The Reciprocal Energy Theorem
By JOHN R. CARSON

This paper gives a simple theorem determining relative transmission
efficiencies in a two-way transducer, and showing that the conditions for
equal efficiencies of transmission in the two directions are simply those for
maximum output and maximum reception of energy. The theorem is then
applied to radio communication and a second theorem stated and proved by
which the ratio of the transmitting efficiences of any two antenna systems is
expressed in terms of their receiving efficiences. The paper closes with a
mathematical note on a generalization of Rayleigh's Reciprocal Theorem.

HE Reciprocal Theorem, originally enunciated by Rayleigh, which
has proved so useful to communication engineers, may be stated,

with sufficient generality for engineering purposes, as follows:
Let an e.m.f. Ey, inserted in any branch, designated as No. 1, of a
transducer,! produce a current I’ in any other branch No. 2; correspond-
ingly let an e.m.f. Es'' inserted in branch No. 2 produce a current I,

in branch No. 1; then
I]_”E]_’ — I2FE2.N'

and when E," = E," the currents in the two branches are equal.

The engineer, however, is primarily interested in energy rather than
current relations, whereas the theorem says nothing explicitly regarding
energy relations and relative efficiencies in two-way transmission.
It is, however, a simple matter to deduce from it quite general and
useful formulas relating to relative transmission efficiencies. In the
present paper there will be formulated and proved a reciprocal energy
theorem for the general transducer, after which it will be applied to the
question of antenna transmission efficiency in radio communication.

Consider a transducer having two sets of accessible terminals 1,1
and 2,2. With terminals 2,2 closed by an impedance 22 = 72 + 7x2,
let the driving point impedance, as measured from terminals 1,1 be
denoted by Z;; = Ry + iX11; similarly with terminals 1,1 closed by
an impedance z; = r; 4 ix;, let the driving point impedance, as
measured from terminals 2,2 be denoted by Zs: = Ry + X2, Now
with the terminals closed by the impedances z; and 2., let an e.m.f.
E, be inserted in series with the terminal impedance z;; then the
current Iy, delivered to the transducer at the sending terminals 1,1 is

1 A transducer is defined as a complete transmission system which may or may
not include a radio link, which has two accessible branches, either of which may act
as the transmitting branch while the other acts as the receiving branch. These
branches may be designated as operating branches.
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Ey

I =t
. Zu+ 3 (1)

and the current I, received by the terminal or load impedance, 2,
is given by
Ei

he =7

(2)

Here Z,, is the transfer impedance of the transducer for the specified
terminations.
The power P,,° developed by the generator of e.m.f. E; is

Ry +n
| Zin+ 5 |2

The power P;; delivered to the transducer is

Py = (Ru + ?’1) |Iu lz = E: (3)

RH - E]z (4)

P11=R11lI11|2=]Z—““_"_—?1—|:

and the power P, delivered to the load impedance s, is
- =2 _pe 5
Py ?‘2‘I12| !Zmlel- ( )
Now reverse the direction of transmission; that is insert an e.m.f.

E, in series with the terminal impedance z; corresponding to equa-
tions (3)—(5) we have then

0 = == = 2
P22 }Zzz + 22 |2E- [] (6)
R 9
Pa = 1 2o B, (7)
Py = ]_Zr;l_lﬂEzz- (8)

As a consequence of the Reciprocal Theorem the transfer impedances

are equal; that is
Zg] = Z]z. (9)

From the preceding we get at once the following expressions for
the ratios of the powers delivered to the load impedances;

!342(&)”
Py i\ E:
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‘EPUD

:(E)(Rn+fﬂ Zu+ 5 PPy (10)
ri Ry +r1/ |2+ 52| Pod

_ (1) (Rt | Znt 51 P
_(h)(Ru)‘Zzz‘i—Zz Pnz‘ (“)

From (10) it follows that for equal total generated powers, the relative
transmission efficiency in the two directions is given by

no = & _— (ﬂ) (R‘_’Q + r2> Z“ +zl
Py 8 Riu+n

Loz + 32
while on the basis of equal powers delivered to the transducer, the
relative transmission efficiency is, by (11)

-7a- (7)) |22

T Pu ri/ \Ru/ | Z22 + 22

Now in correctly designed communication transmission systems,
the terminal impedances are so proportioned with reference to the
characteristics of the transducer itself as to secure maximum output
and maximum transfer of power from generator to load; the required

condition is that the terminal impedances 2z, and 2 be the ‘conjugate
image impedances’ of the transducer; analytically stated

2

: (12)

2

‘ (13)

Z2, = Rn - 1:X|1 and B9 = R22 - 'I:X‘zz.
Introducing these relations into (12) and (13), we have
b=n=1 (14)

and the relative transmission efficiencies are the same in the two
directions. We thus have the following propositions:—

If a transducer is terminated in its conjugate image impedances—the
condition for maximum output and maximum transfer of power—the
efficiency of transmission is the same in the two directions.

