A Method of Impedance Correction
By H. W. BODE

This paper gives a theoretical treatment of some recently developed wave
filter terminating sections whose application is discussed in the accompany-
ing paper on ‘‘Impedance Correction of Wave Filters.” The sections
consist primarily of non-recurrent ladder networks which operate, over the
transmission bands of the associated filters, as transformers whose ratio
varies with frequency. The transformation ratio of the network is specified,
as a function of frequency, by a power series containing a limited number of
terms and the design procedure therefore depends upon the construction of
power series approximations to the ratio between the resistance of the filter
proper and the desired resistance. A separate network is added to secure
control of the reactance component. An increased number of terms in the
power series, and therefore an improved approximation to the desired
transformation ratio, can be obtained by increasing the number of branches
in the network. The method thus leads to a series of sections of pro-
gressively increasing complexity and with progressively improving imped-
ance characteristics. By an inversion of the analysis a second series of
sections can also be obtained. The paper is chiefly devoted to a discussion
of these two series of filter sections, but other possible applications of the
method are also described briefly.

HE analysis of transmission circuits with which telephone engin-

eers are familiar is an outgrowth of the general physical theory of
the propagation of wave disturbances in continuous media. Problems
analogous to the analysis of a smooth transmission line are found, for
example, in optical and acoustical theory and in the theory of the
vibrations of a taut string. The situations of most importance from
the standpoint of general physics are those in which the continuous
medium extends indefinitely in at least one direction. Since, moreover,
this is also the simplest case, it has been customary to base our trans-
mission analysis upon the analogous concept of an infinite line with
distributed constants. The analysis of such a structure, since it
depends upon only two quantities, the characteristic impedance and
the propagation constant, is of course very simple.

An actual telephone transmission circuit, however, is by no means an
infinite structure containing distributed constants. Many lines, for
example, are loaded. Whether loaded or unloaded, they do not ex-
tend indefinitely, but are interrupted by terminal apparatus and inter-
mediate repeaters. Each of these, moreover, contains a miscellany of
apparatus, such as modulators, transformers, amplifiers, filters, equal-
izers, by-pass circuits, and the like, having little physical resemblance
to a continuous medium.
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This physical contrast between an ideal continuous medium and
an actual physical telephone circuit does not necessarily mean that the
application of the wave theory to circuit analysis is a difficult matter.
To a first approximation we can determine the response of a circuit
merely by adding together the propagation constants of its various
constituents. Unfortunately, however, the diverse components of a
typical circuit usually have characteristic impedances which are
widely different functions of frequency. Thus, for example the im-
pedances of the amplifiers and modulators in most telephone systems
are nearly constant pure resistances. Non-loaded lines approach such
a characteristic at high frequencies but at low frequencies their im-
pedance is usually large and may have a considerable reactive com-
ponent. Loaded lines depart from a constant resistance at high fre-
quencies as well. An even more complicated characteristic, consisting
of a varying resistance in the transmitted band, changing abruptly to a
pure reactance as we pass the cutoff, is exhibited by a wave filter. In
addition to the normal propagation constants of the circuit, therefore,
we must take account of reflection effects at all of the junctions between
these various types of characteristic impedance. In a long circuit con-
taining impedance irregularities at many junctions, moreover, we must
give consideration to an enormous variety of waves which suffer multi-
ple reflections from a number of junctions. This complicated system
of factors may make life burdensome to the man who must evaluate
them, but since they are seldom large enough to grossly affect the
transmission characteristic of a circuit, they usually play otherwise a
secondary role in practical transmission analyses. They do, however,
blur the original clarity of the wave picture and from the standpoint of
theoretical simplicity at least, therefore, they should be eliminated.
For this purpose we should have at our disposal a network whose im-
pedances at its two ends could be assigned arbitrarily to match the
impedances actually present at any junction.

The networks which form the subject of this paper were developed to .
eliminate reflection effects which, in addition to being a nuisance from
the theoretical standpoint, were attended by serious practical conse-
quences as well. The engineering problem involved is described in the
paper on ‘‘Impedance Correction of Wave Filters” by E. B. Payne
appearing simultaneously in this Journal. Briefly, it appears from the
discussion in that paper that impedance mismatches at the junctions
between terminal or repeater equipment of carrier systems and the line
give rise to reflected waves which may produce cross-talk in neighboring
systems. This cross-talk can be reduced as much as we like by means
of line transpositions but the required transposition scheme is so ex-
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tremely complicated and expensive that the reduction in the amplitude
of the reflected waves by improvement of the reflection coefficient at
these junctions is of considerable economic importance. The imped-
ances of the terminals and repeaters at the junctions at which reflec-
tions occur are chiefly determined by their filters, which are the ap-
paratus immediately facing the line. A detailed study of the relation-
ship between the actual input impedance of a filter and mismatches of
characteristic impedance which may occur at further junction points
in the circuit shows that by far the simplest method of obtaining a
low reflection coefficient at the line terminals is to produce a match of
characteristic impedances at all junction points of the filter system.
Fortunately speech currents beyond the transmitted band of the filters
carry so little energy that the reflection coefficient of the structure in
these ranges is of no importance. The technical problem therefore
reduces to the construction of a new type of filter section for use at
terminations, the new filter section having an image impedance within
the transmitted band which at one end matches that of the standard
sections forming the main body of the structure and at the other ap-
proximates a constant resistance, matching the terminating im-
pedances. Of course the new filter sections must also be so chosen that
they will not impair the transmission properties of the system.

This immediate problem has been solved. It still leaves unsettled,
however, the question as to whether we can devise a type of network
capable of correcting for reflection effects not only at these particular
junctions but also at any other impedance irregularity in the circuit.
Such a structure would transform one arbitrary impedance character-
istic into another preassigned characteristic without decreasing the
transmission efficiency of the circuit, much as the familiar attenuation
equalizer changes the attenuation characteristic of a circuit by a pre-
assigned amount without changing its impedance and without greatly
affecting its phase characteristic. The mathematical analysis under-
lying the sections which have been developed for filter impedance cor-
rection is easily extended to a much broader class of terminating im-
pedances. Judged from a purely formal standpoint, therefore, the
networks appear to be a long step forward in the development of such a
general impedance equalizing device. Unfortunately, it seems certain
from other considerations that much of the promise thus inherent in
the formal mathematical analysis may not be realized in practical
applications, but since the network has been thoroughly studied only
in its application to filters, its precise limitations are still uncertain.
In the discussion which follows the general method of impedance cor-
rection is first sketched briefly, and is succeeded by a detailed treat-
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ment of its application to filters. Some of the probable limitations of
the method in other applications are suggested near the end of this
paper.

The analysis used in impedance correction can also be applied to the
construction of networks having transmission properties somewhat
like those of the familiar wave filter. In contrast to the usual filter
theory, developed, after the analogy of wave propagation in contin-
uous media, from the conception of an infinite recurrent structure, how-
ever, it leads to networks which are not recurrent and are not divisible
into separate sections with matched image impedances.  Inits present
state of development the analysis is unquestionably much less powerful
than the established theory. Since it may be of interest as an example
showing at least the possibility of an alternative approach to filter de-
sign, however, it is discussed briefly at the conclusion of the paper.

GENERAL IMPEDANCE CORRECTING PROCESS

If no transmission requirements were imposed upon electrical
structures, a wide variety of networks might be used for impedance
correction, For example, we might make up deficiencies of impedance
or admittance by a simple two-terminal network in series or in shunt
with the circuit. In almost all circuits, however, we are interested in
securing minimum transmission loss, that is to say, maximum energy
in the receiving impedance, throughout the frequency bands containing
the transmitted signals. The energy which goes into a system term-
inated by a correcting network depends only upon generator and the
corrected impedance, both of which are specified by the conditions of
the problem. We can increase the energy delivered to the receiving
device, therefore, only by reducing the amount absorbed in the correct-
ing network. Obviously the best possible condition is found when the
correcting network is composed of pure reactances. Unless either the
resistance or the conductance of the circuit happens to be ideal, how-
ever, impedance correction cannot be obtained by a simple two-term-
inal reactive network. For this reason, the impedance correcting
structures which have been developed are four-terminal networks of
pure reactances. Control of the resistance or conductance component
is gained, not by the direct addition of resistance, but rather through the
use of the network as a sort of variable transformer, whose impedance
ratio changes as we go over the frequency range. In such a circuit the
insertion loss of the network is determined entirely by the ratio of the
energy drawn from the generator by the original and the corrected im-
pedance. Ideal dissipationless network elements are, of course, not
available in practice. Except for the possible influence of this factor,
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impedance correction, since it normally means an improvement in the
match between generator and load impedances, should result in a
slight increase of transmission efficiency.

