Extensions to the Theory and Design of
Electric Wave-Filters

By OTTO J. ZOBEL

The problem of terminal wave-filter impedance characteristics is con-
sidered in this paper, in particular that of obtaining an approximately con-
stant wave-filter impedance in the transmitting bands of a wave-filter of any
class, which is of importance where the wave-filter is terminated by a
constant resistance, the usual case. The solution obtained is based upon the
repeated use of the methods of deriving wave-filter structures which gave the
M-types, combined with composite wave-filter principles. The results are
wave-filter transducers which at one end have standard ‘‘constant 2" image
impedances and at the other have image impedances which can theoretically
be made constant in the transmitting bands to any degree of approximation
desired. Practical fixed structures are shown.

Parts 1 and II give this derivation and composition of wave-filter struc-
tures. Two allied subjects, respectively, the designs of networks which
simulate the impedances of wave-flters, and of loaded lines, are dealt with in
Parts 11 and TV, such designs making use of the previous results.

The four Appendices contain new reactance and wave-filter frequency
theorems, particular fixed transducer designs and certain equivalents; also, a
chart for determining terminal losses at the junction of such a fixed wave-
filter transducer and a resistance termination. This chart supplements
those previously given in a chart method of calculating wave-filter trans-
mission losses.

INTRODUCTION

NE important problem which frequently arises in wave-lilter

design is that of obtaining a terminal wave-flter impedance
which is approximately a constant resistance at all frequencies in the
transmitting bands. This ideal impedance characteristic is desirable
where a wave-lilter is terminated by such a constant resistance, as is
usually the case. Under these ideal conditions, for frequencies in the
transmitting bands all terminal reflection losses are avoided, and there
are no impedance irregularities at the terminal junction to be reflected
back through the wave-filter and produce objectionable impedance
irregularities at the other end.

The design of ladder type wave-hlters of any class,! regarded from
either the theoretical or the practical standpoint, involves taking into
consideration two standard image impedances; and the internal or
main part of a composite wave-filter structure, called the mid-part,
usually has the equivalent of one or the other of these image impedances
at each terminal. These two standard image impedances are the image
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impedances ? at the two mid-points, mid-series and mid-shunt, of the
“constant k" wave-filter of that class. As defined in the first paper
referred to, a “constant k" wave-filter is a reactance network of ladder
type, the product of whose series and shunt impedances is k* = R? a
constant independent of frequency, where k& has the significance of
being the impedance of the corresponding uniform line. It is well
known that these standard, or '‘constant k,” image impedances vary
greatly with frequency over all the transmitting bands and are therefore
far from satisfactory as terminal wave-filter impedances. What is
needed at a terminal having such an image impedance is a terminal
wave-filter transducer of the same class which at one end can be
joined without impedance irregularity to the standard termination and
which at the other end has a desirable terminal image impedance.
Actually, this amounts to terminating a composite wave-filter in a
section which has at the final terminals the image impedance desired.
We may set up the ideal for this purpose as follows:

The ideal terminal wave-filter transducer of any class is a dissymmetrical
wave-filter network having at one end an image impedance equal at all
frequencies to the standard mid-series or mid-shunt image impedance of
the “constant k" wave-filter and at the other end an image impedance
which has approximately the same constant resistance value (k = R) at all
frequencies in the transmitting bands.

While the principal function of such a transducer is to furnish the
desired terminal image impedance, its wave-filter propagation charac-
teristics would also be useful.

