Transients in Parallel Grounded Circuits, One of
Which is of Infinite Length

By LISS C. PETERSON

This paper deals with a mathematical discussion of induction due to tran-
sient currents of the forms I = sin @t and I = ¢ 8!, Formulas and curves
are developed for the calculation of the induced voltage in exposed telephone
lines due to currents of the above types.

Parr [

HE problem of mutual impedance between grounded circuits of

infinite length for steady state sinusoidal currents has been
treated by a number of authors, and the solution of this problem is
now well established.!»?'3 In addition to the steady state voltages
induced the transient voltages are also of importance. Riidenberg *
and Ollendorf 5 have given approximate solutions for transient voltages
due either to d.-c. switching or the sudden flow of a sinusoidal current
on the assumption of circular symmetry and for circuits one of which
is of infinite length. Since the assumption of circular symmetry
holds only for a limited set of conditions it is desirable to develop
formulas for the transient induced voltages based on the exact solution
for steady state conditions referred to above.

The discussion in this paper will be limited to the case of parallel
wires, one of which is of infinite length, and both located on the
surface of the earth but insulated from it except at their ends. Dis-
turbing currents of the forms 7 = sin wf and I = ¢ will be assumed.

A more general case with both wires above the earth’s surface
leads to complicated expressions for the induced voltage not well
adapted for engineering use. The restriction to wires on the earth's
surface results in appreciable simplification and does not introduce a
serious departure from actual conditions.

With these assumptions, the following formulas holding for small
and large values of time, determine the induced voltage per unit length
on a secondary wire 2 due to the sudden flow of a current /(¢) = sin wt
in a primary wire 1 infinite in length, separated from wire 2 by a dis-
tance x centimeters.

1 Pollaczek, F., E. N. T., Vol. 3, 1926.

¢ Carson, J. R., Bell System Technical Journal, Vol. 5, 1926.
sHaberland G., Z. ang. Math. U. Mech., Vol. 6, No. 5, 1926.
4 Wiss. Veroff. a. d. Siemens-Konzern, Vol. 5, No. 3, 1927,
sE. N. T., Vol. 5, No. 3, 1928.
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__sin wt W g I 24 61 — wit
Vil = 57 ~ e '[ﬂxz n (w)\x2)2+ (rax?)?
2415 — 127 )
and
sin wt 2\/; o . ’ —
Via(t) = + [cos wt kei’(2x¥mAw) + sin wi ker'(2xvrAw) ]

-2 22 T
e[ 1L (8_om hr) ]

w? WP\ I 18

and for such values of time where neither of these series expansions
would give very accurate results the following formulas may be used

sin w! _ VA + B?

Via(t) = T2 e cos (wt — ¢),
B
tane = Z .
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Fig. 1—Plot of the integral 4 as a function of r for different values of s,



762 BELL SYSTEM TECHNICAL JOURNAL

A and B are given by

wl
4= f ek cos td,
(1]

wi
B = f g™l sin EdE,
1]

With a disturbing current I = ¢ in wire 1, the induced voltage
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Fig. 2—Plot of the integral B as a function of # for different values of s.
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per unit length in wire 2 for small values of time is given by

1

763

Via(t) = o (ePt — g=™2I1)
+ B ,,e"’“’“ ? - 28 + Bt + 61 + 6865 + g8
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Fig. 3—Plot of the quantity C as a function of r for different values of s.
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and for values of time such that the above series can not be used by

1
= — —Bt _ p—mAzl]t
Via(t) e (Ce e )
where

%
— — (A
C=1 _|_f e BT E
0

Finally, the induced voltage Z;2(¢) due to a unit step current in wire
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1 is determined by
1
Zia(t) = P (1 — ==,

The functions 4, B, and C are plotted in Figs. 1, 2, and 3 for some
values of the parameters often to be found in practice.

In these formulas A is the ground conductivity in electromagnetic
c.g.s. units, ¥ the separation between wires in centimeters, ¢ the time in
seconds, and j = ¥— 1. The functions ker’ and kei’ are related to
the Bessel function of the second kind for imaginary arguments de-
fined by G. N. Watson, * Bessel Functions " as follows

ker'(2) =+ 7 kei’(z) = — j*12K,(zj*1/2)

Values of these functions are tabulated in Table I of ** Bessel Functions
for A-C Problems ’’ by H. B. Dwight A. I. E. E. Trans. 1929 pp. 812-820.