We shall now apply the preceding to the derivation of a simple
formula which enables us to determine the relative transmission
efficiencies of any two long wave radio antennas.®

Consider any antenna, designated as No. 1, and let it be acting as

2 As pointed out in the paper on ‘' Reciprocal Theorems in Radio Transmission,"”
Proc. I. R. E., the Reciprocal Theorem does not hold rigorously in radio transmission
if the earth’s magnetic field plays an appreciable part in the transmission phenomena
Consequently the formula and proposition which follow apply rigorously only to
long wave transmission; they are probably, however, approximately correct for short
wave transmission except in the neighborhood of the critical wave-length 214 meters
See a paper by Nichols and Shelling, ** Propagation of Electric Waves over the Earth "
B. S. T. J., April 1925, !
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a transmitter to a reference antenna, designated as No. 3, which is
located at any desired point 3. Let E;; denote the intensity of the
(vertical) electric field produced at point 3 by antenna No. 1. Then
the current induced in the receiving branch of No. 3 will be a3E3,
the parameter a3 being the receiving sensitivity of antenna No. 3.
The power P,; transferred from 1 to 3 is then

Pz = rsa?Es?,

where r; is the equivalent resistance of the receiving branch of antenna

No. 3.
Now reverse the direction of transmission; we have

P = ra By

We now suppose that the terminal impedances are adjusted for maxi-
mum output and maximum transfer of power and that the power P;;
developed by No. 1 when transmitting is equal to the power Pj;
developed by No. 3 when transmitting. Then it follows at once from
the reciprocal energy theorem, that P,; = Py, and

(& ) _ na

Ex raog®

Now replace antenna No. 1 by any other antenna, designated as No. 2;
we then have from the foregoing

Eyz\* _ Vaey®
Ess raaeg®

By virtue of the terminal impedances specified, 7; = R; and
rs = Ry where R, and R, are the resistances of the two antennas as
measured from their operating terminals. Consequently, since
E;; = Ej;, we have

Ela)z — _ R1a12 _ R1k]2
Ega ha Rgﬂzz a Rghgz !

where %, and 7, are the equivalent heights of the two antennas.
The ratio n;, will be termed the ‘relative transmission figure of
merit’ of the two antennas No. 1 and No. 2 with respect to trans-
mission between any two specified points. For directional antennas,
the parameters a; and «: will depend on the direction of transmission;
that is, the location of the receiving with respect to the transmitting

point.
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The foregoing may be summed up in the following proposition.

The relative transmission figure of merit of any two antennas with
respect to tramsmission from a given transmitting point to a given re-
ceiving point is equal to the ralio of their resistances as measured from
their operating branches, multiplied by the square of the ratio of their
receiving sensitivities with respect to transmission from the receiving
point to the transmitting point.

This theorem has a considerable field of practical utility. For
example it enables us to deduce the relative transmitting properties
and efficiency of any antenna system from its receiving efficiency.
It has already been so applied in one actual case of large importance.

NoteE oN THE REciprocaL THEOREM

The proof of the Reciprocal Theorem, as given originally by Lord
Rayleigh, was applicable only to ‘quasi-stationary’ transducers, that
is transducers which obey the simple laws of electric circuit theory.
In the July 1924 issue of the Bell System Technical Journal the writer
stated and proved a generalized theorem subject, however, to the
restriction that the permeability u of the medium shall be everywhere
unity. The theorem referred to is

Let a distribution of impressed periodic electric intensity F' =F'(x, y, 2)
produce a corresponding distribution of current intensity u'=u'(x, ¥, 3),
and let a second distribution of equi-periodic impressed electric intensity
F' = F'(x, y,2) produce a second distribution of current intensity
u'’ = u'(x, y, 3), then

JS(F -u"ydv = JS(F' u')dv,

the volume integration being extended over all conducting and dielectric
media. F and u are vectors and the expression (F-u) denotes the scalar
product of the two vectors.

Later Pleijel ? stated the theorem for unrestricted values of p. 1In
discussing reciprocal theorems in the June 1929 issue of the Proc.
I. R. E. the writer expressed some doubt as to the validity of Pleijel’s
proof (which is entirely different from my own). Subsequent study,
however, has convinced me that except for minor and easily remedied
errors, the proof is entirely sound. Later the writer discovered that
the restriction g = 1 can easily be removed from his own original
proof as will now be shown.*

3“Two Reciprocal Theorems in Electricity,” Ingeniors Vetenskaps Akademien
Nr. 68, 1927,

+ Another and somewhat different extension of the proof has been derived by my
associate Dr. W, H. Wise.
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If u # 1 everywhere and if we write
w=1u+curl M =\E + curl M (1)

equation (8) of my paper becomes ®
1 1w w Twr 1
— i R —_—— = —_ 7'
)\w—[—c fexp( C)dv G+)\curlM (2"

and correspondingly equation (9) becomes
f{ w-G") — (w6 }di}
-I-J%{w'-curl M) — (w'"-curl M)}dv = 0. (3)

If now in (3') we replace w by u + curl M and note that u/A = E,
(3') reduces to
J‘{ (u’. Glf) —_ (ulf . Gf)}dlv
— S{(G -curl M) — (G" -curl M")}dv 4)
+ S{E -curl M) — (E" -curl M")}dv = 0.

Finally since E — G = — %}A, (4’) reduces to

S -6 = (- G')do
— 5 A curl M) — (4 -curl M)}do = 0. ()

But
S (A" -curl M")dv = S (M"-curl A")dv

—i Q ", ’
= f — (B"-curl 4)dv
1 u—1

—_ = ", ’
=i , (curl A" -curl A")dv,

so that the second integral of (5') vanishes and
S 6") — (u'-6")}dv = 0, (6')

which is equation (9) of the original paper. The rest of the proof of
the theorem is now simply that of the original paper. :

It will be observed the theorem is stated for the current u = AE;
that is the conduction (plus polarization) current. Ballantine® in

s The paper itsell must be consulted for the significance of the symbols and the

method of attack and proof.
s June 1929 issue of Proc. I. R. E.
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discussing this subject states that the theorem holds for the current
w = AE + curl M. This cannot be true in general, however, because
from the foregoing in order that the theorem should hold for the
current w, it is clearly necessary that

SU(F -curl M) — (F"-curl M')}dv = 0.

This is only true in the exceptional cases where the impressed force is
derivable from a potential; that is, curl F = 0, or else F = 0 where
M = 0.