Reciprocal Impedance Relations at Terminals of a Reactive Nelwork

Our restriction to networks of pure reactances allows us to make use
of a principle by means of which the impedances measured at the two
ends of the network under certain terminal conditions can be recipro-
cally related to one another. The theorem will be given here since it is
of frequent application in further discussion. Referring to Fig. 1, let
us assume that the impedance measured at terminals ¢d, with an im-
pedance Z; connected to terminals ab, is equal to Zs, as is shown in the
diagram. The theorem is concerned with the impedance Z looking into
terminals ab when Z;, the conjugate of Z,, is connected across ¢d. Let
us suppose that the generator e in Z; produces a current % in Z,. Then,
by the usual principle of reciprocity, the generator ¢ when inserted in
Z, will produce the current zin Z;. In the first case the power entering

2 —
the network is obviously 4—;; and the power flowing from it into Z; is
2
&R
(Ri+ R)* + (X1 + X)?
and #*R,. Since the network is non-dissipative the power entering the
network equals the power leaving it in both cases.

#2R;. In the second case these powers are

e2R _
(R + R+ (X1 + X)?

2R,

Upon dividing the two equations and simplifying we find:
(B — R+ (X;+ X)*=0
which can be true only if:
R=Rand X = — X,

In other words, Z is the conjugate of Z.. We can state this result in
the following words:

A network composed of pure reactances will have a given impedance,
Z1 at one pair of terminals when an impedance Zq is connected {o a second
sel of lerminals if, when the conjugate of Z1 is connected lo the first pair of
terminals, the impedance measured at the second pair of terminals is the
conjugate of Z,.
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This theorem can be applied immediately to the problem of filter
impedance correction discussed in the introduction. The networks re-
quired for this problem were defined there as sections which within the
transmitting band would have image impedances matching the line at
one end and matching the image impedance of the main body of the
filter at the other. If we represent the filter proper and the line by Z,
and Z, in Fig. 1, these image impedance requirements reduce to the

a c
- - Zz
Z) z— 722
e
b d
Fig. 1—Diagram to illustrate the reciprocal properties of impedance correcting
networks,

statement that the network must be so chosen that an impedance
match exists both at ab and at ed. Z, and Z, for this particular circuit
are however, pure resistances, and therefore equal to their conjugates,
within the required frequency range. The theorem shows that an
impedance match will be obtained at ¢d provided an impedance match
exists at ab, and vice versa.! If we please, therefore, we can consider
that our problem is that of obtaining a network which, when termin-
ated by a filter, has an actual impedance equal to a constant resistance.
On the other hand we can start with the resistance and attempt to
build up a network whose impedance matches that of the filter.
Both the first or ‘“‘direct’” and the second or “‘reverse’ methods of
constructing terminating networks for filters are considered in the
next section. With either procedure the resulting networks have both
required image impedances and can be used, when properly connected,
either at the line or the receiving end of the filter. The “correction”
of one impedance to match another and the construction of a network
having given image impedance characteristics are therefore inter-
changeable conceptions.

Separate Correction of Real and I'maginary Components of
Impedance or Admittance

The image impedance method of defining the properties of the term-
inating network is a convenient one when we are concerned with the
operation of the structure in the transmission system as a whole. The
methods used in designing the network can, however, be described

1 See also Feldtkeller's paper, ‘' Uber einige Endnetzwerke von Kettenleitern' in
the Elektrische Nachrichten-Technik, June 1927, for a very similar use of this property
of reactive networks.
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more simply if we reject the image impedance statement of the problem
in favor of its alternative. For the time being, therefore, we will as-
sume that we are attempting to design a reactive network having a
preassigned input impedance when terminated by a given load imped-
ance.

In accordance with a principle originally stated by O. J. Zobel,?
this problem of impedance correction can be simplified if we consider
separately the resistance and reactance of the corrected circuit. To
be more explicit, since a reactance in series with the circuit will change
its reactance without changing its resistance, it is simplest to consider
first the construction of a network which will produce the required
resistance characteristic. Of course the reactance characteristic
furnished by such a structure will not in general be ideal, but we may be
able to correct it to the proper value by the later addition of a series
reactive network. Quite obviously, it is equally easy to base the analy-
sis upon admittances and construct first a network which will give the
required conductance characteristic and make up any faults in its
susceptance characteristic by a final shunting branch.

This division of the network into two separate structures is, of
course, not a necessary one and in view of the extremely limited range
of reactance or susceptance characteristics which can be compensated
for by a final, physically realizable, two-terminal reactive network may
seem scarcely desirable. An alternative procedure in which this divi-
sion is not attempted is mentioned in the concluding section. The
reason for assuming separate correction of the real and imaginary com-
ponents of impedance and admittance in the present discussion is
simply one of convenience. The difficulties which might be antici-
pated in the design of the final reactive compensator do not appear in
filter impedance correcting problems, at least. On the other hand, the
division has the advantage that it makes each step simple and allows
us to meet fairly severe impedance requirements with a small number
of variables. As we shall see later the method has the further advan-
tage in its application to filters that it lends itself readily to the modifi-
cations necessary when a number of filters must operate together.

The Resistance or Conductance Controlling Network

Since the characteristics of two-terminal reactance networks are well
understood, the construction of the final reactive branch demands no

? See, for example, U. S. Patents No. 1,557,229 and 1,557,230 where he applies
it to ““x-terminated" filters, The method of this paper is in some respects merely
a generalization of that analysis. The relation of ‘““m-derived" sections and *'x-
terminations’’ to the filter terminations developed in this paper is indicated in the
following section. In this connection, the previous work of R. S. Hoyt on loaded
lines should also be mentioned. See this Journal, Vol. 3, p. 414, 1924,
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extensive discussion. The problem of designing a four-terminal re-
active network which will transform one arbitrary resistance or con-
ductance characteristic into another arbitrary characteristic must,
however, be treated with more respect. The configuration which has
been adopted for this purpose is shown in Fig. 2. The quantities of

REACTANGE
CONTROLLING
NETWORK RESISTANCE CONTROLLING NETWORK
5 ]
1[2-TERMINAL] | !
eem———LIREACTANCE lapXpf— ====
NETWORK -

— —-
CORRECTED! IMPEDANCE
IMPEDANCE TO BE

CORRECTED

1
|
|
!
!
1
I

Fig. 2—Generalized schematic of impedance correcting network.,

the general form ie;x are analytic representations of the impedances
of the series branches and admittances of the shunt branches. The
a's are constants whose choice determines the particular resistance
or conductance controlling properties of the structure, and x is a
function of frequency. Since the series impedances and shunt ad-
mittances are all proportional to x all of the series branches will
have a given physical configuration and all of the shunt branches will
have the inverse configuration. For example if the series branches
are inductances the shunt branches will be capacities, while x, of course,
will be proportional to frequency. By using other series arm configura-
tions we can obtain a considerable variety of networks. Each such
network, it will be noticed, is similar to a ‘“constant-k” filter in
physical configuration. The appropriate network in any particular
situation is that one which resembles a constant-% filter transmitting
the frequency range of interest.

The property of this network configuration which makes it partic-
ularly suitable as a resistance or conductance controlling device is the
fact that in most instances the modification it produces in the resistance
or conductance of the load can be expressed as a single polynomial.
To be more explicit, when the load impedance is of a certain mathemat-
ical type, which includes the impedances in which we are most inter-
ested, the resistance or conductance of the corrected structure is given
by a formula of the following sort.

F(x)

R(or G) T At A+ A+ - FAxr
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in which the A’s are constants involving the arbitrary quantities a;, as,
etc. which specify the network elements.