The induced voltage is in units of abvolts per cm. which is trans-
formed to volts per mile by the factor 1.61 X 1074,

Part 11

The second part of this paper will be devoted to a discussion of the
theory leading to the above results.

Consider a system of two wires, 1 and 2, wire 1 being of infinite
length, parallel with each other, with the heights %; and %y above
earth and separated by a distance x. The general problem is to
calculate the voltage on wire 2 as a function of time due to the sudden
flow of a current in wire 1, this current being zero before { = 0
and I(#) thereafter. ILet the voltage on wire 2 due to a unit current
step, that is, a current equal to zero before ¢{ = 0 and unity after
t = 0, be denoted by Zs(¢), then the voltage due to a current I(¢) is
given by

Vis(t) = g}_ fﬂ Zn()I(t — 7)dr )

The fundamental quantity thus necessary in the solution of the
problem is Z,3(f). This quantity completely determines the voltage
V12(t) for all types of disturbing currents. Z,3(#) may be written as a
Fourier integral :

+ofuwt
Zn(t) = - f “"—zm(w)dw, )

where Z,3(w) is the mutual impedance for periodic earth currents and

& Carson, Electric Circuit Theory and the Operational Calculus, page 16.
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is given by 7

1 0 _
Zis(w) = 2jw 1og‘;—, + 4o | [V +J — uleOwthnve cos pxvadu.  (3)
']

where

o = 4rlw
p" = (111 + ’£2)2 + a?
p, =y (kl = hg)z + a?

Zyz(w) is limited by the neglect of displacement currents to frequencies
such that the propagation constant is a small quantity in c.g.s. units.
To obtain Zy(f) it is necessary to integrate over all frequencies as
shown by (2); this introduces an approximation in all results for small
values of the time.

ABOHMS

100
90
80
70

|

|
sol
\
\

50

40

ol |

\ ' _mix?
20 THE Fum:ﬂomz,z(r)-”“,ﬂ—e ‘

10.0 .
90
80 ANEENAN

N -
60 SEAN rax2=107?

50 ‘\\ \R<j
a0 \ rAxZ=10"

v AN
. N
| ~

o] 01 02 03 04 05 06 o7 08
SECONDS

Fig. 4—Plot of the voltage Z12() on wire 2 as a function of ¢ for two different
values of separation or conductivity as given by the product =\x2.

7 Bell System Technical Journal, Vol. V, page 544, October, 1926,
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I am indebted to Dr. F. H. Murray of the American Telephone and
Telegraph Company for the following solution of Z1(¢) as given by (2):

Zu(t) = MI”JIIIZTZXVE— [Q%\(Hll_z ]}T!)J

1 [ &2 M &2 Man
+o [—M—12 erfe T g e = ] 4
where
(M| = | M| = |Ms],
M= (h — jo)VT,
My = (h + ju)\,
h=h+ h

and

Z
erffc Z=1—efZ=1 —if e~=dx.
VrJo
Taking the limit of equation (4) as & approaches zero there results
— 1 __ p—TAzL
le(t) - A (1 € )! (5)

which formula is of fundamental importance in the present analysis.®
This equation is also plotted on Fig. 4 for two different values of mhx?,
Assuming now I(f) = sin wf formula (1) gives

. . .
Vlz(t) — Sll'lawf _ _zw_a I:ee.',f e—(a.’r)*ﬂrd.r + e—Btf gf(a,'r)+ﬂ-rdr:|' (6)
0 0

where
a = TAXL

B=jew.

8 This formula can readily be checked in the following manner. The mutual
impedance between wires on the surface of the ground is

1

Zip(w) = e

- ;’;:E Kl(’Y'\:)l
where v = V&nAjw and K is the Bessel function of the second kind with imaginary
argument defined by Watson, “ Bessel Functions.”

Replace jw by p, and interpret the function of  so obtained according to opera-
tional methods. The first term is independent of # and therefore of 2. The second
term is transformed according to the equivalent

aVPEKi(aVp) = ettt

given as pair 922 in G. A. Campbell's paper “The Practical Application of the
Fourier Integral,” Bell System Technical Journal, Oct. 1928.
Equation (5) is then immediately obtained.
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The integrals appearing in (6) are apparently not known in closed form.
Series expansions holding for small and large values of time may be
derived however.

