which the electron
wins on passing into the nickel; and this gain, as I have said, is positive;
hence by equation (16) the index of refraction must be greater than
unity. This is in agreement with the result of Davisson and Germer;
the agreement, in fact, appears to be quantitative.* '

It is always pleasant to get an agreement; but note how we got this
one. We got it by dropping the assumption that the speed of the
corpuscles and the speed of the waves must be the same. Or rather,
by not making that assumption. For though the fact of experience
is always the same—the swerving of the electron-stream foward the
normal as it enters the nickel—it is interpreted by the two theories in
opposite ways; the waves are slowed down, but the corpuscles are
speeded up, in passing from the vacuum to the metal. Even if wave-
speed and corpuscle-speed were the same in empty space, they could
not be the same in any other medium.

This is more serious than it may appear at first. It amounts in
effect to saying that a beam of free negative electricity has two dif-
ferent speeds; one when we visualize it as a jet of particles, another
quite different when we visualize it as a train of waves.

But is not one of these ‘‘the right one'’ and the other ‘‘a wrong one,”
and can we not settle between them by measuring the actual time
which the electricity takes to pass a measured distance? Let us
examine this possibility. We shall find that after all it is not so easy
to evade the ambiguity in such a fashion.

PHASE-SPEED AND GROUP-SPEED

Suppose an endless train of perfect monochromatic sine-waves
marching along through space. For definiteness, think again of sound-

4 There is a remarkably interesting correlation between these results and the new
statistical theory of the electron-gas inside the metal (cf. my article in the October
1929 number of this Journal, pp. 710-716).



172 BELL SYSTEM TECHNICAL JOURNAL

waves. [t might seem as if we could measure their speed by picking
out one crest, as A of Fig. 3, and checking off with a stop-watch the
moments when it passes two fixed markers placed a known distance
apart. Not so; for we cannot see or hear or in any way perceive the
individual crests. The wave train produces a perfectly uniform tone
in the ear which it strikes. If two listeners are stationed at different
points along the path of the sound, neither can recognize the moment
at which any particular crest glided by. All they can recognize, all
they can compare, is the moment of passage of a perturbation of the
wave train; a sudden beginning, a sudden ending, a transient swelling
of the sound. Most measurements of the speed of sound, in fact, are
measures of the speeds of something violent—the crack of a pistol or an
electric spark, the roar of an explosion—something very unlike a uni-
form train of sine-waves.?

Now a sine-wave with a perturbation is in effect a sum of two or
more sine-waves each of endless extent and constant amplitude, but
having different wave-lengths and different amplitudes. This state-
ment is the content of Fourier’s principle from which the method of
Fourier analysis is derived. One might represent even the sudden and
violent pulsation of air due to an explosion, or the electrical spasm due
to an outburst of static, by a summation of properly-chosen endless
monochromatic sine-wave trains. [ take however the simplest con-
ceivable case: the wave train composed of only two sine-waves of dif-
ferent wave-lengths.

The reader will probably recall that when the difference between the
wave-lengths is only a small fraction of either, this composite wave
train resembles a sine-wave with regular fluctuations of amplitude—
that is to say, with “‘beats” (Fig. 3). The maximum or centre of a
beat occurs where a crest of one sine-wave coincides with a crest of the
other—the minimum between beats, where crest falls together with
trough. Denote the two wave-lengths by A and X 4+ A\N. One
sees by inspection that a wave-length is the same fraction of the dis-
tance D between two consecutive beat-maxima, as the discrepancy AN
is of the wave-length:®

D/\ = NAN. (17)

Of course this statement is exactly true only in the limit of vanishingly
small AX\. We shall always stay close to this limit, though some of the
following statements would be valid even otherwise.

5] except so-called measurements of the velocity of sound which are really measures
of frequency and wave-length in stationary wave-patterns, these being then multi-
plied together.

8 The principle of the vernier.
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Fig. 3.
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Now if the two component waves advance with equal speed, the
beats are simply carried along with a speed equal to theirs. But if the
velocities of the two component waves are not the same, then the
velocity of the beats is not the same as either, nor the mean thereof.
It is in fact something totally different.

