Wave Propagation Over Continuously Loaded Fine Wires
By M. K. ZINN

The paper contains the results of a theoretical investigation of wave prop-
agation along a pair of wires that are “loaded’ by enclosing each wire
in a continuous sheath of magnetic material. The results of greatest
practical interest are certain approximate formulas that are sufficiently
simple to be adapted to engineering design studies, while having a high
degree ol precision for all practical dimensions and frequencies.

HE purpose of this investigation is to define the character of

wave transmission along a pair of wires each of which is loaded
with a continuous sheath of magnetic material. Exact expressions
for the propagation constants are developed from the general theory
that applies to such a system. Also, simple approximate formulas
are given for the sizes of wires that are generally used in paper-insu-
lated cables.

Wave ProracaTioNn ALoNG A PaIlR oF WIRES WITH MAGNETIC
SHEATHS

For the benefit of those who are not interested in following the
theoretical work in detail, a general sketch of the method and a sum-
mary of the mathematical results will be given first, together with
a discussion of some numerical examples. Details of the theoretical
work have been placed in the Appendices.

The analysis here given follows closely the methods developed by
John R. Carson ! in a solution of the transmission of periodic currents
along a system of coaxial cylinders. The analysis for the case where
the outgoing and return conductors are coaxial is applied, with only
small modifications, to the case where the two conductors are parallel
and not coaxial. This application of the theory ignores the ‘‘ proximity
effect.””* That is to say, it assumes that the electric and magnetic
forces within each conductor are functions only of the distance from
its axis and of the coordinate in the direction of propagation, which
is strictly true where the cylindrical conductors are coaxial.

! “Transmission Characteristics of the Submarine Cable,” John R. Carson and
J. J. Gilbert, Journal of the Franklin Institute, December 1921.

* This is the usual method of dealing with problems involving balanced parallel
conductors, The alternating-current resistance of the system may be expressed as
the product of the a.c. resistance, as:suming a concentric return, and a ‘‘ proximity
effect correction factor,” which takes into account the influence of the parallel return
conductor. The " proximity effect’ is in general negligible at voice frequencies for
conductors of sufficiently small cross-section, such as those of paper insulated cables.
References: ““ Wave Propagation over Parallel Wires: The Proximity Effect,” John R.

Carson, Phil. Mag., April 1921, and “Wave Propagation over Parallel Tubular
Conductors,”” Sallie Pero Mead. Bell System Technical Journal, April 1925,
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The physical system contemplated is shown in Fig. 1. The out-
going and return systems of conductors, each comprising a cylindrical
wire with insulated cylindrical sheath, are assumed to be identical
in all respects. For the sake of generality, it is assumed that the
magnetic sheaths may be insulated from the wires, as shown. The
interesting practical case where wire and sheath are contiguous, form-
ing a bi-metallic conductor, then appears as the limiting case of
infinitesimally thin insulation.
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Fig. 1—Illustrating various quantities involved in the analysis.

The problem consists in finding a solution for the propagation con-
stant of the system from Maxwell's equations. If the magnetic
sheaths are in contact with the wires, the propagation constant is
given in the usual form, I' = V¥.Z, where Vs is the admittance across
the insulation between the sheaths and Z is the series impedance
of the system. The admittance is, in general, either a known, or
an experimentally determined, quantity; so that for this case the
theoretical problem resolves itself into that of finding the series im-
pedance.

An important part of the investigation is, however, to determine
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what the effect would be of introducing insulation between the wire
and its sheath. In this more general system, shown by the sketch,
the solution for the propagation constant has two values, because
two layers of insulation are involved, and cannot be expressed in
the usual form. It is found, however, that it can be expressed in
terms of the propagation constant for the elementary case where wire
and sheath are in contact by introducing two other known propagation
constants that determine transmission along the separate pairs of
conductors in the system. The expression for the propagation con-
stant, when given in this form, shows directly the effect of insulating
the wires from their sheaths.

It is necessary first to define certain impedances. Let I, be the
total current in one of the wires and I. the total current in its sheath.
The tangential electric forces in the surfaces of wire and sheath are
denoted by E,”, Ey’ and E.", as shown in Fig. 1. These electric
forces are linear functions of the currents, as follows:

E'' = Zo)"' I, + Z2'' I,
EY =7y + Z2)' 1, (1)
EY/ = Zu"1.