The first approximate solution previously obtained was by means of
M-type wave-filter terminations;® that is, the terminal transducer in
this case was a single mid-half section of an M-type wave-filter whose
parameter m is in the neighborhood of m = .6. Such a section has at
one end one of the two standard image impedances referred to above
for all frequencies. At the other end its image impedance has the same
constant resistance value within about 4 per cent over 86 per cent of
every transmitting band and this has proved to be quite satisfactory
for many designs. However, later design requirements, such as those
for certain low pass and high pass wave-filters in carrier systems, have
demanded, principally from an impedance irregularity standpoint, that
the resistance terminal characteristic be more nearly constant and
extend still farther toward the critical frequencies than is possible with
M-type terminations so as to include in this manner a larger part of the

2 “Transmission Characteristics of Electric Wave-Filters,”” O. J. Zobel, B. 5. T". J.,
October, 1924,

3 See page 17 of paper in footnote 1.
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transmitting bands. A study of this general problem has recently been
made, the results of which were presented in two papers both of
which appeared in the same issue of this Journal® The terminal
transducers there described consist of simple non-uniform ladder type
structures whose series and shunt impedances are each arbitrarily
proportional to the corresponding impedances of the ‘‘constant 2"
wave-filter and of two-terminal reactance networks added in series
or in shunt at the terminating end to complete them. A transducer
of this kind practically satisfies the ideal conditions in the transmitting
bands, but it does not have a standard image impedance in the atten-
uating bands as is desired here. Because of the latter fact, transmis-
sion loss calculations can not be made as readily as in a composite
wave-filter.

This paper gives the solution of the terminal wave-filter impedance
problem by the logical extension of the use of the general systematic
methods of derivation which had led to the derivation of M-type
sections, and the use of composite wave-filter principles. The solution
is obtained in two naturally related steps which are, first, the derivation
of sections having mid-point image impedances which are desirable as
terminal wave-filter impedances and, second, the formation of terminal
wave-filter transducers having these image impedances at terminals.
A brief outline of these steps will be given here before proceeding with
the details.

The first step, the derivation of suitable terminal sections, is based
upon the use of two fundamental operations for deriving structures
already mentioned which are applicable to any ladder type network.
One of these, the mid-series derivation whose operation will be desig-
nated symbolically as D,(s), derives from any prototype a more general
ladder type structure whose series and shunt impedances are such
functions of the prototype impedances and of an arbitrary parameter, s,
that its mid-series image impedance is identical with that of the
prototype and thus independent of s. Its mid-shunt image impedance
is, however, a function of this arbitrary parameter, where 0 < 5 = 1,
and is thus more general than that of the prototype at the correspond-
ing termination. The other operation, the mid-shunt derivation desig-
nated as Ds(s), derives from a prototype another more general structure
whose mid-shunt image impedance is identical with that of the proto-
type but whose mid-series image impedance depends upon s. If both
of these prototypes, not necessarily the same, have identical transfer
constants, then both derived structures having the same value of

+" A Method of Impedance Correction,” H. W. Bode, B. S. T. J., October, 1930.
“Impedance Correction of Wave-Filters,” E. B. Payne, B. S. T. J., October, 1930,
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s will also have identical transfer constants which are functions of s.
At the limiting value of the parameter, s = 1, each derived structure
becomes identical with its prototype. The reason for the use of s as
the general parameter instead of m, as in previous papers, is to permit
it to take on without confusion a succession of values including m, as
will be seen.

Beginning with the “constant 2 wave-filter of any class as the
initial prototype, these two operations are performed alternately on
successive structures, which results in producing two different sequences
of wave-filter structures, depending upon which of the operations is
first used. These wave-filters are all of the same class and contain
successively more and more elements. In Sequence 1 (see Fig. 4) the
first operation is D;(m), then Dy(m'), Di(m""), etc., the parameters being
taken in succession as s = m, m’, m’’, etc. In Sequence 2 (see Fig. 5)
the first operation is Dz(m), then Dy(m’), Dy(m"’), etc., with the same
succession of parameters as before. Since at each derivation another
single parameter is introduced, each successive structure of either
sequence has one more arbitrary parameter than the preceding struc-
ture and the number of arbitrary parameters in any structure is equal
to the number of alternate operations performed to obtain it from the
“constant k'’ wave-filter. Now every section has one mid-point image
impedance which is a function of all of its arbitrary parameters. Hence,
this whole process is effectively one for obtaining a structure with an
image impedance which contains any desired number of arbitrary
parameters. The first derived structures in both sequences are the
pair called M-types having the parameter m. The second derived
ones will be called the pair of MM'-types with parameters m and m’;
the third, the pair of MM’'M"-types with m, m’ and m"'; etc. Each
successive pair can have a more nearly constant resistance impedance in
all transmitting bands than the preceding pair because of one additional
parameter in the image impedance functions. The two members of a
pair have identical transfer constants and either member can be
obtained from the other, as inverse networks of impedance product R*.