The quantity F(x) is usually either the resistance or conductance
component of the load impedance, and in any case is a quantity entirely
determined by that impedance. In order to secure the proper resist-
ance or conductance from the corrected structure, therefore, it is
merely necessary to choose such values of the constants Ag--- A,
that the polynomial satisfies the equation

Ao+ Axx + -+ Apxm = o=

with sufficient accuracy when R is given the desired value of the cor-
rected resistance or conductance. The problem of approximating a
given curve by a polynomial of given degree is a well known one in
mathematics and such general methods as expansions in power series
or Legendrian harmonics exist for its solution. We can, therefore,
consider that the choice of these constants presents no particular diffi-
culty. Even without the help of these general methods, however, the
problem is so simple that suitable approximations can be obtained by
cut-and-try methods.

These polynomial coefficients Aq +++ A, are merely intermediate
parameters which specify the values of the elements in the network
implicitly but do not give them directly. In order to determine the
relation between these coefficients and the actual element values it is
necessary to make a direct computation of the impedance of the net-
work in terms of the a's and sort out the various powers of x in the
resulting expression. Each of the quantities 4, -+ 4, is thereby
expressed as a function of the @¢’s. Our next step must then be to de-
termine values of the network elements by solving the set of simul-
taneous equations relating them to the numerical values of the poly-
nomial coefficients. In accordance with the procedure we have
adopted, the design is completed by the computation of the reactance
or the susceptance of the network, and its adjustment to the desired
value by the addition of a suitable final branch. The discussion of the
application of the method to filter impedances given in the next section
will illustrate the process in detail.

Proof of Properties of Ladder Type Resistance Correctors
As we observed in a previous paragraph the ratio of the load resist-
ance or conductance to the corrected resistance or conductance can be
expressed in this simple fashion as a polynomial in x only when the
load impedance belongs to a certain mathematical class. Appropriate
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load impedances are those whose real components can be written as
the square roots of rational functions® of x and whose imaginary com-
ponents are rational functions of x. We can make this conclusion
plausible by direct inspection. It is obvious that the general nature
of the mathematical expression for the impedance of the network can-
not change radically as we add successive branches. When we add a
series branch, however, the reactance is increased by a;x, while the
resistance is not altered. The functional form of the impedance then
will be unchanged if the reactance was originally an algebraic function
of x. But, since we must add shunt as well as series arms to the net-
work the functional forms must be symmetrical whether taken on an
impedance or admittance basis. By analogy, therefore, the suscept-
ance also must be a rational algebraic function. The susceptance B
is expressed in terms of R and X, the resistance and reactance, by
B=X/(R*+ X?), but X (and therefore X2) has already been fixed as a
rational algebraic function and R? must have a similar form if the
whole susceptance expression is to be such a function. This conclu-
sion, since it applies equally at any part of the network, must, of course,
be valid for the load impedance also.

This argument is sufficient to indicate what sort of a load impedance
might have the property for which we are looking—that of allowing
the change in resistance or conductance produced by the insertion of
the ladder network to be expressible as a simple polynomial. In order
to show definitely that this type of load impedance will have that
property it is simplest to begin by finding out whether the relation
holds when the network consists of a single branch. In accordance
with the previous discussion, the load impedance will be taken as

R G

where Fi(x), Fa(x), Gi(x), and G:(x) are polynomials in x. Upon
multiplying and dividing the resistance expression by vFu(x)C(x),
where C(x) is a new polynomial so chosen that when the product
Fy(x)C(x) is divided by G?*(x) the quotient is a polynomial, the load
impedance is transformed into

VAE) Bx) C ()
Fo(x) C(x)

.Gi(x) _ F(x)

G1 (x)
Tae - RECE)

Ga(w)

+ 1

F(x) is a new symbol, written for VF(x) Fa(x)C?*(x), and, as we shall

_?Including as special cases real components which are simply rational functions,
without the square root.
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proceed to prove, it is the common numerator of all of the resistance and
conductance expressions throughout the network.

Let us suppose now that the first branch, 7a;x, of the network is
added in series. The admittance after its addition is

1 F(x)
F(x) Gi(x) | . Fi(x) Gi(x) 2
@ TG o Fﬂ("‘)"”[ ()’*(Gz(x)“‘x) |
Fi) C) (G + o)

R B+ (S ae)|

— 1

Upon remembering the way in which C(x) was chosen we observe that
the expressions in the denominators of the conductance and susceptance
fraction and in the numerator of the susceptance fraction reduce to
polynomials.

So far we have been able to show that the impedance of the load and
the admittance of the network after one branch is added can be so
expressed that (1) their imaginary components are rational functions,
(2) the numerators of their real components are equal to F(x), and (3)
the denominators of their real components are polynomials. It is also
possible, however, to show that if these statements hold for the im-
pedance and admittance at any two consecutive junctions they will
hold also at the next following junction. Referring to Fig. 3, let us

- —_— O Ji.ﬂ.n+|x _ll 'la.n-|)( - -
Yn+|
S — .
Zn+2 lans2 X ( "”) (-—-H ) tanx
DI"IH Dn+|

Fig. 3—Impedance and admittance relations at # 4 1st branch of network.

suppose that the impedance after #» branches of the network have been
added is
Flx) | . Na(x)

D@ * ' D)

and that the admittance after # + 1 branches have been added is

F(x) iNﬂ+l(x) R
Dypa(x) Daya(x)

L =

Yn+l =
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We wish to show that the impedance after the addition of the n + 2ud
branch is
F(x) | V()

Lngs =
"D nt2(%) Dy ya(x)

The various N's and D’s, of course, represent polynomials. The
denominator of the imaginary component of Z, is accented, to indicate
that it is not necessarily equal to the denominator of the real com-
ponent. The denominators in the ¥, expression, however, have been
given the same designation, since they are equal in the expression we
have set up for the admittance at the terminals of the first network
branch. This fact is not essential in the proof which follows, but its
use somewhat simplifies the procedure. Direct mesh computation

gives
F(x)

] + n423? Dy + 2an40%

Zn+2 =
F*? N;
Dn+l l‘T_ + s

n+1 Dn—i—l

[Najyt + @GnyaxDayi]

- F* N
Dy l o+ ] + @28 Dny1 + 2anp0x

-D;l+l Dn+l

-1

Since a,4s is arbitrary, the resistance component will have the speci-
fied form only if

F? N1
Do i + 551
" Diyy o Diga
is a polynomial in x. If this condition is satisfied the reactance expres-
sion can obviously be put in the required form.
In order to examine the denominator of the resistance expression
more closely we state Nny, and Dyyy in terms of N,, D,', and D,.

Direct mesh computation, again, gives
F(x)

+ a,.+n D + 20,.+1.‘)CD N
D,

Yn-{-l: 2
D.| Ja+
A%

Na
[ £ 32 |7 .
11‘2 NZ AT" 1
D, [D?a + DnJ + aii1x* Dy + 2ap41xD, T

n

— 1

F‘-" N?

D" D;z] + an—i—lx D + 20u+1'\3Dn D,

" Du+1 = Dn I:
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and
N,
Nap I:a"Hx + F] Du
Do FT N2 Ny
a p [Hﬁ + 17;3] + a2*Dy + 2anprxDa 7

Substitution of these values for 1,1 and N, reduces the expression
for Znqe to
F(x)
Dn + a312%*Dajy + 200426 Natn

_ 1 Nn+1 + aﬂ+2an+1 .
D, + ai42x*Dyyy + 2n19¥Nnya

Zﬂ-l—‘Z =

We have, however, assumed that D, Dny, and Ny were poly-
nomials. The sums of the quantities constituting the numerator of
the imaginary component of Z,;» and the denominators of both com-
ponents are therefore also polynomials, and, consequently, Zais is
written in the specified form.

The rest of the proof follows the usual argument from mathematical
induction. In brief, we have established directly the fact that the
formula holds when the network has no branches, or only one branch.
Knowing that it holds for these two cases, we conclude from the above
reasoning that it holds when there are two branches. If it is valid for
one branch and two branches it must also be valid for three branches,
and so on. Therefore the formula holds generally.