The impedances which appear in these equations as the coefficients

of the currents are functions of the electrical constants and dimensions

of the wires and sheaths. Their values are given in Appendix A.
Now let

v = propagation constant determining transmission along the loaded
wires if the wires and their sheaths were in contact = Y Y,Z.

12 = propagation constant determining transmission along one wire
with its sheath as the return, when the sheath is insulated
from the wire = v ¥1Z5.

propagation constant determining transmission along the two
sheaths if the wires were removed =  YaZoo.

Then, from (1)

Yaa

. E) — E/" . , ,
i =—I—I+*\1=Zu, —Zy + 2+ Xy, L=-1
2En”-
Zy = "7+ Xa = 220" + Xo Li=0 + (2
2En” qu’: )
Z =2 X, = 2|z — 2
I, + I:»+ - [ = Zn' — 2y + Zzz'j +Xa

In these equations,
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X, = iwL;» = reactance arising from the magnetic field between the
outer surface of the wire and the inner surface of
the sheath.

X. = iwLs = reactance arising from the magnetic field between the
two sheaths.

The terms in brackets in the equation for Z give the ‘“internal
impedance ”” of one of the loaded wires for the elementary case where
wire and sheath are in contact, and X, is the additional reactance
that arises from the magnetic field outside the wires.

With the elementary propagation constants, v, vi2 and s so defined,
it is found that the propagation constant, I', of the general system
can be expressed as follows:

T = vio* + Yoo© 4= \/(‘Yu2 + 7222)3 — 4Pyt (3)
[t is convenient also to express the two solutions for I' in the form
of series:

9 Y ¥12? Yot 12"
I'? = y*— i e S st 2y s T -
I i Yi2® + yoo (y12® + yaa?)? (vie® + v2?)? ’
I's? = yi2® + e — I (4)

The solutions in the series form show the effect of introducing insu-
4y’
(y1e® + vy?)?
compared to unity, as it would be in a continuously loaded wire with
a thin magnetic sheath of high resistance, then, to a first order of
approximation, the principal propagation constant Ty is less than v,
the propagation constant that determines transmission when wire and

sheath are in contact, by the factor

-

Yo2®
i+

2

Y12

lation between the wire and sheath. For, if is small

The other propagation constant, I's, is, in this case, very large com-
pared to Ty and plays no appreciable part in defining the character
of transmission except at points very near to the terminals of the
system. For practical purposes, the system may be considered to
have only one significant mode of propagation.

CasE oF A WIRE WITH CONTIGUOUS SHEATH

The Internal I'mpedance

The practical case where the magnetic sheath and the wire are
contiguous, forming a bi-metallic conductor, is of special interest.
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In this case, the propagation constant is uniquely determined from
a knowledge of the admittance between the loaded wires and of their
series impedance. The “internal impedance” of the loaded wires
comprises the larger part of this impedance. For the purpose of
engineering design work, it is convenient to have at hand approximate
formulas for the “‘internal impedance.”

The exact expression for the impedance is given by the last of
equations (2). When the magnetic sheath is thin, as compared to
the radius of the copper wire, certain approximations can be made.
These are explained in Appendix A. The result is the following
formula for the “‘internal impedance ”:

Z,-=1 — wF + i@

e 1 (5)
- 7 + fwlf
_ 4 3 M Ao E
where F = mu.b [3 Al ual® 4 b (2R2 R, log b) ]'
— M M 2La(h; — Aa
G = R, -+ 7, + 72 Ls(Ny — No),
H = 202\susal? Em\n —A) b |
o 3" 2R\R»
RiR, . . . .
R = ———— = d.-c. resistance of one of the pair of bi-metallic
R+ R,
conductors,
1 . .
R, = > = d.-c. resistance of the inner part of the conductor
‘.‘i’}\]b' A
(the wire),
1 .
R, = o ) d.-c. resistance of the outer part of the

conductor (the sheath),

L, = 2#210g% = low-frequency inductance contributed by the
sheath,

b = radius of the wire,
a = outside radius of the sheath,
t = a — b = thickness of the sheath,
A1, #1 = conductivity and permeability of the wire,
As, g2 = conductivity and permeability of the sheath,
w = 27 times the frequency,
i

— V=1
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The total series “loop’ impedance of the pair of loaded conductors
per centimeter is Z = Z; + X».®

For the purpose of indicating the degree of precision of the approxi-
mate formula, data are given in Fig. 2 on the internal resistance and
inductance of various copper wires coated with loading material to
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Fig. 2—Internal impedance of wires of various sizes with continuous loading of
approximately 25 millihenrys per wire mile (for very small currents,
i.e., hysteresis losses not included).