To see this, imagine that you are moving along with one of the sine-
waves; for definiteness, that you are riding on the crest B of the train
with the shorter waves (Fig. 3). At a certain moment, say ¢ = 0,
it coincides with a crest A of the other sine-wave, and you are at the
top of the beat. Meanwhile the other train is moving relatively to
the first; for definiteness suppose that the longer waves move faster,
so that relatively to the shorter they are gliding upward. After a cer-
tain time they have gained on the shorter waves by a distance AM, the
difference between the two wave-lengths. But when this time has
elapsed, the top of the beat is no longer where you are, but where the
crest B’ of the first train coincides with the crest 4’ of the second.
It has dropped back through the distance X\, while the second wave
train was getting ahead by the distance AX. Perhaps it will be easier
to realize that while the second wave train is gaining on the first by A,
the beat is dropping back by the distance D between consecutive beats;
by equation (17) this comes to the same thing.

Therefore when the longer waves travel faster than the shorter, the
beats travel more slowly than either. If the longer waves were the
slower, the beats would travel more rapidly; but this case is never
realized in nature, not at least with light-waves 7 and waves of elec-
tricity and matter.

We now deduce the formula for the actual value of the speed of the
beats. Denote by v and v 4+ A the speeds of the two sine-waves of
which the wave-lengths are N and A -+ A\, respectively; by g the
speed of the beats. It is sufficient to put into notation what has just
been said in words. Relatively to the former wave train, the velocity
of the latter wave train is Ap, that of the beats is (¢ — »). Relatively
to the former wave train, the latter moves a distance AX while the
beats are moving a distance A in the opposite sense, therefore with a
minus sign. Hence:

(g — v)/dv = —NAN (18)

" The exception to this statement—the case of light having wave-lengths lying
within a region of anomalous dispersion of t he transmitting substance—has been an-
alyzed by Sommerfeld and L. Brillouin (Ann. d. Phys. 44, pp. 177-202, 203-240; 1914)
who find that in this case the group-speed defined by (20) loses its physical im-
portance, and a segment of a wave train is transmitted with a speed never exceed-

ing the speed of light in vacuum. This appears to be related to the absorption
which always goes with anomalous dispersion.
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and solving for g,
Av
g=v - Aﬁ 1 (19)
or going over to the differential notation, which will not only look more
natural but will signify that the result which we have just attained is
strictly valid in the limit for infinitesimal differences of wave-length:

g = v — Mdv/dN). (20)

This is the formula for the group-speed; for the term “‘group-speed”
is the usual one for what I have been calling ‘‘speed of beats.” Like-
wise phase-speed is commonly used to denote the speed of the individual
sine-wave trains.

The term “group-speed’ is in one respect unfortunate; for it implies
that any “‘group,”’ that is to say any sequence of uneven and irregular
wave-crests and troughs, is propagated with a perfectly definite speed.
However this is true only for the simplified group which we have been
considering, the beat formed of no more than two wave trains; and
even for this it is exactly true only in the limit, where the wave-length-
difference between the trains approaches zero. All other groups
change in form as they advance. Now there is always something
arbitrary in defining ‘‘speed’ for something which changes as it goes,
like a puff of smoke or a cloud. The arbitrariness is nil in only the
limiting case which I have just been formulating. However, it must
not be exaggerated. A bunch of irregular crests and troughs may
retain enough of its form and compactness, as it travels over a distance
many times as great as its width, to justify the statement that it has a
speed of its own. And if such a group turns out, on being analyzed in
Fourier's way, to consist mainly of sine-waves clustered in a small
range of wave-lengths, then its speed will not be far from the value of g
computed by equation (20) for a wave-length in that range.

Now these deductions explain a very remarkable experiment by
Michelson, which otherwise might have disproved—indeed I do not
see how it could have been interpreted otherwise than as destroying—
both the wave and the corpuscle theory of light. I will preface the
account of this experiment by saying that for light in empty space the
speed of all wave-lengths is the same,® so that there never is any dif-

8 The chief evidence for this statement is astronomical. If light of one color
traveled faster than light of another, a luminous star emerging from behind a dark
one would be seen first in the faster-travelling hue; in fact there would be a se-
quence of colors, the same for every emergence of every such star, and spread out over
a time-interval proportional to the distance of the stars, Nothing of the sort has
ever been observed, although there are plenty of luminous stars revolving around
dark ones which regularly occult them.
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ference between velocity of groups and velocity of wave-crests; they
both have the same universal constant value ¢. However this cannot
be true for light in transparent material media such as glass, water,
or carbon bisulphide; for the refractive index of all these media varies
from one wave-length to another—they are said to be dispersive.

