The Approximate Networks of Acoustic Filters

By W. P. MASON

The approximate equivalent electrical networks of acoustic filters are
developed in this paper, from the lumped-constant approximation networks
for electric lines. In terms of this network, design formule have been
developed for all single band pass filters. Itis possible, from these formulae,
to determine the physical dimensions of an acoustic filter necessary to have
a given attenuation and impedance characteristic.

THE original theory of acoustic filters given by Stewart ! is based
upon the representation of such filters by means of lumped
constants in the form of a T network. More recently, the writer?
has presented a theory of acoustic filters, showing that they are
equivalent to a combination of electric lines. Lines, as an approxi-
mation, can be represented by networks with lumped constants, and
hence an acoustic filter has a lumped-constant approximation network,
which should represent the filter well at low frequencies. It is here
shown that the network proposed by Stewart is a first approximation
to the network of electric lines given in the former paper.*»® This
first approximation represents the low pass filter well at low fre-
quencies, but does not very adequately represent the band-pass filters.
Accordingly, a second approximation is developed. All of the single
band-pass filters have been analyzed and design formule are given
for them in terms of the second approximation network.

THE APPROXIMATE LUMPED-CONSTANT
NETWORKS OF AcousTiC FILTERS
An acoustic filter, as developed so far, consists of a main conducting
tube, and a side branch. In a symmetrical filter, the side branch is
connected to the main conducting tube half-way between the two ends,
as shown on Fig. 1. The type of filter obtained depends primarily on
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1Stewart, Phys. Rev., 20, pp. 528-551, 1922, Phys. Rev., 25, pp. 90-98, 1925.

* Mason, Bell System Technical Journal, 6, pp. 258-294, 1927.

3 This fact has also been pointed out by Stewart, Journal of the Optical Society,
July 1929, and by Lindsay, Phys. Rev., 25, pp. 652-655, 1929,
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what type of side branch is used, the resonances of the latter deter-
mining the frequencies of maximum suppression.

The equivalent electrical circuit for an acoustic filter, was shown in
a previous paper 2 to be two lines shunted by the impedance of the side
branch. This representation is shown on Fig. 2. To obtain a lumped-

Fig. 2

constant representation for this network, it is necessary first to con-
sider the lumped-constant representation of a line, which is discussed
below.

A.  Lumped-Constant Representation of a Line

In a previous paper * it was shown that the propagation constant of
a tube is given by the equation

ro=f (T ST o

while the characteristic impedance is given by the expression

_ pctP
juS°

(2)

In these equations w is 27 times the frequency, ¢ the velocity of sound,
P, the perimeter of the tube, S its area, p the density of the medium
and y'2, a constant related to the viscosity, which for air has the value
4.25 X 10~*in c.g.s. units.

A tube is the analogue of an electric line with distributed resistance,
inductance, and capacity. No quantity corresponding to leakance is
present. To determine the values of these quantities, use is made of
the well known equations for a line

R + jwL . .
Z = \/G+j°°c. P =R + juL)(G + juC), (3)

where R, L, G and C are respectively the distributed resistance, induc-
tance, leakance, and capacity of the line per unit length. Comparing
?Loc. cit.
22
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(3) with (1) and (2), it is found that

uPo 7" pw
R=%N">
L=2£,
S (4)
_s
pc*’
G =0,

neglecting small correction terms. These are the equivalent distrib-
uted constants per unit length of the pipe expressed in acoustic
impedance units.

The representation of lines with distributed constants by means of
networks containing lumped constants has received considerable atten-
tion.* With three impedances, either the 7" or = network representa-
tion shown on Fig. 3, can be used.
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The impedances of short or open circuited lines can be represented
approximately by fewer elements than three. The first approximation
for a short circuited line is an inductance and resistance equal to the
sum of the distributed inductances and resistances of a line, while the
first approximation for an open circuited line will be a capacity equal
to the distributed capacities of the line. These approximations hold
for very low frequencies. The second approximation for open and
short circuited lines can be obtained with three impedances, as shown

1 A, E, Kennelly “Artificial Electric Lines, 1917."
K. S. Johnson “Transmission Circuits for Telephone Communication, 1925,"”

page 151.

Fig. 3
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on Fig. 4. These representations follow directly from the 7" or =
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network representation shown on Fig. 3, by open or short circuiting
the T and = networks, respectively.

B. Lumped-Constant Representation of an Acoustic Filter

In his theory of acoustic filters, Stewart has represented an acoustic
filter by the network shown on Fig. 5. where Z, is the impedance of the
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side branch. Stewart has represented the side branch impedance, by
either one or two elements, depending on the side branch, and the main
branch by a single inductance, equal to the sum of the distributed
inductances of the tube. This corresponds to the first approximation
of the representation of a line by lumped constants. This repre-
sentation gives good results for the low pass filter, but does not repre-
sent, very adequately, the band-pass filters.

The best second approximation for an acoustic filter, employing two
elements to represent the main conducting tube, is shown on Fig. 6.
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The main conducting tube is represented by an L network containing
the total distributed capacity of the tube in the shunt arm, and the
total distributed inductance of the tube in the series arm. The side
hranch impedance shunts the two L networks at their center.

The propagation constant and characteristic impedance of this
structure are given by the expressions

‘ _ o, 2L JwpL Wl
cosh P =1 ——5— + 7.5, (1 o ) ,

r jwpl
1 +——
pe 242»5] (5)
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where S, is the area of the main branch.