3 All quantities are expressed in the electromagnetic c.g.s. system of units. To
obtain the result in ohms per loop mile, multiply by 160,934 {10‘9)._ In the case
of cable circuits, Xz ( = fwLs) is an experimentally determined quantity, L having

a value of about .001 henry per mile.
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such a depth as to give an internal inductance of about .025 henry
per wire mile. The magnetic material in the sheath has been assumed
to have a permeability of 3,000 and a conductivity of .77 x 10~ in
e.m.u. (resistivity 13 microhm-centimeters, in practical units). The
data shown by the solid lines are exact while the points give the
results obtained by means of the approximate formula (5). A com-
parison of results is tabulated below for the largest wire (16 B. & S.
gauge), where the errors of the approximate formula are greatest.

Internal Resistance and Inductance (of One Wire)
Ohms and Millihenrys per Mile
Frequency—

Kilocycles Exact ' Approximate 1 Errors
Res. Ind. ‘ Res. ‘ Ind. ‘ Res. Ind.
0 21.065 24.77 21.065 2477 — —

2 31.674 24.56 31.63 24.63 — 149 | +.299%

5 86.795 24.37 86.18 2441 - .7 +.16
8 186.65 24.05 183.6 24.01 —1.63 —.17
10 276.04 23.75 269.4 23.66 —2.41 —-.39

The errors are roughly proportional to the quantity, iVwushs.
For a loading material having, say, one-quarter the permeability and
the same conductivity, the errors would be about twice as large,
therefore, if the inductance and the wire size remain the same.

Hysteresis Loss

The real part of the internal impedance given by (2) or (5) is the
effective internal resistance of the bi-metallic wire, taking into account
the heat losses that arise from the electric current, namely, d.-c.
resistance, eddy current loss and ‘“‘skin effect loss.” The formulas
do not take into account hysteresis loss, which is a magnetic phe-
nomenon as distinguished from these electric phenomena. The de-
termination of hysteresis loss rests upon experimental data. If the
energy loss due to hysteresis in the magnetic material per unit volume
per cycle is i (ergs), then the resistance increment due to hysteresis is

w e
Ry = T‘L hrdr. (6)

For the low values of magnetic force that obtain in telephony, it is
found that & = 9B* where 5 is the hysteresis coefficient and B the
induction density. Therefore

R, = 12K f Hordr. 7)
I* b
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Since the magnetic coating is thin, and the ‘‘demagnetizing,” or
““screening,” effect of eddy currents small, it may be assumed that
I = 2I/r. (It will not exceed that value, at least.) Using this
approximate value for I/, the resistance increment due to hysteresis is

. a0 — b,
Ry = 8nwp’l = InpwB.Ls, (8)
ab
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Fig. 3—Illustrating the fractions of the total current that are carried by the copper
' wire and by the magnetic sheath (19 gauge (B. & 5.) wire with
continuous loading of 25 millihenrys per mile).

where B. is the induction density at the outside boundary of the
sheath.
The Distribution of the Current in Wire and Sheath

It is a matter of interest to know how much of the current is carried
by the magnetic sheath and how the current is distributed over the
cross-section of the wire and sheath at various frequencies. The
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solution of this problem is not an essential part of the investigation,
but it helps in understanding what takes place in the bi-metallic
conductor.

The ratio of the currents in wire and sheath to the total current, as
computed from (1), is plotted in Fig. 3. It will be noted that the
fraction of the total current carried by the sheath becomes greater
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Fig. 4—Illustrating the current density throughout the cross-section of a wire loaded
with a continuous magnetic sheath—for direct current and 2 and 10 kilocycle
alternating currents,  (Same 19 B. & S. gauge wire as that of Fig. 3.)

as the frequency increases. But the fraction carried by the copper
nevertheless remains very nearly unity at all frequencies. This
behavior is explained by the curves representing the phase angles
involved. These show, of course, that at very low frequencies the
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copper current and the sheath current are nearly in phase, but with
increasing frequency, the copper current lags behind the sheath current,
until at high frequencies the two currents approach a quadrature
phase relation.

It may be said that at high frequencies the current in the loading
material is practically all “wattless” current, in the sense that it
contributes very little to the energy delivered to any receiving device
connected to the line, but it dissipates energy, of course. At 10
kilocycles, for the 19-gauge loaded wire, the current carried by the
magnetic sheath contributes only 2 per cent of the useful current
(see Fig. 3); yet 75 per cent of the energy loss occurs in the sheath
(see Fig. 2).