Now Michelson measured the time taken by a flash of light to cover
a measured distance, first through air (very nearly the same as vacuum)
then partly through air and partly through carbon bisulphide. The
source of light shines continuously, and an incessant beam falls on a
revolving mirror and is reflected in a continuously-changing direction;
a second, stationary mirror receives this reflected beam during a very
small fraction of each complete revolution and sends it back, so that
the twice-reflected beam is a series of segments cut from the primary
beam. It was the time taken by the segments to travel a known dis-
tance which Michelson measured.” Reasoning back from the data,
he computed that they took (1.76 == 0.02) times as long to go a given
distance in carbon bisulphide as in air. But the refractive index of
carbon bisulphide, in the range of the spectrum where Michelson’s
source of light was brightest, is about 1.63; so that the primitive wave-
front-theory gives 1.63 for the ratio of the speeds in air and CS,,
and the corpuscle-theory gives (1.63)7L

Foucault and Fizeau, be it remembered, had done the experiment
with water. It happens that for water the derivative dv/d\ is much
smaller, and the group-speed therefore much closer to the wave-speed,
than for carbon bisulphide. Also their experiments, though performed
by the same method as Michelson was later to adopt and adapt, were
less accurate than his. But if they had performed the Michelson
experiment in 1850, the result would have been astounding. For
Arago had asked, in effect: is it the speed of the wave-fronts in the
wave-theory, or the speed of the corpuscles in the corpuscular theory,
which agrees with the measured speed of a piece of light? Arago had
said: ‘“These experiments . . . will permit no further hesitation as
between the rival theories. They will settle mathematically (I employ
this word on purpose) they will settle mathematically oneof the greatest
and most disputed questions of natural philosophy.” He had proposed
a question to Nature, and had written down two and only two answers.
Everyone thought that Nature must reply by ratifying one of the

® When the segments returned from the second to the first mirror they found that
the latter had revolved a little further beyond the orientation which it had when
they left it, so that it reflected them onward not quite along the path to the source of
light, but along another path inclined to that one at an angle twice as great as that
through which it had revolved. Michelson measured the angle, and knowing the
rate of revolution of the revolving mirror he then knew how long the light had taken
to go from it to the stationary mirror and back.
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answers. Foucault and Fizeau reported that she had replied: the
former. But they had not heard distinctly; for her actual response was:
neither.

Michelson’s experiment however came after the idea of group-
velocity as distinguished from wave-velocity had been invented and
established. The refractive index of carbon bisulphide varies with
wave-length. On determining the wave-speed or phase-speed # from
the refractive index (by the equation NV = ¢/v) and then the derivative
dv/dX, it is found ' that in the region of the visible spectrum, the term
Mdv/d\) amounts to about seven per cent of the term o, on the right-
hand side of equation (20)—that is, the group-speed should be some
seven per cent lower than the wave-speed in carbon bisulphide. In
air, however, group-speed and phase-speed are sensibly the same.
The ratio of the group-speeds in air and CS. falls close to Michelson's
value.!t

Coming as it did, therefore, the Michelson experiment merely showed
that those who had subtilized the Huyghens' theory by introducing
sine-waves had incidentally invented something able to move with the
measured speed of a light-flash, though nothing of the sort had been
available in the original form. Had it come earlier—well, there is no
way of knowing what would have been inferred; but people might have
come to think that after all a wavefront-theory or a corpuscle-theory
of light may have some use and value, even though the speeds assigned
to the waves or the corpuscles do not agree with those actually meas-
ured. Such an attitude of mind would be rather advantageous,
today. As a corollary for the present I submit: in picturing a jet of
free negative electricity as a beam of waves or a stream of corpuscles,
we should not be too confident that either the speed of the waves or
the speed of the corpuscles is the speed with which a segment dissected
from the jet would move from place to place, until someone succeeds in
making actual measurement of this last. Fundamental theory has
something to say on this point, which we will presently consider.

10 take all the numerical values in this section from a review of Michelson's
work by J. Willard Gibbs (Am. Jour. Sci. 31, pp. 62-64; 1886) which so far as | know
is the latest critical discussion of the data.

1 The problem is more complex than I have intimated, not only because Michelson
observed light covering a very wide range of wave-lengths so thatvand dv/d\ both
extend over wide ranges of values, but also because different parts of a wave-front
are reflected from different parts of the mirror at different moments, and therefore
from differently-inclined parts. Quite a controversy went on during the eighteen-
cighties in the pages of ‘' Nature '’ as to what it was that Foucault had really measured.
Rayleigh at first (Nature 24, p. 382; 1882) thought it was g; then changed his mind,
(25, p. 52; 1882) and decided it was v*/g; then was convinced by Schuster (33, pp.
439-440; 1886) that it was really */2(v — g). J. W. Gibbs then took a hand (33,
p. 582; 1886) and contended that after all it was really g. The controversy seems to
have rested there. It may be added that Michelson's data eliminate 2%/g, but do not
quite discriminate between g and Schuster's expression.
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GROUP-SPEED AND CORPUSCLE-SPEED

Thus far I have said that if we wish to use wave-theory and corpuscle-
theory alternatively, we must make the momentum of the corpuscle
equal to the quotient of the constant % by the wave-length of the waves;
but I have said nothing about the energy of the corpuscle.