While the derived structures are wave-filters having the same
transmitting bands as the “constant &’ wave-filter, their propagation
characteristics are otherwise more general. However, no different
propagation characteristics are obtained in the successively derived
structures than are possible with the first derived or M-types since
all these derived structures have potentially identical transfer con-
stants, the transfer constant of any structure being dependent upon
its parameters only in their product. A simple relation is given
here between these parameters, the frequencies of infinite attenuation
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and the critical frequencies belonging to any of these derived sections;
there is a slightly different relation for each of the four general groups
into which all the different classes of multiple band pass wave-filters
may be divided. The MM’-types, etc., are structurally more com-
plicated than M-types and therefore have preferential value from an
impedance standpoint primarily.

The second step of this solution, the formation of terminal wave-
filter transducers, is related to the first step. The method of deriving
sections which possess desirable terminal image impedances furnishes
through the successive operations the necessary means whereby the
final impedance section can be joined to the standard “constant %"
wave-filter without impedance irregularity. There are two such
general transducers, the series terminal transducer which connects to
the standard mid-series image impedance and the shunt terminal
transducer which connects to the standard mid-shunt image impedance.
Obviously the series terminal transducer is obtained from the wave-
filters of Sequence 1 and is formed by connecting in tandem mid-
half sections of successive derived structures, beginning with the
series M-type and ending in the one having the desired image imped-
ance. At each junction point, always between dissimilar sections, the
image impedances are identical and in every case it is possible to merge
the adjacent series or shunt impedances, thereby considerably reducing
the total number of elements in the entire network. This composite
wave-filter has the same number of dissimilar mid-half sections as there
are arbitrary parameters in the final image impedance function and the
sections are functions of one or more of these same parameters, con-
taining in succession m, m and m’, m and m' and m", etc., the final
terminal section containing all parameters. The image impedance at
one end of this transducer is entirely independent of all these parame-
ters, being equal at any frequency to the mid-series image impedance
of the standard ' constant k'’ wave-filter; that at the other end depends
upon them all. Fixing the final impedance characteristic determines
all these arbitrary parameters and therefore all the sections making up
the transducer. The propagation characteristics of these sections,
while similar in form, are all different in frequency placement, being like
those of M-types having successive parameters equal to the products m,
mm’, mm'm', etc. Sincem,m’, m'’, etc., are each less than unity, these
products form a decreasing sequence. As a result, the attenuation
peaks of successive sections are progressively nearer the critical fre-
quencies and their combination builds up desirable attenuation
characteristics.

The shunt terminal transducer is obtained in an exactly similar
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manner, but uses the wave-filters of Sequence 2 and begins with the
shunt M-type.

Any pair of these transducers having the same number and values of
the parameters have identical transfer constants; moreover, either
network might be obtained from the other, as inverse networks of
impedance product R

Theoretically, with dissipation neglected, the solution of the terminal
wave-filter impedance problem, as outlined above, can be carried to any
degree of approximation desired toward a constant resistance terminal
image impedance in all transmitting bands. Practically, however, it
is here found unnecessary to go beyond the M M’-types which follow in
sequence directly after the well-known JM/-types and are thus com-
paratively simple extensions. They meet the desired impedance ideal
well and are in this respect a considerable improvement over the
M-types just as the latter are an improvement over the ‘‘constant k"
wave-filter, as we might expect. By a proper choice of the parameters
m and m' it will be shown later that the A/ M’-types can be made to
have image impedances which are equal to the same constant resistance
within 2 per cent over the greater part of all transmitting bands. In
low pass and band pass wave-filters this nearly constant resistance
extends over a frequency range which is approximately equal to 96
per cent of the theoretical band width. Similar characteristics apply
to wave-filters of other classes. Such a range includes all of a trans-
mitting band except a small region next to each critical frequency
where, however, the wave-filter attenuation makes it practically
useless for transmitting purposes. Each terminal transducer would
then be a composite wave-filter made up of a mid-half section of the
associated M-type of parameter m and a mid-half section of such an
MM'-type of parameters m and m'. While, as already stated, the
M-types and MAM’-types have potentially the same propagation
characteristics, the particular values of the parameters m and m’
chosen from the impedance standpoint give attenuation peaks which
in these M-types are farther away from the critical frequencies, and in
these M M’-types nearer, than in an M-type of parameter m = .6,
which is generally desirable. Two such fixed designs ® are given here
for connection to the “constant k' wave-filter of any class at mid-
series or at mid-shunt, respectively. The particular forms these take