The difference in phase between the component currents in wire
and sheath is explained by the consideration that the reactance of a
given filament of current is proportional to the magnetic flux external
to it. In the copper, therefore, the elementary current paths have a
small resistance, but a large reactance, due to the fact that nearly all
the magnetic flux is in the loading material. Near the outer surface
of the loading material, on the other hand, the current paths have
less internal reactance, but the resistance is large.

This brings the discussion to Fig. 4, which shows how the amplitude
and phase of the current varies over the cross-section of the bi-metallic
conductor for direct current and for 2 and 10 kilocycle alternating
currents. For the 19-gauge loaded wire, illustrated, the “'skin effect”
in the copper is seen to be very small, the alternating current dis-
tribution being practically uniform, as for direct current. At the
boundary between the copper and the magnetic material, the current
amplitude suffers a discontinuity, but the phase is continuous. The
discontinuity in the current amplitude conforms to the law that the
component of electric force along the conductor must be continuous
at a boundary, which requires that the ratio between the current
amplitudes on the two sides of the boundary must equal the ratio of
the conductivities of the two materials. The current density dis-
tribution over the cross-section of the magnetic sheath is uniform for
direct current, of course, but for alternating currents, the density
increases and the phase advances abruptly toward the outer surface

of the sheath.
APPENDIX A

The impedances * which appear in equation (1) in the body of the
paper as the coefficients of the currents are given by:

1 See above noted paper (reference 1) for the development of these formulas.
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Za! = 21:;11.:2 UgU—’ 1‘
oo 2iwps Us
é‘.‘? = xa Uj, !
_argy
7o) = Zl.wj.!-_: ! b‘g I - (9)
~21 s Uz' !
, _ 2iwps 1
b o 2dwpy 1 2iwpy Jolx))
Zy = —— Tr o T i
x, U, xp Jo'(xy)
(Note that Zgg’ = Zgg” — Zgln),
where 7
Ui = — yilJolx) Ko'(y;) — Jo'(v)Kolx)) ],
Vi = — vil[Jo(y) Kolx;) — Jolx)Koly))], (10)
Ul = — yi[ T (@)K (v;) — o' (v) Ko (x)) ],
V= — yi[Jo(y) Ko (x;) — Jo'(x) Koly,)].

Jo and K, are Bessel functions of zero order of the first and second
kind, respectively, and Jy" and K, are their derivatives with respect
to the arguments, which are given by

Xy (I;T: 47riw,u,-)\,-.

¥ = bavdmiwp,\;,

where w = 27 times the frequency, ¢ = Y— 1, a; and b; are the outer
and inner radii respectively of conductor j, and u; and \; are its
permeability and conductivity. Quantities with the subscript 1 refer
to the wire and those with the subscript 2 refer to the sheath. All
quantities are expressed in the electromagnetic c.g.s. system of units.

(11)

Writing Maxwell's Law, curl £ = — %T—, around the contours indi-
cated by the dotted rectangles in Fig. 1 gives
r_ "o__ v, — @
Es E, % = i (12)
oy _ Ve _ d%e
2B 9z dt (13)

where V,, V. are the potential differences between the surfaces of
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the conductors, as shown, and &,, ®. are the normal values of the
magnetic flux that cuts the surfaces bounded by the contours. The
term — 2E," results from the symmetry of the system, which imposes
the condition that the electric and magnetic forces at corresponding
points in the outgoing and return conductors are equal and oppositely
directed. Also, it is unnecessary to write a third equation for the
field between the other wire and its sheath, because this equation
would be the same as (12). Therefore, the transmission is charac-
terized by only two modes of propagation.

Since all the variables are propagated at the same rate, and since
sinusoidal currents are being considered, d/dz may be replaced by — T'
and d/dt by iw. Then

E‘_g’ — E1” + FI/1 = .Xrlll, (14)
— 28 + I'Va = Xolly + L), (15)

where T is the propagation constant and

X, = twL,; = reactance arising from the magnetic field between the
outer surface of the wire and the inner surface of
the sheath.

X, = iwls; = reactance arising from the magnetic field between the
two sheaths.

The potential differences Vi, V. can be expressed in terms of the
currents by writing Maxwell's Law, curl # = 4w, around contours in
the outside surfaces of wire and sheath. (Such a contour for the
wire is indicated by dotted lines in the sketch.) This gives

2'7r(.vlaﬂrJ = — 471, Y1, (16)

-

2ra = grvuve (17)

A
<=

where
¥, = admittance across the insulation between wire and sheath.