Let us adopt the universal assumption—based on a multitude of
experiments, for instance those on the photoelectric effect—that the
energy I of a corpuscle of light is equal to the product of its frequency
v by the same universal constant /; and let us extend it to the other
kinds of corpuscles which we may associate with other kinds of waves,
and vice versa.

Then the complete description of the particles associated with waves
of wave-length A is as follows:

p = I\, E = v = hv/\ (21)
Here, as before, v stands for the phase-speed of the waves (not the
particles).

Returning to the formula (20) for the group-speed, we now can write
it thus:

g = v — Ndv/dN) = vA — A (¥N)/d\ (22)
= —A{dv/d\) = — (N/h)(dE/dN).

Suppose next that the energy and the momentum of the corpuscles
in question are related to each other and to their speed in the well-
known fashion of ponderable bodies, to which it is known that electrons
conform. Thus for sufficiently low speeds, the relations are practically
those of the “classical' mechanics:

b = mo, E = sma®, whence E = p*2mq. (23)

Here n1, stands for the constant mass, « for the speed of the corpuscles

(not the waves).
The energy of the corpuscles is a function of the momentum only,

and continuing to develop the formula (22) for the group-speed, we

find:
g = (—=N/h)(dE/dp)(dp/dN) = dE/dp

= pN1L — BYmy = u.

The group-speed of the waves is equal to the speed of the corpuscles.
The same conclusion follows if we use the relativistic definitions for
the energy and the momentum of a particle,

E=mu¥\N1 — B, p=mec/N1 — (8= ufo),
E = cVmid + p*

(24)

as the reader may test for himself.
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Summarizing: if the corpuscles associated with the waves have the
properties of ordinary material bodies—if, let us say, for short, the
corpuscles are material particles, their speed is equal to the group-speed of
the waves.

This is a very happy and agreeable result. It compensates very
largely for our having been forced to concede that if we want both
waves and corpuscles, the wave-speed and the corpuscle-speed must
be different. The wave-theory has supplied another velocity which is
equal to that of the corpuscles. Moreover it is precisely the velocity
with which we should expect an isolated segment of a wave train to
move from place to place. If someone were to cut a piece out of an
electron-jet and measure the time it took to traverse a known distance,
the speed which he would deduce from his data would probably agree
hoth with the corpuscle-speed and with the group-speed, and disagree
with the wave-speed. It would be interesting to try this out.

In the equations (23) I have taken account only of the kinetic
energy of the corpuscles; in the equations (25), only of their kinetic
energy and of the “rest’ energy associated with their mass. But the
explanations of refraction by the two theories will no longer be con-
cordant, unless the potential energy also is admitted. Let us denote
the potential energy of a corpuscle by U;and, since as yet these theories
have been verified only for negative electricity, let us immediately
write eV for U, e standing for the charge of an electron and V for the
electrostatic potential in the region where it is. For the total energy
of the corpuscle, then, we have instead of (25) the relativistic
expression,

E = m*/N1T = B2+ U = my?)/N1 — 3 + eV, (26)

which for small values of the corpuscle-speed n (= §¢) reduces to the
classical expression,

E = smo* + U = yma® + V. (27)

In an earlier section we interpreted the refraction of an electron beam
passing from vacuum into metal by thinking of the metal and the
vacuum as being two regions in which different values of electrostatic
potential prevail, the potential thus changing sharply from one value
to the other at the surface which bounds the solid. Now when the
beam considered as a stream of corpuscular electrons passes across
such a surface, the energy of each electron as expressed by (26) or (27)
remains the same, though the proportion which is kinetic energy is
changed; and therefore the frequency E/k of the equivalent wave-train
remains the same. If then we keep the assumption that the wave-
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length of the waves is equal to & divided by the momentum of the
particles, we have the following value for the ratio between the
wave-speeds 2’ and v on the two sides of the surface:

' ' E ] E ] ,
vfo! = vA[yN = (h 1;)/(7??#) = p'/p, (28)

and the speed of the waves varies inversely as the momentum of the
corpuscles, which is just what is required in order that we may hold
both the theories simultaneously.