5 The reader should keep in mind that such a terminal wave-filter network is
itself a true composite wave-filter of the same class as the standard or "‘constant £"
wave-filter. Its image impedance at one end is the same as a mid-point image

impedance of the standard, while that at the other end is the mid-point image
impedance of the M M’-type which is desired at the terminal.



290 BELL SYSTEM TECHNICAL JOURNAL

in the four most important specific classes, namely, low pass, high pass,
low-and-high pass and band pass, are also shown.

Finally, two by-products obtained from a further use of these fixed
network designs will be added. One is the ready design of networks to
simulate the mid-point image impedances of “constant k" wave-
filters. The other leads to the design of networks which simulate the
impedances of a loaded line, approximately a low pass wave-filter, over
the greater part of its transmitting band.

It need hardly be mentioned that these terminal transducers may
be used to terminate a lattice or other type of wave-filter which has a
standard image impedance or, vice versa, that of a derived wave-filter
such as the M M’-type. In this manner the terminal image impedance
can be altered efficiently from one characteristic to another. The
lattice type (21, 32) is itself a symmetrical structure.

The procedure for the design of a wave-filter network to meet
specific requirements may even begin with the choice of terminal wave-
filter impedance characteristics, which are physical and not in general
the same at both ends. The terminal, or reflection, losses due to
resistance or other known terminating impedances would thus be
definitely known. With these taken into account the internal part
would be designed using any type or types so as to fit in between the
chosen image impedances without impedance irregularity, as in a
composite structure, and give the remainder of the desired transmission
characteristic,

Part 1. DERIVATION OF WAVE-FILTERS WHICH PossEss DESIRABLE
IMAGE IMPEDANCES

1.1 General Ladder Type Structure

Of the three simple general types of recurrent or iterative structures,
the ladder, lattice and bridged-T" types, only the ladder type which has
alternate series and shunt impedances, z; and z., respectively, has two
different image impedances per periodic interval and these are W, and
W at the two mid-points, mid-series and mid-shunt. The ladder type
can therefore be separated on the image basis into either of two kinds
of symmetrical sections with two pairs of terminals, mid-series or mid-
shunt sections, or into one kind of dissymmetrical section, a mid-half
section. The existence of two different image impedances for a section,
the general property of all mid-half sections, is a necessary condition
for the proper combination of mid-half sections of different related
structures to give the desirable terminal impedance results obtained in
this paper. Definitions of these three kinds of sections which have
been considered in previous papers will be reviewed here.
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A mid-series section is that part between the mid-point of one series
impedance 3, and the mid-point of the next series impedance. It has
the three impedance branches 3z, 22, and 32, and has the structure ofa
T-network. Its image impedance at each end is the mid-series image
impedance W,.