V., = admittance across the insulation between the two sheaths.

2 h ¢
Since 11, = Q—I—land H,' = __(_I_l-l-_L)'

(5] as

I‘Il = Irllrj, (]8)
F(I[ =+ Ir_») b I"E]f‘.!- (19)
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Substituting (18) and (19) in (14) and (15), respectively, gives

- F2 r "
(11—?1)11:15‘2 - E), (20)
. I
(ke - Tf') (I + 1) = = 2EY", (21)

and substituting (1) in (20) and (21) gives the two equations of the
currents. In order that they shall be consistent, the determinant
of the coefficients must vanish. Therefore

- I ’ 17 7”1

‘\1—171*2214‘211 — L
- - = (. (22)

Xo — 7 + 22, Xy — Y. + 222"

The roots of this equation give the required solutions for the propaga-
tion constant. First, however, it is convenient to introduce two
known propagation constants. Let

v12 = propagation constant determining transmission along one
wire with its sheath as the return = VYV ,Z,..

propagation constant determining transmission along the
two sheaths if the wires were removed = VY32,

Y22

Then, from (1), (20) and (21),

VAT Zu” - Zm' + Zgz' + X,

(23)
Zor = 2Zs"" + X,
substituting (23) in (22) and rearranging,
Y12 — IM o
v, P
s _ = () (24)
— 27t Yooo — 1F
27240 V.
Expanding
I — Iy + v10?) + vio2ye® — 22,7V, Ve = 0. (25)

The remaining impedance can be eliminated by introducing v, the
propagation constant that would characterize transmission if the
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wires were in contact with the sheaths. (In order not to disturb the
dimensions, it may be imagined that the insulation between wire and
sheath be replaced by an infinitely conducting material, which, how-
ever, is assumed to conduct no current axially. Then E," — E\"
= X,I,.) To find v, make ¥ infinite and solve (25). Then

‘YE = Y2Zl
and
_ _ 225"
Z=2Zn—"5" (26)
Therefore
2222'3171 Yz = 72227122 - ’YE‘YI'.’?- (27)

Finally, substituting (27) in (25) and solving the resulting equation
gives the two solutions for the propagation constant,

T2 = ypa® + 22 £ V(ve* + v2f)t — 47t (28)

The arbitrary constants remain to be determined. The currents
are, in general,
I, = Ape™ + Ape ™™ 4 Bue™ + Bise,

29
I, = Ao ™ + Apoe T 4 Bye™” + Bagel™. 29)

The condition of principal practical interest is that of a long cable
with connection made to the two wires and with the sheaths left free
at the sending end. For this case, the conditions are

(1) Atz=0, ILi=Iyand I,=0,
(2)AtZ=m Il=0 andIg=0,

’

where I, is the current delivered to the cable pair at the sending end.
From the second condition,

Bu = By = By = Bp = 0. (30)

From the first condition,

Ay + A = Iy,
Aq + Aq = 0.

(31)

But these constants must satisfy, for each of the two values of T,
the equations of the currents, whose coefficients are given in the
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determinant (22). Therefore

A= Kidn,
(32)
Azz = KzAm,
where
Zyg — L' — I’ Zas — 2245 — ==
K[ - 1 — 2
Zoo rg
— Zag +?2'
s (33)
- fm’ — 3 09 — -m’ — —2-‘
. g — Zay 7, _ Zag — 2200 Vo
Lz — Za + iy
Substituting (32) in (31) and solving
— K» _ Kl
AII'—IOK?_Kly AIE_"II]KZ_KI-
K\K (34)
A21_ IﬂKO }cl_ "‘-422
Finally, the currents are given by
I, = ;-[K(11 — K e ']
1 K" — K 2 1 y
WK\ K (35)
= A0 Ty T
I2 K‘g — K1 [E € ]

This completes the analysis for the more general system where
the magnetic sheaths are insulated from the wires. For the special
case where wire and sheath are contiguous, v:.* is infinite and (28)
shows that Iy, = v and T. = «. The transmission is, therefore,
defined by only one mode of propagation. The series impedance of
the system is, from (23) and (26),

Zoo"
ZHH - ZEII + ZE‘Z’

Z = 2 [Z::'_r” - ] + ‘Yg, (3())

where the terms in brackets give the internal impedance of one of
the loaded wires, and X is the reactance that arises from the magnetic
field between them. The internal impedance can be obtained also by

P

2K,
finding ——— T+ 1 dlrectlv from the last two of equations (1), of course.
1
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The constant K becomes — 1 and the total current, I = I, + I,
is propagated in accordance with I = I, where y = NZ V..