But how about the theorem that corpuscle-speed is equal to group-
speed? Returning to the equations (25), we see that the introduction
of the potential energy has altered the relation between energy and
momentum; we now have:

E = ¢c\Nmo® + p* + eV. (29)

But so long as we are comparing different electron-streams in the
same medium (vacuum, for instance), the potential energy is the
same for all and does not depend on the momentum; and differentiating
E with respect to $ to obtain the value of the group-speed g, we get:

cp o FmgufN1 — 52
= dE/dp = eV = NI — 5

and thus group-speed and corpuscle-speed are equal, as before.

I will write down the expression of the phase-speed, although for
the physicist it is of minor importance, not being measurable—a fact
which exempts us, temporarily at least, from pondering over the
curious feature that it depends on the value of the potential energy
of the corpuscles, and therefore (for electrons) on the value accepted
for the electrostatic potential of the region where the wave-train is,
even though in practice it is generally assumed that electrostatic
potential may be measured from an arbitrary zero. The formula is
this:

= u, (29)

M oc? /\(1 g+ U
mo/N1 — B2 (30)

= c*/u + U/p,

and if we put the potential energy of the corpuscles equal to zero, we
find the phase-speed varying inversely as the corpuscle-speed,? and
greater than the speed of light.

2 There is a paradox here which, as I can testily from personal experience, is a
dangerous source of confusion. The formul av=c? *Ju sounds like an approximation
to the formula v = const/p which I have given as the requisite relation between

v=Efp=
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STATIONARY WAVES AND OSCILLATING PARTICLES

We have tried out, separately and in tandem, two alternative ways
of interpreting a beam of radiation advancing through space; first as a
stream of corpuscles, then as a train of waves. We will now try out
two alternative ways of interpreting radiation enclosed in a box; first
as a system of stationary waves, then as a quantity of corpuscles rush-
ing to and fro and bouncing from the walls. To simplify the case as
much as possible, think only of motions parallel to one side of the box;
or to make the pictures more graphic, think of a tube or pipe like those
often used in experiments on sound, in which the waves travel along the
axis.

Now it is well known that when a train of sound-waves is sent
through a tube, or generated by vibrations somewhere in the tube, it is
partially reflected from the far end, then again partially reflected from
the near end, and so on over and over again; the overlapping wave
trains passing to and fro interfere with one another; and when the
wave-length is related in a certain way to the length of the tube, the
overlapping wave trains form a stationary wave-pattern of alternating
loops and nodes—the tube is said to be in resonance. If the two ends
of the tube are alike (both open, or both closed) so that reflection takes
place in the same way as both, the waves which admit of resonance
are those of which the half-wave-length or an integer number of half-
wave-lengths fits exactly into the tube; denoting by d the length of the
tube, these wave-lengths are given by the formula:

u(%)zd, n=1,2,3 ... (41)
This equation defines what may be called the characteristic wave-
lengths of the tube. The tube distinguishes these, or the wave trains
possessing these wave-lengths, from all the others.

Suppose on the other hand we had particles rushing back and forth
along the axis of the tube, and rebounding without loss of energy
whenever they struck either wall. Denote by = the speed of a particle;
it takes a time-interval 2d/u to describe a complete round-trip with
two rebounds, and one might say crudely that it has a frequency u/2d.
I say “crudely’’ because the corpuscle is not moving with a sinusoidal
motion, like a pendulum-bob; its speed does not vary as a sine-function

wave-speed and momentum. However the two relate to entirely different situations.
The first is a comparison between wave-speeds and corpuscle-speeds for different
beams in the same medium. The second is a comparison between wave-speeds and
corpuscle-momenta for the same beam in different media. The resemblance between
the two is accidental and misleading.

I am indebted to Professors C. H. Eckart and E. C. Kemble for clucidation of this
poimnt.
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of time, but retains the same value throughout except for the change
of direction; if we were to apply a Fourier analysis to this motion, we
should find not only the frequency #/2d, but all of its overtones. Let
us think however only of this fundamental frequency. Now it
is evident that there is nothing, in our ordinary conceptions ol particles
rushing back and forth and rebounding from walls, to distinguish any
value of speed or frequency above any others. The phenomenon of
resonance sets certain wave-lengths apart from others, but there is
nothing to correspond to resonance in this latter case, and set certain
speeds apart from others.

But instead of sound, think of some kind of radiation which we have
interpreting both as corpuscles and as waves—Ilight, for example.
Light enclosed between parallel reflecting walls forms stationary
waves,”® provided that its wave-length is related to the distance d
between the walls by the equation (41), which I rewrite:

A= 2d/u, n=12,3... (42)

The parallel reflecting walls, or the limitation which they set upon the
space accessible to the light, thus single out certain characteristic
wave-lengths and distinguish them from all others. How interpret
this fact by corpuscle-theory?