It will be observed that we have considered the admittance, rather
than the impedance, when a series branch is added, and the impedance,
rather than the admittance, when a shunt branch is added. Quite
obviously the cases not considered are of littleinterest. If the analysis
is stated in terms of impedance a final series branch contributes nothing
to the resistance and can be considered as part of the reactance cor-
recting network, while an analysis based upon admittances would
similarly have no use for a final shunt branch except as a constituent
of the susceptance correcting network. The general formula does hold,
however, for these cases also. For example the addition of a series
branch simply changes one rational function, representing the reactance
at the terminals of the previous shunt branch into another rational
function. The fact that the impedance at the terminals of the shunt
branch falls into our general form is therefore sufficient to prove that
the impedance after the series branch has been added can be written
in this form also. This indicates, incidentally, that an alternative
form of the proof we have been considering, based upon the impedance
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and admittance relation at a single junction, can be developed. Using
the previous notation, the impedance Z, will be in the required form if
Zn41 is in that form, and not otherwise. Instead of assuming that the
impedance at one junction and the admittance at an adjacent junction
can be fitted into the formula, therefore, it is sufficient to assume that
both the impedance and admittance at a single junction satisfy the
formula in order to show that the impedance and admittance at the
next succeeding junction satisfy this formula also.

APPLICATION OF GENERAL ANALYSIS TO FILTER IMPEDANCE
CORRECTION

The reciprocal property of the impedances at the terminals of a
reactive network indicates two possible methods of applying a ladder
network of the sort we have been describing to the correction of wave
filter impedances. We can either terminate the network by the filter
impedance and adjust its parameters to match the line impedance, or
we can consider that the load impedance of the network is a constant
pure resistance, representing the line impedance, and attempt to pro-
duce a match at the filter terminals. These two methods of procedure
lead to distinct results, since in one case the reactance or susceptance
correcting branch adjoins the line, while in the other it adjoins the
filter. Both are, however, admissible under the general mathematical
specifications we have set up for the load impedance of the resistance
or conductance controlling network and both lead to reasonably
satisfactory impedance correction.

The fact that a constant pure resistance is an admissible load im-
pedance for the ladder network is easily established by inspection.
The rational function Gy(x)/Gs(x), representing the imaginary com-
ponent, reduces to zero, of course, while the rational function
Fy(x)/Fy(x), whose square root represents the real component becomes
a constant. A filter image impedance within transmission bands is
similarly a pure resistance. As a function of frequency it may be
defined as the geometric mean of the open and short-circuit impedances.
An open or short-circuit filter, whatever its configuration is, however,
simply a network of pure reactances. The open and short-circuit
impedances are therefore rational functions of frequency and the
image impedance they define falls within the scope of the mathematical
specification we have set up for the load impedance of the correcting
network.

Terminating Nelworks of the First T'ype

While both of these methods of approaching the problem lead to
satisfactory impedance correction, other considerations to be discussed



808 BELL SYSTEM TECHNICAL JOURNAL

later recommend that one in which the filter is taken to be the load
impedance for most designs. This approach will therefore be con-
sidered first and in greatest detail. We will, moreover, limit ourselves
to image impedances of the ‘‘constant-k” type. Practical filter
designs of course are usually composite structures containing several
types of sections. The image impedances at the junctions between
the sections are however, nearly always of the ‘‘constant-2"" type and
our restriction to image impedances belonging to this class does not,
therefore, seriously limit the field of application for the network.

Notation
The image impedance of a mid-series terminated ‘‘constant-k”
filter is usually written as

Zy

Zo Utz

that of a mid-shunt terminated filter as

ZIL
\/ + 422;;
where Zy; and Z.;. represent in each case the series and shunt impedances
of the “constant-"' filter, and Zy( = VZ1.Z2) is a constant which can
be chosen arbitrarily to fix the impedance level of the circuit.

We will find it convenient to represent the way in which the various
branches vary with frequency by a new quantity x, defined by the
relation

gzi = 1Zox..
In a low pass filter, for example, x = f/f., in a high-pass filter x = f./f,
and in a band-pass filter

S _In

p=dm T
Vi
f fe
Upon making use of the relation Z;Zy = Z,® the formulze for mid-
series and mid-shunt *‘constant-"' image impedances can be written as

ZoV1 — &% and Zo/1 — a4

This method of representing the image impedances suggests that

4 In terms of the usual filter notation this x = ¥ — Uy,
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the configuration of the resistance or conductance controlling network
be so chosen that the impedances of its series branches and the admit-
tances of its shunt branches are proportional to x. In other words
the series and shunt branches of the correcting network should be
similar physically to those of the “constant-k” filter. The complete
network is then that shown in Fig. 4. It is similar to that of Fig. 2

REACTANCE - 1 -
- — = — —CORRECTING, - m LEI..ZDX’—ﬂ o—|§z,k(=|.zox)
NETWORK I
ZQ Zo ——

—_—
CORRECTED FILTER LanpX tasx FILTER IMPEDANCE

IMPEDANCE I l TO BE CORRECTED
-——— - o o

Fig. 4—Generalized schematic of first or ““direct” type of filter terminations.

except that the explicit introduction of the factor Z, into the expres-
sions for the series and shunt branches reduces the a’s to constants of
proportionality which can be fixed, once for all, for all “constant-2"
filters. Following the analogy of ordinary filter structures it will be
assumed that the first branch of the network is in series when the filter
proper is mid-series terminated, and vice versa. It is then easily
shown that the preceding general formula for the resistance® of the
system reduces, both for mid-series and mid-shunt terminated filters,

to
Zn\‘l — x?

R= 14+ 4+ Aox* 4+ . . . Apx®™

when # is the number of branches in the network. It will be observed
that odd powers of x are missing,

The possibilities of manipulating this expression to secure desirable
resistance characteristics are obviously determined by the number, #,
of variable terms in the denominator of the expression. Since # is,
however, also equal to the number of branches of the resistance or
conductance controlling network, and therefore determines both the
cost of this network and the extent to which the resistance or conduct-
ance can be made to approximate a given curve, it offers a convenient
basis for differentiating between the various structures. The sim-
plest cases, and the only ones of practical importance in contemporary
filter design, are those for which » = 1, 2, or 3. They are illustrated
in Fig. 5 and will be taken up in order. Our first step will be the es-
tablishment of the algebraic relations between the element values
a; . . . apand the parameters 4, . . . A, foreach of these three cases.

& Assuming that the final branch, 1/ia,x is in shunt asin Fig. 4.  When the analysis

is stated in terms admittances the results are precisely similar, except for an obvious
change from Z, to 1/Z,.
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The analyses are stated in terms of conductance and susceptance, since
in this form they are most conveniently applied to the impedance
correction of systems of parallel filters, which constitute a large propor-
tion of practical cases. The formule and curves can, however, be
used directly in analyses stated in terms of impedance if we merely
replace conductance and susceptance by resistance and reactance and
write Zg in the numerator rather than in the denominator whenever it
APPROPRIATE

CONFIGURATIONS
OF SUSCEPTANCE

GENERAL CONFIGURATIONS OF TERMINATION ANNULLING NETWORKS
1
o L ZgX 0
1 [T1eo —_—
SUSCE P TANCE| FILTER
Anbf;u_trJ‘lﬁLch IMPEDANCE= FILTER
K
1° zoli-x2
L= 0 O
(n=1)
A
iﬂaZo" o
SUSCEPTANCE] Zo i
ANNULLING - IMPEDANCE = FILTER
NETWORK La, x Zo
Vi—-x2
o O
(n=2)
B
SUSCEPTANCE FIL ER
ANNULLING IMPEDANCE = FILTER
NETWORK '-iz“ | xg
(n=3)
C

Fig. 5—Configurations of 1, 2 and 3 branch terminations.

appears. After the relations betweena, . . . goand 4, . . . A, have
been determined we shall proceed to a discussion of methods of choos-
ing values of 4; . . . A, giving a suitable resistance or conductance
characteristic. The final steps are the computation of the element val-
ues of the network from these values of the polynomial coefficients,
the calculation of the resulting reactance or susceptance characteristic
and the design of a final branch giving the complete structure the
desired reactance or susceptance characteristic.
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Analytical Relations between Polynomial Coefficients and Element Values

Case I—n = 1.

The general analysis shows that the conductance of the system must
be expressible in the form
1 41 —«°

G=2;]1+A1x2‘

A direct mesh computation of the network of Fig. 5-a gives

1 V1 — &

C=Zi—U=a

From which, by comparison of coefficients,

Al = — (1 — ﬂlg)
or
a = v1 '+' A[.
The susceptance characteristic is given by
_ 1 (1354
B=- 71t a=

It can be annulled exactly by the reactance

X =1

1 —ad Zo 1—a? 2
a Zox + m—lx=( 24, )Zlk+;122k
where Z,; and Zg; are, as before, the series and shunt impedances of the
““constant-£" filter.