If these equations are compared with those given in the former
paper,? it is seen that they are approximately those obtained by taking
the first two terms of the expansions of the trigonometrical functions.
The characteristics of the filter are not very readily seen from equation
(5), but can be readily found by transforming the network shown on
Fig. 6, into the much more general lattice network shown in Fig. 7.
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That the network shown on Fig. 7 is the equivalent in characteristic
impedance and propagation constant of that shown on Fig. 6, can
readily be verified by substituting the impedances of the lattice net-
work into the formule for a lattice network
— VA Z
Z =NZiZg; cosh P = rL-ll_‘*‘ (6)
Ly — Z,
where Z 4 is the impedance of one of the series arms, and Zp that of one
of the lattice arms. A lattice network has a pass band when the reac-
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tance of the series arm is of opposite sign to that of the lattice arm.
When the reactances of the two arms have the same sign, an attenua-
tion band results, while when the reactances of the two arms are equal,
an infinite attenuation constant results, since here the lattice will be a
balanced Wheatstone bridge.

For example, suppose that a side branch impedance, equivalent to
an inductance and capacity in series, is used. The impedance of the
lattice arm has two zero impedance points—one of which is at an infi-
nite frequency—and two infinite impedance points—one of which is at
zero frequency—as shown on Fig. 8. The impedance of the series arm
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is that of an anti-resonant circuit, as shown on Fig. 8. There are
two possible impedance characteristics for the series arm, in relation
to the lattice arm, which will give a single band filter. One of these is
obtained by letting the series arm have an infinite impedance when the
lattice arm has a zero impedance, which results in a low pass filter.
The second relation—which is that shown on Fig. 8—is obtained by
letting the series arm have an infinite impedance when the lattice arm
has an infinite impedance. The pass band is between zero frequency,
and the frequency at which the lattice arm resonates.

In a similar manner, the other types of acoustic filters can be ana-

lyzed.

C. Side Branch I'mpedances

The possible types of side branches can be divided into two classes,
those which are entirely enclosed, and those which are open to the air.
The first kind are characterized by a series capacity, while the second
kind always have a shunt inductance.

One of the simplest side branch impedances is a short tube open on
the end. The first approximation to this side branch is an inductance,
as shown on Table I, No. 1, equal to the total distributed inductance of
the tube. This approximation holds well if the product of the tube
length by the frequency, is not too large. A longer tube, open on the
end, can be represented by an inductance and capacity in parallel as
discussed in Section A and shown on Table I, No. 2. A tube closed
on the end can be represented by an inductance and capacity in series
as shown on Table I, No. 4.

When these tubes are used as side branches, an additional factor
comes in—an end correction. That is, the side branch must be con-
sidered as extending into the main branch for a distance proportional
to the radius, because a motion of air in the direction of the side
branch, occurs in the main branch. The value of this effect has been
investigated by Rayleigh, who found that this effect can be calcuiated
by increasing the length of the tube by a length equal to .785 times the
radius. Another correction applies to an open ended tube, which has
been determined experimentally as .57 times the radius. Hence the
length of an open ended tube must be considered as

V =1+ (785 + .57)r.

A straight tube can give all the combinations of side branch imped-
ances, but one of its dimensions is necessarily limited, namely the
area. For the area cannot become larger than the area of the main
tube, since otherwise it could not be connected to the main tube. By
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using other types of side branches, this difficulty can at least be
partially eliminated. For example, a concentric tube closed on the
end is, to a first approximation, equivalent to an inductance and
capacity in series, and it can be made to have a larger area relative to
the main branch tube, than can the straight tube.

The choice of the forms of the structures to give the simplest
impedance elements, is large. For example, Stewart represents a
shunt inductance and capacity in parallel, by a concentric tube closed
on the end, and a straight tube open on the end, joined together to the
main conducting tube at a common point.® Other methods for
representing two elements are shown on Table I. In these structures,
the equivalent length and equivalent areas have been calculated cor-
responding to these values for a straight tube. These elements have
been calculated by calculating the impedances looking into the
structures and taking the second approximations.

D. Design Formula for Acoustic Filters

Using the side branch impedances shown in Table I, in the lattice
network shown by Fig. 7, the resulting characteristics can readily be -
obtained. A large number of multiband characteristics can be secured
by using various combinations of side branches, but only five single
band filters (to the degree of approximation considered here) have been
found. The attenuation characteristics of these filters and the design
formulz for them are shown on Table II. In designing a filter, it is
usual to obtain the dimensions in terms of the singular frequencies
which determine the action of the filter. One other parameter appears,
Zy, which represents the characteristic impedance of the filter at the
mean frequency of the band ie. fn = W It is usual to match,
approximately, the impedance terminations of the filter to the value Zy.

All of these filters have been calculated for side branch tubes, of con-
stant cross section but any of the other side branches shown on Table
I can be used by employing the equivalent values of I and .S shown
there.

The frequency f, appearing in the filter No. 1 has no significance for
the attenuation constant. It determines the frequency at which the
characteristic impedance equals infinity. Considering the loss caused
by inserting the filter between two impedances equal approximately
to Zo, an additional loss occurs at the frequency f, dueto a mismatch
of the impedance of the filter and the terminating impedances. Filter
No. 4 of Table 11 is similar to No. 3 except that it has twice the attenu-
ation constant. It is then equivalent to two sections of the No. 3
filter.

5 See for example Journal of the Optical Society, July 1929, page 18.
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