Well, we have been associating waves of wave-length N with cor-
puscles of momentum p = I/A; let us continue to do so. The reflecting
walls, then, single out certain characteristic values of momentum given
by this equation, derived straight from (42):

b = nhf2d, (43)
which I proceed to rewrite thus,
2d-p = nh n=12,3... (44)

These values of momentum, I have said, are set apart from all the
rest. If waves and corpuscles are interchangeable as bases for a
theory of light, then the feature of wave-motion known for short as
““resonance’’ obliges us to make that supposition. But in what way,
and to what extent, are they set apart? According to modern quan-
tum-theory, they are actually the only possible values. A particle
describing a cyclic motion of this character, in which it moves a fixed
distance with a fived momentum and then moves the same distance
backward with the same momentum reversed and so forth ad infinitum,
is constrained by something in the order of nature to have one or

13 Interference patterns are essentially of this type, though usually they are
formed between mirrors oblique to one another.
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another of the ' permitted” momenta defined by equations (43) and
(44).

Examining equation (44), one sees how this definition of the per-
mitted momenta may be stated. The quantity on the left of (44) is
the product of the momentum of the particle, by the distance which it
traverses each time it performs its cycle. This product must be
equal to an integer multiple of the Planck constant /.

Now the quantum-theory of the atom developed fifteen years ago
by Bohr, Sommerfeld and W. Wilson—the first and greatest of the
forward steps in the contemporary conquest of the problem of atomic
structure—was based on the assumption that an electron performing a
cyclic motion must perform it in such a way, that its momentum
conforms to a condition of which equation (44) is but a special case.
This is the condition always written thus:

deg= wh, w=1,2,3... (45)

If the electron is oscillating to and fro in a straight line through a
position of equilibrium, ¢ stands for its distance from that position and
p for its momentum, and the integral is taken once around a complete
oscillation. It is evident that (44) is the special form of this equation
for the case in which the force acting on the electron is vanishingly
small until it hits the wall and then suddenly becomes enormous. If
the electron is revolving in an orbit in two or three dimensions, there
are two or three equations like (45) all postulated at once; but I shall
not take up such more complicated cases.

Summarizing the outcome of this section in a phrase: if we associate
waves of wave-length N with corpuscles of momentum h/\, and stationary
waves in an enclosure with corpuscles flving back and forth between ils
walls, then the condition that the waves wmust fulfil to form a stationary
system 15 equivalent to the quantum-condition imposed wpon the corpuscles.

This is an illustration of wave-mechanics. How extraordinarily
fruitful and valuable such comparisons have proved in the hands of
Louis de Broglie, of Schroedinger, Bose, Fermi and Sommerfeld—to
name only a few—1I have shown in part, in earlier issues of this journal.
Here it must suffice to say that Schroedinger developed the principle
into a form suitable for predicting the stationary states of atoms; Bose
constructed out of it a competent theory of radiation in thermal equili-

11t travels a distance d in the forward sense with a momentum p, and then an

equal distance in the backward or negative sense with a momentum of equal amount
but reversed sign, so that the total product of distance by momentum is

pd + (— p)(— d) = 2dp.
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brium, considered as a gas of which the atoms are corpuscles of light;
while Fermi, Dirac and Sommerfeld between them used it to make a
powerful theory of the free negative electricity in metals, conceiving
this alternatively as a gas of which the atoms are electrons, and a
system of stationary waves enclosed within the surface of the metal as
in a box with reflecting walls.

DIFFRACTION OF WAVES AND DiIrFrRACTION OF CORPUSCLES

The effect of a diffraction-grating upon a beam of light projected
against it has always been considered the most striking evidence that
light is of the nature of waves and not ol corpuscles. Indeed it is
considered to suffice in itself to prove the corpuscle-theory untenable.
With any common understanding of the term corpuscle-theory,
this statement is correct; but we had better put it in the softer form,
that the effect of a diffraction-grating on a beam of light proves that if
we adopt a corpuscular theory we must endow the corpuscles with some
very strange property which nobody ever thought that particles could
possess, and which may even seem to be in contradiction with their
nature. We had better put the statement in this milder way, because
it now is known that in spite of all the evidence for individual electrons,
a beam of negative electricity is affected by a grating in much the same
way as a beam of light.