If the conductance and susceptance controlling portions of the
network are combined the resulting structure is identical with a half
section of the conventional ““m-derived” type. We have merely to
replace a; by m. Single branch conductance controlling networks
therefore contribute nothing new to filter impedance correction.
Multiple branch networks, which can be considered, if one pleases, as
natural extensions of the ‘‘m-derived” scheme, must be looked
to for the solution of impedance problems for which standard sections
are inadequate.

Case I[I—n = 2.

A direct computation of the network shown in Fig. 5-b gives

1 vl — A
T Zy 1 4+ (@ — 2a1a0)x2 + a(a — 1)x*’

G
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whence
A, = a® — 2a,0.,
Ay = 022(0'12 - 1).

_ 1V +4+42
V(1 £ V1 + 4, + 42)? — 4,

[

as = V(1 £ 1 + 4, + Aj)? — A,

The upper of the alternative signs usually gives the better reactance
characteristic.
The susceptance of this network is

(1—@)—U—mﬂ#
as .
T+ At + At

B = — ax

Case III—x = 3

The general conductance expression is

1 V1 — a2
Zo 1 + .A1174$2 + Azx“ + Aax“’

G =
where
A], = (112 + 2&1@3 + ﬂaz - 2&2&3 - 1,
As = aa? + 20103 — 2a,%a:a3 — 2a10004%,

A3 = a’olas? — alal

These equations can be reduced to

a1 + a3 — ayasas = = V1 + 4, + 4; + 4,
a; + a3 = Vi + A; + 2a.as,

a:1a203 = VA3 + alad,
from which

VI + Ay + 2asas — VA3 + atag = = V1 + 4, + 4: + 4.

Upon examining the form of the radicals on the left we see that asas
is determined by the intersection of a parabola and a hyperbola.
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Once asa; are known the individual values of a;, az, and a3 can be found
directly from the previous equations. The two radicals on the left side
of the equation must be taken as positive in order to secure positive
elements, which is the same as saying that the two conic sections
must intersect in the first quadrant. The square root on the right
hand side may be taken either as positive or negative, the susceptance
characteristic obtained with the negative sign being usually preferable.

It is also possible to eliminate two of the a's directly, obtaining the
equation

[A:e2 — 44945 — 4A45la* + 84, \/1 + Ay 4+ Az + Asad
— [242% + 24,45 — 441 45]a,2 — 84, Vi+ 4+ 4+ Asan
' + [(dz + 435)% + 445] = 0,

which can be solved by standard methods. The former method is
shorter, however.
The susceptance is given by

Bn + .B].’)C2 + ngq'

B= -2 i Ad+ Ao + A’

where
By = a; 4+ a; — a,,

B] = Qa2 + 03a22 — 01202 - 2&1&2&3,

Bz = 012022ﬂ3 - 0222(]',3.

Methods of Choosing Power Series Coefficients

Having developed the relations between the power series coefficients
and the network elements we are now ready to consider methods of
choosing the parameters to fit given impedance requirements. Upon
rewriting our equation for the real component of the network admit-
tance in the form

V1 — &2

4 PR 2n —
1 + A;x’ + Agx + Anx ZDG

we see that the problem reduces to the approximation of the ratio of
Zi\il — x? to the desired conductance G, both of which are known,
0

by means of the polynomial 1+ Awx®+ ... + 4.*™. In most
practical designs the desired filter impedance will be a constant re-
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sistance. It is then convenient to rewrite the equation as

%(1 + A 4+ - Aaat) = A1 — o
where R, denotes the desired constant resistance. The problem thus
becomes that of simulating V1 — &% in the range 0 < x < 1 by means
of a polynomial in 4* of degree #, and if we assume that the parameter
Z, can be chosen arbitrarily the polynomial is completely unrestricted,
since the constant term as well as the coefficients of the various powers
of x can be taken at pleasure.

There are several ways of proceeding from this point. The simplest
makes use of the binomial theorem. Upon expanding V1 — &% with
the help of this theorem we reach the relation

ZU 2 2n) — _1-2__-4___-6...
E(l +A4;22+ - A =1 7% 3" 6~

Equating corresponding powers of x gives

Zl] = -Rﬂ'
Al = - 1/2,
Ay = — 1/8,

A, = — 1/16,

Using # branches in the conductance controlling network it is possible
to take the first # terms of the binomial expansion into account. The
elements corresponding to these values of 41, 4, etc. can of course be
found by the equations derived previously. The resultsare summarized
in the following table.

TABLE 1
Number {
of A A A, a1 ao as
Branches
1 — 0.5000 0 0 0.7071 0 0
2 — 0.5000 | — 0.1250 0 0.97679 1.6507 0
3 — 0.5000 | — 0.1250 | — 0.0625 1.00308 1.96227 1.62715

The conductance characteristics corresponding to these choices of
parameters are shown on Fig. 6. The curve n = 0, which corresponds
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to the “constant-k” type image impedance, has also been added for
comparison. It will be seen from the curves that these values of
the coefficients A; . .. A, give very good approximations for small
values of x, but inferior ones for values near unity. It is preferable in
most designs to sacrifice something at the lower end of the characteristic
in order to secure better performance in the higher range.

1.2

2

(x

N
A\

0.2

RESISTANCE (K Zlo) OR CONDUCTANCE

0 o.l 02 03 0.4 05 06 07 o8 0.9 10
¥
Fig. 6—Resistance and conductance characteristics secured from the binomial
expansion,

The advantage of an approximation distributed over the band is
gained by an expansion in terms of Legendrian harmonics. These
functions are discussed in standard reference books, such as Byerly
“Fourier Series and Spherical Harmonics” or Whittaker and Wat-
son “Modern Analysis.” It is important to mention here, how-
ever, that they are simply polynomials. Any polynomial such as

I%E (1 + A+ . .. A,x*) can be broken up into a linear combina-
0

tion of even ordered harmonics, and, conversely, any linear com-
bination of even ordered harmonics can be reduced to the form

%(1 + A+ ... A, It is therefore easy to convert an ex-
0

pansion in terms of even harmonics into a power series of the sort
with which we are directly concerned. The property of these functions
of most interest here is the fact that, for an expansion of any given
degree, they give the best ‘‘least squares’ approximation to the
desired function. In the range between x = 0 and x = 1, therefore,
the approximation they furnish is much better for most purposes than
that given by the binomial theorem. The expansion of V1 — &% in
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terms of Legendrian harmonics is given on p. 184 of Byerly as

2= 1m0 (1) (1) o o(2) ()
() () e+

Upon replacing the harmonics by their values in terms of x,—

Pn(x) = 1,
Pyx) = 5 (3t — 1),

Pu(x) = -é-(SSx“ — 30x + 3),
Polx) = 1i6 (231x* — 315%* + 10532 — 3),

and sorting out the various powers of x, values of the coefhcients
A, ... A, are secured, and from these the actual element values are
found by means of formule developed previously. The following
table summarizes the results

TABLE 1II

Number R

of = K, K, K, K
Branches Zo

0 1.273 0.7855 0 0 0

1 0.9699 0.7855 — 0.4909 0 0

2 1.011 0.7855 — 0.4909 | — 0.1105 0

3 0.9948 0.7855 — 0.4909 | — 0.1105 |— 0.04986
Number

of Al A! AB a, ag as
Branches

0 0 0 0 0 0 0

1 —0.7142 0 0 0.5546 0 0

2 — 0.3236 | — 0.4884 0 0.8986 1.593 0

3 — 0.0461 | 4 0.4958 | — .7162 0.9597 1.924 1.565

The quantities K, . . . K3 are the numerical coefficients of the cor-

responding harmonics. It will be observed that with this method of
determining the network parameters Z, is not quite equal to Ro.
When the analysis is based upon impedances instead of admittances
the ratio Ro/Z, should be replaced by Zo/Ry,. The conductance char-
acteristics secured by this process are shown in Fig. 7.
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It is, of course, always possible to dispense with these general
methods entirely and make an empirical determination of the design
parameters. The particular requirements of specific design projects
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Fig. 7—Resistance and conductance characteristics secured from expansion in terms
of Legendrian harmonics.

are thereby given the fullest recognition.

constructing the sections described in the accompanying paper.