By successive integration by parts we obtain:

f: e—@MHBrL — o—la/+Bt [{_j _ 28 -}‘2 B + 6t + 6515 + BH®
0

a o
45 I 247 3 48
_ 2465 + 36865 + 126 + B +] )

at

¢®* appearing on the right hand side of equation (7) is cancelled by
e P* appearing before the integral, and similarly for the first term in
brackets in equation (6). In the complete expression for the voltage
odd powers of 8 cancel and we have:

_sinet @ .| # 28 61 — WS
Vis(t) = wAx? Tk’ lw)\xz ('Jr)\xz)2+ (rAx?)?
2415 — 12

For large values of time equation (6) is written as

: ! ® g—la/)+B7 ® o~la/r)=Br
Vie(t) = Sin @ + 2| 8 —s—dr — & ——dr
a 28 b T o 7’

W . "0 e—(aiﬂ—ﬂf R ® o= la/T)+67
+2ﬁ[eﬂjt et [T | )

where the integrals between zero and infinity correspond to the steady
state condition while the integrals between ¢ and infinity give the tran-
sient distortion. The integral between ¢ and infinity may be evaluated
in a manner quite similar to that used above. The result with plus
sign for g8 is

® g~ lafr)Hhr 1 1 /2 « 1 /6 6a  a

iy = et | L 1 (L& S B g B

[ o [t (3-5) 5 (- %42)

1 /24 360 124 af i
tu(E-F T oF) j (10)

The integrals between 0 and infinity are evaluated by:

v ,—{afr)=pt
J -ew—:d'r -z (F BK(2VF ap), (11)
0 T Va

in which the real and imaginary parts of the right hand side may be
expressed by the ker’ and kei’ functions by the relation already given.
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The complete expression for the voltage is:

sin ot , 2Vw

Vie(t) = v + oy [cos wt kei’(2xVmAw) + sin ot ker'(2xVmiw) ]
1 1 /6 O6mhx? Ax?)?
'_eﬂmﬂ[;?_ﬁ(ﬁ_%_i'(wﬁ ))+ ] (12)

For such values of time where neither of the formulas (8) or (12)
give very accurate results it is necessary to perform mechanical
integration.

In so doing it is convenient to introduce a new variable £ of inte-
gration. Let { = wr, and the integrals become

t T
f e—lam=terg L — 1 f eI E
0 @ o

= é [j: e~% cos Ed¢ :lzjju‘r e~ sin .Ed&] ,

where
5= aw = TAwx?
r = wk. } (13)
Now let
r
Aty = [ e cos s, (14)
0
r
B(s, r) = f e*% sin tdE, (15)
0
and formula (6) becomes
sin wt VA? + B?
Vi(t) = vyl S (wt — o), (16)
where
tang = g . (17)

The values of the functions 4 and B are given in Figs. 1 and 2 for
some values of s and 7 which are frequently met in practice.
Assuming finally I(f) = ¢~#* equation (1) gives after simplifications

1

= Pt — e—rm;z) +

¢ pt
V() = B fg—(rwlr)+ﬂrd1._ (18)

b
TZx? J,

For small values of ¢ the series expansion (7) may be used. The
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result for this case then becomes

1
V12(£) — —a (e“.ﬂl _ e—rl!’f!)
4+ B _,hz,,[ £ _ 204 B8 | 61+ 6B+ BF
e’ e (rhad)? (mAx2)8

248 4 36575 + 126%7 + B8
(mhx?)?

_|_] (19)

For large values of time, introduce a new variable ¢ = g7 of integration
in the integral in (18). Then

1

Vlz(f) = o (Ce—‘" _ e—ﬂu!;’l) (20)
where
C=1 +fr g—cst)+£d£,]
0
re g, ; (21)
= wAx28. J

The values of C are given on Fig. 3 for important ranges of r and s.
For s equal to and less than 1072, C is for practical purposes inde-
pendent of s.

I am indebted to Dr. F. H. Murray, and Mr. R. M. Foster of the
American Telephone and Telegraph Company for valuable suggestions
during the course of this work, and to Miss R. Pedersen who carried
out all the numerical calculations.