A mid-shunt section is that part between the mid-point of one shunt
admittance 1/z, and the mid-point of the next shunt admittance. It

_ Qeneral prototype

7 !
Zi z 7 z 2
——— SAAA© *—0

Zz W; Zzz WZ ZZZ

Al ~aerien derivation
s

O«Z,r -ZQZ" 743,

Fig. 1—Fundamental derivations.
0<s=1.

has the three impedance branches 2z, z;, and 23, and has the structure
of a m-network. Its image impedance at each end is the mid-shunt
image impedance W.. Both of the above symmetrical sections have
the same transfer constants, 7', as we should expect since both sections
represent one full interval of the ladder type structure.
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A mid-half section is that dissymmetrical part between the mid-
point of one series impedance and the mid-point of the next shunt
admittance, or vice versa. The image impedances at the two ends
are, respectively, W, and W, or vice versa. Its transfer constant is
one-half that of a full section, mid-series or mid-shunt. Obviously,
two mid-half sections when connected with like image impedances,
W or W), adjacent, will form a mid-series or mid-shunt section,
respectively.

Well-known formulas for the transfer constant, 7", of a full section
and for the mid-series and mid-shunt image impedances, W, and W,
are

cosh 7" = cosh (4 + iB) = 1+2521~ =14 2(U+ iV,

Wy = Voze + 152 = VoW1 + U+ 4V,
and
W = Z152 _ V2122 _ @ q
T Vamt e T UV W )
where
U+ iV = ﬂ .

4z

)]

Such a general structure is illustrated in the upper part of Fig. 1.

1.2 Fundamenial Derivations
1.21  Mid-Series Derivation by Operation D,(s)

From any ladder type network z1, 3: it is possible to derive a more
general one 2,"(s), 2.’ (s) which has the same mid-series image impedance
W, as the prototype, but a transfer constant 7°(s) and a mid-shunt
image impedance W.(s) which are functions of an arbitrary parameter
5. This operation, denoted as D,(s), is specified by the mathematical
and physical relations between the series and shunt impedances of
the derived network and those of the prototype, namely,®

2 (s) = sz1.
and (2)
1 — 5

1
z'(s) = 21+ = 22,

4s s

where 0 < s =1 for a physical structure. At the limit s = 1, it
reduces to the prototype. (The superscript ‘‘prime” refers to the
case of mid-series equivalence.)

6 See footnote 3. Also U. S. Patent No. 1,538,964 to O. J. Zobel, dated May 26,
1925.
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These relations give for the derived structure in terms of its proto-
type and parameter s

cosh T'(s) = 1+ 2(U(s) + 1V (s)),
W, = W,
Wa(s) = Wo[1+ (1 — sSH(U+ V)], (3)
U+ V) )
14+ (1 = s)(U+iV)

By the above operation a new image impedance W,(s) has been
obtained which is more general than the mid-shunt image impedance
of the prototype.

and

Il

where

Uls) + iV(s)

1.22 Mid-Shunt Derivation by Operation Da(s)

From any ladder type network z;, 23 it is possible to derive a more
general one z,"(s), z."(s) which has the same mid-shunt image imped-
ance W, as the prototype, but a transfer constant 7'(s) and a mid-
series image impedance Wi(s) which are functions of an arbitrary
parameter s. This operation, denoted as D(s), is specified by these
mathematical and physical relations between the derived network and
its prototype

5 =T

531 4s

and (4)
1
" = — 29
22 (S) - P
where 0 < s =1 for a physical structure. At the limit s = 1, it
reduces to the prototype. (The superscript “second’ refers to the

case of mid-shunt equivalence.)
From these relations it follows that the derived structure has

cosh T'(s) = 14 2(U(s) + iV (s)),

Wy
L W T ¢
and (5)
W, = H”:.
where
U+ iV)

Uls) + iV (s)

1+ =T+’
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This operation gives a new image impedance Wi(s) which is more
general than the corresponding one of the prototype.

The derived structures represented by formulas (2) and (4) as well
as their common prototype are given in Fig. 1. A comparison of
formulas (1) to (5) shows that for the same value of the parameter s
both derived networks have the same transfer constant 7°(s) and that

5/ (5)z""(s) = 5"'(5)2'(s) = WilWa = Wi(s) Wa(s) = 213

Thus the series and shunt impedances of one derived structure are
inverse networks of impedance product z;2; of the shunt and series
impedances, respectively, of the other one derived from the same
prototype, z;, 2. Similarly, the pair of image impedances W, and W
and the pair Wi(s) and Wa(s) are inverse impedances of this same
product. In fact, either infinite structure might have been obtained
from the other as such an inverse network; the transfer constants of the
two would then necessarily be identical for the ratio of series to shunt
impedance would be the same in both.