This method was used in

Even

when the empirical method is adopted, however, the networks de-
termined by the general expansions, particularly that in terms of
Legendrian harmonics, should be valuable as starting points.
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In most designs it is desirable to make the maximum departure from
the ideal characteristic within the operating range as small as possible.
A method of doing this for the 2-branch networks has been developed.
The method assumes that the Z; of the filter has been taken equal to
the terminating impedance, which assures a correct conductance at
the point x = 0. The manipulation of the parameters A4; and A4,
allows us to secure the desired value of conductance at two additional
points. The result is a two looped characteristic, similar, if we make
allowance for the difference in the assumptions regarding Z,, to that
already determined for this network by means of the Legendrian
expansion. The requirement that the maximum departure from the
ideal within the operating range be a minimum is equivalent to saying
that the amplitudes of the downward and upward loops must be equal.
It can be shown that a 2-branch conductance network will satisfy this
condition if

27
T A, _
14+ 4,4+ 4,

In view of the relations which have been developed between 4,, 4.,

(A2 — 44,)".

18
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Fig. 8—Design chart for 2-branch termination.
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and @, @2 this condition can also be written in the form
27 2y — 2 2 2 2
E (1 - !‘11) = a9 [4(1 — 0132) + (i) (1 -_ G;az):l .

A second condition upon these quantities is found by specifying the
range within which the impedance is to remain as flat as possible.
The results of computations to determine this relationship are given
in Fig. 8. xp in this diagram signifies the highest value of x in the
operating range. Fig. 8 also gives the maximum departure of the
conductance characteristic from its ideal value as a function of .
Numerical data taken from these curves should of course be confirmed
by the equations given herewith before they are used to specify element
values.

Susceptance Correcting Networks $

Once the conductance controlling portion of the network has been
determined by one or another of these methods our general procedure
calls for the computation of the susceptance characteristic it furnishes
and the design of a final shunting reactance network which will annul
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Fig. 9—Reactance and susceptance characteristics secured from binomial expansion.

& This section gives only a general description of the characteristics required of the
susceptance correcting networks and the configurations which have been found
appropriate for them. The design of these networks may be conveniently approached
by means of the formulz contained in R. M. Foster’s article ** A Reactance Theorem,”
in the Oct. 1924 issue of this Journal.
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this susceptance to a suitable approximation. Fortunately the
characteristics required of this network are of a type which can readily
be obtained with physically realizable elements. The curves of Figs.
9 and 10 represent the susceptance characteristics required for the

L /
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Fig. 10—Reactance and susceptance characteristics secured from expansion in terms
of Legendrian harmonics.

Legendrian and binomial expansion networks. Empirically deter-
mined networks give very similar results. The general configuration
of appropriate susceptance correcting networks can be determined
from an inspection of these curves. For example, if we assume that

il

a low pass filter is in question, which means that the variable “x"



A METHOD OF IMPEDANCE CORRECTION 821

is proportional to frequency, the desired susceptance curves will be
recognized as being approximately those which would be obtained
from tuned circuits resonating slightly beyond the cutoff. Since a
tuned circuit can be considered as being a series combination of the
series and shunt impedance of the ‘‘constant-k” filter, any such
correcting network designed for a low-pass filter can be adapted to
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Fig. 11—Susceptance correction of a 3-branch termination.
I—Desired susceptance.
I1—Susceptance actually obtained.
another type of ‘‘constant-k’’ structure by replacing inductances and
capacities by the homologous impedances of the other filter.

This simple combination of series and shunt impedances is, as we
have previously seen, capable of giving exact susceptance correction
when the conductance controlling network contains only one branch,
but it is not, in general, sufficient for 2 and 3 branch networks. Indeed,
no physically realizable reactive network will cancel the susceptance
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furnished by these more complicated structures exactly. Close
approximations however can be obtained by modifying the “tuned
circuit’' characteristic slightly through the introduction of extra
elements. Suitable configurations for 2 and 3 branch networks have
already been given in Fig. 5. They should furnish susceptance
characteristics at least as good as the corresponding conductance
characteristics. An example of the susceptance correction of a three
branch network, using the configuration of Fig. 5-c, is shown in Fig. 11.
Curve I represents the ideal susceptance characteristic, Curve II that
actually obtained.

Impedance Correction of Paralleled Filters

An interesting modification of the process of susceptance correction
occurs when a number of filters are to be connected in parallel. Since
the impedance of an attenuating filter is almost a pure reactance the
conductance component of a system of parallel filters at a given fre-
quency is furnished almost entirely by the filter in whose transmission
band that frequency lies. If the system as a whole is to have the
correct conductance throughout each transmission band, therefore,
every filter must be given the conductance controlling network which
would be appropriate if it were operating alone. While the process of
conductance correction is thus exactly the same for multipled and
individual filters, the process of susceptance correction of paralleled
filters must be modified somewhat to take account of the susceptance
component furnished by the attenuating filters. A single susceptance
network will serve for the whole system. We have merely to compute
the susceptance characteristics furnished by the various filters termin-
ated in their conductance controlling networks and annul them through-
out every transmission band by a two terminal network in parallel with
the system as a whole. An example of the application of the method
to a pair of parallel complementary filters having 2 branch conductance
controlling networks is given by Fig. 12. Curve I in this diagram
represents the susceptance of the transmitting filter, Curves II the
susceptance of the attenuating filter for several different choices of its
cutoff frequency, Curves III the susceptances of the corresponding
auxiliary networks, and Curves IV the net result. A series combina-
tion of the series and shunt impedances of either filter” resonating
at the geometric mean of the cutoff frequencies was chosen for the

T Since the filters are complementary the series impedance of one is similar to
the shunt impedance of the other, and vice versa. By choosing the resonance
frequency of the auxiliary network symmetrically with respect to the two filters,

as we have done, all of the susceptance relations become symmetrical, and the
network functions as well for one filter as it does for the other.
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auxiliary network. By using two resonant arms with closely adjacent
resonance frequencies still better susceptance correction could have
been secured.

Filters which must operate in parallel are usually given x-termina-
tions. Since an x-termination can be thought of as being a one element
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Fig. 12—Susceptance relations at the line terminals of a pajr of parallel complementary
filters having 2-branch conductance controlling networks.

conductance controlling network the method we are discussing can be
applied here also. It is interesting to note that the introduction of an
auxiliary susceptance controlling network considerably improves the
performance even of this well known circuit. The susceptance rela-
tions at the line terminals of a pair of parallel complementary x-term-
inated filters are shown in Fig. 13, the arrangement of the curves being
similar to that of Fig. 12. The improvement can be estimated from
the magnitude of the auxiliary susceptance.
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The auxiliary network improves the susceptance of parallel band
pass filters even more than it does that of complementary filters.
Curve I of Fig. 14 represents the susceptance of a typical uncorrected
set of band pass filters. The first step in the improvement of this
characteristic is due to Mr. R. H. Mills, who suggested that networks
whose impedances resemble that of filters above and below the actual
set of bands be added to the system. This reduces the susceptance
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Fig. 13—Susceptance relations at the line terminals of a pair of parallel complementary
x-terminated filters.

to the level shown by Curve II. Curve III gives the completely
corrected characteristic. The auxiliary susceptance correcting net-
work consists of a number of tuned circuits in parallel, one resonating
between each pair of successive bands, together with one resonating
above the topmost band and one resonating below the lowest band.
The insertion of the auxiliary network has the further advantage
that it produces peaks of attenuation near the cutoffs of the filters,
thus enhancing their selectivity.
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Fig. 14—Susceptance correction of a set of parallel x-terminated band-pass filters.

I—Uncorrected susceptance. . .
II—Susceptance after the addition of a simple auxiliary network.
III—Susceptance after the addition of a more elaborate auxiliary network.

Reverse Method of Designing Terminating Sections

Hitherto we have assumed that the load impedance of the terminat-
ing network was the filter image impedance, and our procedure has
consisted essentially in determining an adjustment of the network
parameters which would make its input impedance a constant pure
resistance. As we have already seen, however, it is equally legitimate
to assume that the network is terminated in the line resistance, and
determine parameter values which will produce a match between its
impedance and that of the filter. This assumption leads to the circuit
arrangement shown in Fig. 135.