The constant K;, which is the ratio of the current in the sheath to
that in the wire, is of interest. It becomes

I Zio — Zadt Zn — Za! _
I_l_ = lZnu’ === anf = (31‘)

The approximate formulas for the case where wire and sheath are
contiguous are derived as follows: The arguments, x, and y:, of the
Bessel functions differ by only a small amount when the magnetic
sheath is thin. This situation is favorable to an advantageous use
of Taylor's series. Jo(x:), for example, can be expressed in terms of
Jo(y), its derivatives and the difference of the arguments in a Taylor
series as follows:

2 3
To®) = Jo@) + T ) + 5 1G0) + g S0 + e (38)

where r = x — y (xs, y» being written simply, x, y, here, for con-
venience). Furthermore, Bessel functions are subject to recurrence
formulas,” which enable us to express each of the derivatives occurring
in the series in terms of the function of zero order, its first derivative
and the argument. Therefore, by applying the recurrence formulas
to the Taylor series, we find functions U and V (see Appendix B)

such that
Jo(x) = UJo(y) + VI (), (39)
K(x) = UKoly) + VK () (40)

(U, Vi being also written now, U, V). Differentiating (39) and (40)
with respect to 7,

Jo'(x) = U'To(y) + V'JJ'(3), (41)
Ky'(x) = U'Ko(y) + V'Ko(y), (42)
where U’ = %gr V' = %i:

8 The two recurrence formulas required are:
7.3 = = J@) — Jun(),
- n
Ju .'I) = Ju—\(s) -z Ju('—'-')-

The Bessel Functions of the second kind satisfy the same formulas,



WAVE PROPAGATION OVER CONTINUOUSLY LOADED WIRES 205

If (39) to (42) be solved for U, V, U’, V’, it can be verified that the
solutions are the definitions of these functions already given in equa-
tions (10).5

The exact formula for the internal impedance of a wire with con-
tiguous sheath has been given in (36). In terms of the functions U
and TV, this formula becomes

Aoty Us .
. —_— =5 1
Ziw,uz.’\/xhl.tz U1’ + N.

X2 EE Uy
-z 1%
\/M.U-z Uy +

Z .
5 (43)

By using the series for these functions and discarding all terms
of degree higher than «? the approximation given in the body of the
paper (equation 5) may be obtained.

APPENDIX B

When the recurrence formulas are applied to the Taylor series, it is
found that

P T 3 /2 12
=t it n(t-3) ()

o T r(y 2y E_E)
V=r 2y 6(1 yﬂ)+24(;\' 3

/

70 724 M /3 33,120 -
(1 pti) (3w ) o 69

These series converge for Tl < 1, which condition is satisfied by

the sheath dimensions of any practical continuously loaded conductor.
A considerable number of the terms in the series for U/ and 1 are

6 A relation that can be used to advantage at times is
UV — UV = —2 = Hé.
x a

This relation corresponds to the similar one for the Bessel functions themselves,
namely: )

T (@K (5) — Tn()Ka'(s) = % )
14
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parts of well-known series that define certain elementary functions.
It can be verified readily that

U=cost+= [log( +1)—7+ ]
y 2y?

4 T T-'! T-l
—E[log(l +"j)— +9v_ TV'T—F“@_J’*]—’_ -+, (46)

T”=5i]17+'y[]0g(1 —,—-5)—5]-{--12—3’

5 6 6
773 T _’_llr'_}_“_’ @n
v(;)

12007 T 240y T 24097

U= —sinr +;§ + 9 (above remainder of (3)), (48)

T Or

1+4-
y
T

V'=cos 1 — —— + (above remainder of (4)). (49)

ar

1 +;

The series (46) to (49) possess a certain advantage for computing in

that the quantities in brackets are real numbers. (Note that

I=B— bﬁ-) They have been used also in obtaining the approxi-

y bs
mate formulas given in the body of the paper.

The quantities discussed above all pertain to the sheath. For
finding U/, involved in the last of the formulas (9), the series are not

valid, of course. For this we have the well-known series,

xls

%=_‘"’"=_[_"+ + 55+ 155 + 23080 + ] (50)

—see, e.g., Gray, Mathews and McRoberts, ‘‘Bessel Functions,”
2d edition, p. 170.