Take then almost the simplest conceivable case of diffraction; a
plane-parallel beam of light falling perpendicularly on a wall containing
many equally-spaced parallel slits, and a part of the light passing
through the slits to a screen infinitely far away. On this infinitely-
distant screen—which may in practice be brought up to a convenient
nearness, by means of a lens—one sees a peculiar pattern of light and
shade. I single out one particular feature of this pattern: the fact that
there are maxima of illumination along certain lines parallel to the
slits. One of these, for instance, is straight ahead from the slits, along
the direction of the incident beam prolonged; another is off to one side,
in a direction making a certain angle (say ¢) with that of the incident
beam; another is equally far off to the other side. These two last-
named, the first-order maxima, are those we shall consider; it will be
enough to speak of one.

By the wave-theory, a first-order maximum is explained as follows.
Each of the slits is the source of a secondary wave train of spherical
wave crests, stimulated by the primary wave train, and having the same
frequency and wave-length. Consider any two adjacent slits.
Secondary wave crests start from the two at the same moment. At
any point equally distant from the slits, they arrive simultaneously, and
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reinforce each other; this is the explanation of the central bright fringe.
At any point not quite equally distant from the slits, they do not
arrive quite simultaneously, and the reinforcement is impaired. But
at a point which is further from one slit than from the other by just
the wave-length X\, the wave crest arriving from the latter meets the
next previous crest from the former, and the reinforcement is re-
stored. The first-order maximum is located at these points.

Fig. 4.

From Fig. 4 one sees ' that when the screen is very far away, the
points distant from the slit .S; by one wave-length more than they are
distant from .S, are situated in the direction inclined at ¢ to the straight-
ahead direction, the angle ¢ being given approximately by the formula

sin ¢ = A a, (46)

where a stands for the distance between the slits. When the screen is
infinitely far away, the formula is exact. (I must admit that it is
somewhat disingenuous to simplify the problem by solving only the
special case in which the screen is infinitely far away, for the general
case opposes much more serious difficulties to the corpuscle-theory;
but this is the special case of greatest physical importance, and one has
to make a beginning somewhere.)

We have now explained the presence of a first-order maximum in
the pattern of light and shade on the screen, though it cannot be said
that we have “verified” formula (46), for that formula serves as the
practical definition of wave-length: wave-lengths are measured by

15 From the figure we see that for dy and ds, the distances from S, and Sa to the
point P on the screen, we have:
d* = D* + a7, d = D + (x — a)?, dy, = D scc ¢, x = Dtan ¢
and hence
(d, — do)(d, + d-) = 2ax — a*.

When D, x, d; and d all become infinite together, the second factor on the left becomes
equal to 2D scc ¢ and the second term on the right may be neglected.
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measuring the angle ¢ and using equation (46). Let us now try the
corpuscle-theory on the problem.

Putting as heretofore the value /A for the momentum of the cor-
puscles, translate (46) into the language of the alternative theory; one
gets:

sin ¢ = hjap. (47)

In words: a corpuscle of momentum p, passing through any slit, is
particularly likely to bend around through an angle ¢ of which the sine
depends in a certain way on its momentum and on the distance to the
next slit.

Which is to say: the likelihood that a corpuscle entering a slit will
bend its course through a certain angle depends on the presence of
other slits in the same wall, and on the distance between these slits.

But the reader will inquire: how does the corpuscle entering one of
the slits know that the other slits are there? If all the other slits were
suddenly stopped up, the first-order maximum would wvanish, the
likelihood that the corpuscle would turn in the direction given by (47)
would fall to zero; but how could it know that they had been stopped
up?

Well! this is precisely the strange and extravagant property with
which we are forced to endow the corpuscles, if we want to use the
particle-theory to explain diffraction. It must be supposed that when
passing through a slit, a particle of light knows whether there are other
slits and, if so, how they are spaced. It must be supposed that an
X-ray particle striking an atom in a crystal knows that there are other
atoms in a regular array, and knows moreover just the pattern and the
scale of that array. It must be supposed that electrons enjoy a like
omniscience. Or to express it in more technical language; the prob-
ability that a corpuscle of light, of electricity or of matter shall be
deflected through a given angle when it strikes an atom or passes
through a slit must be supposed to depend on the arrangement of the
other atoms or the other slits in the vicinity. This idea is not easy to
accept; but it must be accepted, if one is to build up a complete cor-
puscular theory of any of these entities.