Upon examining what happens to the general expression for the
resistance of the network when the load impedance reduces to the
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constant pure resistance, Ry, we easily find that it turns out to be

- Ry
_1+A1x2+A2x“+ PR +A,.x2""

where 7 is the number of branches in the network. Odd powers of
¥ are missing, just as they were when the network was terminated in a
filter impedance.

REACTANCE N
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R

Fig. 15—Generalized schematic of second or ‘‘reverse” type of filter terminations,

Qur problem consists in matching this expression to the filter
impedance, Z;W1 — 4% Upon assuming that Ry = Z,, for simplicity,
we see that it reduces to the selection of valuesof 4; . . . A4, which will
secure approximate satisfaction of the equation

1
V1 — a2

Two empirical 8 choices of these parameters have been made, one

1+A4Ax+ ... + 4=

8 Qur previous methods of approximation, in terms of Taylor’s series and Legen-
drian harmonics, are of course available here also. In addition, if we rewrite the
expression as

NT=F2 (1 + 4w o Auat) = 1

the left hand side appears as a linear combination of the associated Legendrian
functions P,’(x), Py'(x), ..., defined by the general formula

Pu(x) = VI = x""%Pﬂ(x),

where P,(x) is the usual Legendrian function. The problem can therefore be con-
sidered as that of approximating unity by a series of the associated functions. These
methods of approach differ chiefly in the relative weights which they ascribe to various
portions of the frequency band. Judged by this criterion neither of the first two
methods is very satisfactory for practical applications. The Taylor's series expan-
sion, of course, is best in the neighborhood of x = 0. The “least squares’’ property
of the ordinary Legendrian functions, on the other hand, tends to produce rough
equality in the numerical values of the departures from the desired function in
various portions of the frequency band. From the engineering standpoint, however,
it is the percentage departure from the desired impedance, and not the numerical
departure, which is of interest. This type of approximation therefore leads to a

relative over-emphasis of the region near x = 1, where the desired function 1/4/1 — «*
is large. The approach by means of the associated functions, however, avoids this
objection, since the approximated function is in this case a constant, and leads to
characteristics substantially as good as those obtained by means of the empirically
determined parameters discussed in the text.
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when the network contained two branches, and the other when it
contained three. In both instances the appropriate reactance or
susceptance annulling networks were found to be simple arms, similar
to the series or shunt branches of the remainder of the termination in
physical configuration. The complete networks are shown in Figs. 16
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Fig. 19—Impedance characteristic secured from the network of Fig. 17.

and 17, where the final branches, Zy/asx in Fig. 16, and 7a4Zx in Fig. 17
are the susceptance or reactance annulling networks. The values of
the various parameters are given in the following table.

TABLE III
n Ay ’ As Ay ‘ 0 ‘ a» 1 as | ay
2 =+ 0.0505 | + 1.6508 0 0.7973 1.6186 0.904 0
3 + 0.9114 | — 1.8488 | 4+ 3.2823 | 0.6733 1.466 1.835 0.925
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If a perfect match were secured at the filter terminals then, by the
reciprocity principle, a perfect match should be secured at the line
terminals also. In order to evaluate the performance of the networks,
therefore, the impedances they present to the line were computed.
The results are shown in Figs. 18 and 19.

Comparison of Direct and Reverse Networks

At first glance the curves of Figs. 18 and 19 seem to show that while
networks of the reverse type produce a good impedance match over a
moderate fraction of band they will be much less successful than the
structures previously described at frequencies very near the cutoff.
This apparent advantage in favor of the networks first described is
discounted considerably however by the economy of elements resulting
from the relative simplicity of the reactance or susceptance controlling
networks used with terminations of the second type. If we adopt as
our standard in comparing the two types of networks the total number
of elements each requires, rather than the number of branches they
contain, the advantage of networks of the first type becomes much
less impressive, if it does not actually disappear. More important
considerations recommending the first type of terminations in prefer-
ence to the second for most practical designs appear to be the greater
ease with which they can be designed to meet a given reflection coefficient
requirement, resulting from the relatively smaller number of branches
they contain, the greater ease with which they can be adapted to
filters which must operate in parallel, and the fact that the attenuation
they contribute to the total filter suppression is usually more useful
than that furnished by terminations of the second type.

Under certain circumstances, however, the second type of terminat-
ing sections have a definite advantage over the others. When a
filter operates in conjunction with a modulating device a high modulator
efficiency with low distortion demands that the impedance of the filter
to the untransmitted side band be low (or high) and nearly constant.
In spite of their poor characteristics within the transmitting band it
has hitherto been necessary to use mid-shunt image impedance termina-
tions of the ‘' constant-k"" type in these circuits. Impedance correcting
sections of the first type are not suitable for this service because the
complicated susceptance and reactance annulling networks at their
line terminals produce sharp changes in reactance in the attenuating
region. The outermost branch of terminations of the second type,
however, is of simple configuration and if we choose it to resemble the
final branch of a mid-shunt terminated “constant-k" type filter, as
has been done in the sections shown in Figs. 16 and 17, we will secure



830 BELL SYSTEM TECHNICAL JOURNAL

an impedance characteristic beyond the band almost as good as that
of the “constant-k£” filter. Within the transmitting band, of course,
its impedance is much better than that of the normal filter section.

Attenuation Characleristics of Terminating Sections

In the practical application of either type of terminating section
some others of their characteristics, such as their transmitting efficiency
and the effect produced upon them by parasitic dissipation of energy
in the network elements, are also of importance. The transmission
characteristics of the networks can be determined roughly by com-
paring them with standard filter sections. Let us consider, for exam-
ple, the two branch termination shown in Fig. 20. If we neglect for
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Fig. 20—Figure illustrating approximate transmission characteristics of 2-branch
terminations.

the moment the third element of the susceptance correcting network,
the remainder of the structure can be divided, in the manner indicated
by the broken lines, into two portions, one of which resembles half of
a “‘constant-k'' section and the other half of an ‘“m-derived’’ section
in physical configuration. The transmission characteristic of the
actual network is substantially similar to that which would be furn-
ished by standard filter sections of these types. The mere fact that
the network functions as an impedance corrector is, of course, sufficient
to show that it will transmit efficiently frequencies within the nominal
transmission band of the filter. Beyond the transmission band the
attenuation characteristic would be almost exactly coincident with
that of the suggested filter equivalent if it were not for the extra element
in the final shunt branch. The extra element produces an anti-
resonance in this arm somewhat beyond the resonance and near the
anti-resonance point the attenuation is somewhat less than that which
would be secured from ordinary filter sections. On the other hand the
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extra element considerably increases the admittance of the final shunt
arm, and therefore the attenuation of the network, at frequencies
remote from the cutoff. In spite of these modifications the analogy
to standard sections is a fairly trustworthy guide to the attenuation
of the networks. Several examples are given in the accompanying
paper.

Since the ideal pure reactances contemplated by the theory are not
physically available these conclusions must be modified somewhat in
practical designs. As we might expect, however, unavoidable dis-
sipation of energy in the network elements will alter the transmission
characteristic of the correcting device about as it would that of an
ordinary filter. In the attenuating range the effect can be neglected.
In the nominal transmission band absorption of energy in the termina-
tion will reduce the transmitting efficiency of the circuit somewhat,
but the loss in efficiency is no more serious than it would be in standard
filter sections having the same general configuration.

Parasitic resistances in the network elements may of course affect
the impedance as well as the transmission properties of the circuit.
Since the structure is used primarily because of the impedance char-
acteristic it furnishes, possible changes in impedance, caused by varia-
tions in the phase angles of the network elements, are of particular
interest. Changes in impedance produced by dissipation of energy
in the correcting networks, are easily estimated when the complete
circuit with whose impedance we are concerned can be considered as a
network of ordinary resistances, inductances and capacities and when
dissipation affects the phase angles of all reactive elements equally.
It can be shown that in such a network the change produced by dissipa-
tion in the resistance of the structure is proportional, to a first approxi-
mation, to the derivative of its reactance characteristic with respect
to frequency, and that conversely the change in the reactance character-
istic is proportional to the frequency derivative of the resistance
characteristic. The explicit formule are:

AR = fd‘%f,
AX = —fd%,

where f is frequency and d the dissipation constant (defined as ratio of
resistance to reactance) for each reactive element.