But if one accepts it, one finds that the stipulation (47) turns out to
be another example of the general quantum-condition of which, in (44),
we have already met one instance. For write it thus:

apsin ¢ = ap, = nh, n=1,2,3... (48)

the factor n being now introduced to take account of the maxima of
second, third, and higher order which also occur on the screen, though
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I refrained from mentioning them earlier. I have used the symbol p
for the quantity p sin ¢, for this, as one sees immediately, is the tan-
gential component of momentum which the corpuscle acquires at the
deflection, not having had any before. The wall containing the slits,
or the row of atoms if we consider instead the diffraction of X-rays by a
crystal, receives an equal momentum in the opposite sense. We may
therefore say that diffraction occurs in such a way, that the regularly-
spaced series of slits or atoms receives a momentum p, given by the
formula:

ap. = nh. (49)

But now what is the product ep,? It is the product of the mo-
mentum of the row of atoms or slits by the distance @ between any
adjacent two; it is therefore the integral J pdg of the general principle
(45), evaluated for the range of integration a. Now the general
principle is supposed to apply when the range of integration covers a
complete cycle of a periodic motion. There is nothing obviously
periodic about a steady sidewise sliding of a row of atoms with a
constant momentum. But in a sense, there is after all something
periodic. For if the row of equally-spaced atoms (or slits) extends to
infinity in both directions, then when it has moved sidewise through the
distance a each atom lies exactly in the former place of another atom,
and the original arrangement is to all appearances restored. The
steady onward motion of the regular array is also a cyclic departure and
return to a periodically-restored arrangement; and the maxima of the
diffraction-pattern are determined by applying the quantum-condition
to this cyclic motion.

The reader may ask: how about the component of momentum in
the direction at right angles to the grating? Without precisely answer-
ing that question, I will end the article by applying the corpuscular
theory to a case in which all the components of momentum are duly
taken into account: diffraction of X-rays or of electrons by a three-
dimensional crystal.

Suppose an ‘“‘ideal” crystal extending infinitely far in all directions.
It is composed of similar and similarly-oriented ‘“‘atom-groups'—I
will use the language and the symbols of the eighteenth article of this
series—arranged upon a ‘“‘space-lattice,” of which the three spacings
shall be denoted by a, a’, a’. If we start with one atom-group A,
then along one direction from it there is an infinite sequence of such
groups at distances a. 2a, 3a, . . . and also at distances (— a), (— 2a),
(— 3a), . . . 1in the opposite sense. Call that the x-direction. Then
along another direction through A4, say the y-direction, there is an
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infinite sequence of groups at distances a’, 2a’, 3a’, . . . and (— a’),
(— 2a"), etc.; and along a third or z-direction through A, there is an
infinite sequence of atom-groups spaced at intervals @’

Now think of the atom-groups as hard particles, and the corpuscle
of light or of electricity (the “X-ray quantum'’ or the electron) as a
hard particle which rushes into the lattice, hits one of the atom-
groups—A, say—and bounces off. Denote by ¢, ¢, ¢'' the angles
which its original direction of motion makes with the ¥, v, z directions
respectively; by 6, ¢/, 8’ the angles which its final direction of motion
makes with these three. Before the deflection, the corpuscle has a
momentum of magnitude p, parallel to its original direction of flight;
afterward it has a momentum of the same magnitude, but parallel to
its final direction of flight. At the deflection, then, it loses—that is,
it communicates to the lattice—a momentum of which the three
components along x, ¥, 5 have the values:

plcos 8 — cos ¢); p(cos 8" — cos ¢'); plcos 6" — cos ¢").
Now if, following the foregoing procedure, we equate the first of these
to some integer multiple of %/a, the second to some integer multiple
of hja’, and the third to some integer multiple of h/a”, and then
translate momentum of corpuscles into wave-length of waves by the
now-familiar formula p = i/\, we get:

a(cos § — cos ¢) = nh,
a'(cos 8 — cos ¢') = n'\, (50)
a'(cos 0" — cos ¢'") = n''\,
where n, n’, n'" stand for any three integers. Now these are the
equations (numbered 3, 4, 5 in the eighteenth article) to which conform
the “Laue beams,” which is to say, the directions in which electrons
and light are actually diffracted by crystals.

Perhaps I should close with two or three admonitions. To make the
wave-theory and the corpuscle-theory equivalent for a few simple cases
is of course not at all the same as making them equivalent universally.
Also, the examples in this article are not always so elementary as they
may seem. The first involved two distinct media with a sharp bound-
ary between; and discontinuity is always less agreeable than continuity
to the mathematician. The last but one involved a non-sinusoidal
vibration, which is much more complex than a sinusoidal one. More-
over, the concepts of light-waves and quanta are not nearly so beauti-
fully welded together as those of electricity-waves and electrons.
Nevertheless these illustrations may help to weaken the idea that there
is no way out of the present situation but to abandon either waves or
corpuscles; for decidedly, there is a way.