A filter, with its terminating sections and load resistance, is a net-
work of resistances inductances and capacities to which the theorem
applies. It seldom happens of course, that all of the reactive elements
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of the structure actually have the same dissipation constant. It is
usually sufficient, however, to assume that “d"’ in the above formule
is the average of the dissipation constants for coils and condensers.
When well designed impedance correcting networks are used the react-
ance and resistance characteristics of the structure will be approxi-
mately constant over the operating range. The derivatives occurring
in the above formule will consequently reflect only the presence of
slight ripples in these characteristics about their mean values. The
slopes of these ripples will usually be quite small. We can therefore
conclude that moderate amounts of dissipation will have no appreciable
effect upon the impedance of a properly terminated filter. The chief
exceptions to this rule occur in low pass filters, where, at low frequencies
the assumption that the dissipation constant is small is no longer
satisfied.

In attempting to extend this principle to broader problems in
impedance correction it is, of course, necessary to bear in mind that
the analysis holds only for networks of resistances, inductances and
capacities. We cannot expect the same results when the load im-
pedance of the circuit has some arbitrary variation with frequency.
For example, if we take the load impedance as the image impedance of
a dissipationless ‘‘constant-k"" filter and assume that parasitic re-
sistances occur only in the termination, we will find that dissipation
does change the impedance of the circuit. The circuit impedance
will be insensitive to dissipation only when we include the complete
structure, and not merely the terminations, in our analysis.

MoRE GENERAL PrROBLEMS OF IMPEDANCE CORRECTION

This general method of impedance correction having worked with
reasonable success in its application to ‘‘constant-k’’ wave filter
impedances, it is natural to inquire whether it can be applied to other
problems with equal ease. Further possibilities for example might
include the correction of other types of filter impedances, or the cor-
rection over extremely wide frequency bands for the effects of leakage
inductance and finite mutual inductance in transformers, or the reduc-
tion of actual transmission line impedances to constant resistances.
All of these possible applications assume that the impedance correcting
device is a 4-terminal network, transmitting useful signal energy to its
load impedance. When terminated by such an element as a simple
resistance, however, it might also be used as a 2-terminal network,
forming one branch of a complete system. By appropriate adjustment
of the impedance controlling parameters the network could, theore-
tically at least, be given a wide range of impedance characteristics.
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We might, for example, use it to approximate a pure resistance varying
in an arbitrary manner with frequency, which would be a valuable
impedance element in certain circumstances.

None of these possibilities has been investigated in detail, and
naturally the measure of success which can be achieved with any one
of them will depend largely upon the precise conditions of the problem.
The mathematical form we have specified for the load impedance of
the network is so broad however that if we were to consider only this
aspect of the situation we might conclude that the scope of the structure
is well nigh universal. For example, the impedance of any finite
network of resistances, inductances, and capacities can be written in
the appropriate mathematical form. Even when the load impedance
is not described in the required manner, either because it is empirically
determined or because it has the wrong theoretical formula, the type of
algebraic expression we have been considering is so general that it can
always be matched approximately.

Unfortunately, the range of application promised by this rather
superficial mathematical discussion may be severely restricted by
other considerations. In the general case, for instance, the number of
terms in the denominator of the resistance expression will be greater
than the number of branches in the correcting network and it will not
be possible to choose them all arbitrarily. Moreover, even when the
correct number of conditions have been imposed upon the power
series coefficients we have no assurance that the resulting system of
simultaneous equations between coefficients and element values can
be solved, or that the solutions, if obtained, will always correspond to
physically realizable elements. Finally, we may observe that although
no difficulty was experienced in the reactance or susceptance correction
of filters, it seems probable that, in view of the limited range of char-
acteristics which can be simulated by physically realizable reactive
structures, a straightforward application of the general method of
resistance correction will often leave us with a reactive characteristic
which cannot be corrected.

These difficulties may occasionally be overcome by slight modifica-
tions in the design process. Among other possibilities for example, we
can adjust the lowest powers both in the denominator of the resistance
expression and numerator of the reactance expression? to desirable
values, obtain an approximate value for the effect of higher powers in
both expressions by a trial computation and readjust the coefficients
of the lower powers to take account of these previously neglected terms.

9 Since the denominator of the reactance is equal to that of the resistance, whose
value is prescribed by the requirements, the reactance expression can be determined
completely from its numerator alone.
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Difficulties appearing in a direct application of the impedance cor-
recting process may also be avoided if we adopt the reverse method of
impedance correction suggested by the theorem on reciprocal im-
pedance relationships. The method has already been applied to the
construction of alternative filter impedance correcting sections.
Similar alternative configurations can be built up in any impedance
correcting problem if we consider that the structure is terminated by
the conjugate of the desired impedance and adjust its parameters to
produce the conjugate of the given impedance. Since the desired
impedance will in general be a relatively simple function of frequency,
this alternative procedure at least avoids analytical complexities. In
spite of these possibilities however it seems probable that the method
will fail in many situations. It seems best adapted to such problems
as that of filter impedance correction, where a transformation must be
made from one fairly simple characteristic to another simple character-
istic. An attempt to apply it to more difficult problems should result,
at best, in very complicated networks.

TRANSMISSION PROPERTIES OF IMPEDANCE CORRECTING NETWORKS

The close relationship between the impedance correcting properties
of our networks and their transmission characteristics has been mani-
fest from time to time in the previous discussion. The networks used
at filter terminations, for example, transmitted freely within the range
in which they functioned satisfactorily as impedance correctors but
attenuated other frequencies. That this will be true in general is
easily seen by inspection, Within the range in which a desired im-
pedance characteristic is obtained, of course, our previous argument
from the principle of conservation of energy is alone sufficient to show
that the networks transmit with the maximum efficiency compatible
with the impedance requirements imposed upon the circuit. On the
other hand, it is evident from the filter-like configuration of the net-
works that at frequencies remote from the operating range of the
networks, where the parameter "‘x’’ becomes large, the structures will
ordinarily introduce attenuation. From the impedance standpoint
this means merely that for sufficiently large values of x the polynomial
approximations upon which the analysis is based no longer hold, and
the resulting mismatch between the generator and network im-
pedances diminishes the amount of power which can enter the struc-
ture.

When the impedance correcting analysis is stated in a slightly
modified form, whose possibilities have not as yet been completely
investigated, the impedance and transmission characteristics of the
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circuit are still more firmly related. Thus for example the attenuation
of the structure beyond its operating range results chiefly from the
readily computed departure of the resistance or conductance char-
acteristic of the network from that of the generator. It is also pro-
duced, in part, however, by the failure of the reactance or susceptance
correcting network to annul in this range the imaginary component
furnished by the resistance or inductance controlling network and the
effect of this factor is less easy to determine. In the modified analysis
it is often possible to do away with the distinction between the two
types of networks. The complete insertion loss characteristic is then
embodied in a single polynomial expression. In the modified form,
moreover, the analysis may often be used to determine the phase as
well as the attenuation of the circuit.

Granted these results, it is but a short step to the conclusion that
the impedance correcting analysis offers a possible approach to the
design of filters. While it is usually true that the networks will
attenuate frequencies beyond the region in which impedance require-
ments have been set, the amount of the mismatch which produces
this attenuation, since it depends upon the impedance correcting
parameters, is still more or less under our control. By suitable
adjustments of the correcting network, therefore, we can design a
structure to meet attenuation as well as impedance requirements. A
particularly interesting situation occurs when the load impedance is a
constant pure resistance.!* As we have already seen, a load impedance
of this type satisfies our mathematical specification and it can therefore
be used with a ladder network. Since a perfect impedance match
already exists in the circuit an inserted network can be called an
impedance correcting device only by courtesy. Unless the network
contains so many branches that the mathematical complexity of the
problem is overwhelming, however, it is possible to so manipulate the
impedance correcting parameters that the network impedance matches
the generator impedance approximately over a certain frequency band
but is very poor outside this range. It follows from our previous
discussion that the network will transmit frequencies lying within this
band efficiently, but will attenuate other frequencies. Networks
designed in accordance with this method therefore function as filters.
They differ from conventional filters in several respects, however.
For example they are non-recurrent, they cannot be divided into
discrete sections with matched image impedances, and they do not
possess definite cutoffs.

10 This circuit arrangement was first in_vestigated by E. L. Norton and W. R,
Bennett, who developed a complete analysis for a number of particular cases.