1.3 ‘“Constant k"’ Wave-Fiiter, The Initial Prolotype

The “constant &' wave-filter of any class, that is, having any
preassigned transmitting and attenuating bands, is a reactance
network of ladder type whose product of series and shunt impedances,
and therefore iterative impedance k of the corresponding uniform line,
is a constant independent of frequency. Putting % equal to the
resistance R of the line or impedance with which the wave-filter is
normally to be associated, we have

Z12 = k2 = R? = a constant.

Here and in what follows the additional subscript k implies a relation
to the “constant k'’ wave-filter.

When there is dissipation in the reactance elements, the above
relation is strictly satisfied by requiring that the coil dissipation
constant, d, and the condenser dissipation constant, d’, be equal for
each pair of inverse network elements. For example, when d = d’

(d + 1:)27|'le1.,- _ Lu, _ R2.

(d' + ‘i)ZTfC% - Czk
There are several reasons for choosing the “constant &’ wave-filter
as the initial prototype.
1. Itsstructure and method of design for any class is definitely known.”

7 See footnote 1. Also U. S. Patent No. 1,509,184 to O. J. Zobel, dated September
23, 1924.
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2. It has both standard image impedances, each of which passes
through the same cycle of values in all transmitting bands.

3. Each M-type or wave-filter of higher order derived from it can
have an improved impedance characteristic which is the same
in all transmitting bands.

4. The assumption that its impedances z;; and 2 are general in the
analysis makes the results independent of any particular class
of wave-filter and hence applicable to all classes.

. This method of analysis sorts out certain valuable properties which
are common to all classes by treating known groups of meshes,
zi, and 2s, as units, thereby eliminating the necessity of
considering each individual mesh which may be present in the
interior of z); and 2y of any particular class.

wn

It will be appreciated by the reader that the difficulties of the problem
for one of the higher classes of wave-filters are thus greatly reduced
over what they would be if each mesh had to be taken into account, as
might be required by other methods.

Zik, 721k 721k,
————— oA\ +—MW\

————

Zek, 2720k,

Fig. 2—'"Constant %' wave-filter, the initial prototype;

sz = k* = K* = a constant, independent of frequency.

The “constant k" wave-filter of any class, shown in Fig. 2, will

be assumed known and is the starting point for obtaining the other
structures which are to follow. It has the formulas

cosh T = cosh (dx 4 iBi) = 1+ 2(Us + i V3),
Wy = RV1+ Ui+ iVi = Ry + iXy,

and
R o .
W, = — = R = Rop + iX o5
NI+ T+ iV Wi
where
T = transfer constant of a full section, (6)
31 = transfer constant of a mid-half section,
Wy, = image impedance at a series mid-point,

Wa: = image impedance at a shunt mid-point,

Uit iVi = 2% = (i)
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and

R® = 2,24 = k? = a constant.

It will be noted from these formulas that the transfer constant and
both image impedances of any “‘constant k" wave-filter are functions
of frequency only through the variables Uy + iV}, or the equivalent
(21:/2R)* which is a function of zy. (It would also have been possible
to use 2o instead of 2;.) When no dissipation in the elements is
assumed, s, = 7 + 4% becomes zi; = 7xy, a pure reactance, since
then #1, = 0;also Vi = 0. Under these ideal conditions we know that
x1: always has a positive slope with frequency,® and when the x; of a
multiple band wave-filter is plotted against frequency it is made up of
negative branches from x,, = — « to 0 and positive branches from xy;
= 0 to + o« which lie alternately in succession along the frequency
scale. These branches are defined to correspond with the sign of xy:.
The value of U is always negative and ranges continuously with
frequency between the values U, = 0 and — =, once for each branch
of x1r. We know also that in a negative branch there is a transmitting
band at frequencies corresponding to values from x;, = — 2R to 0, and
thus from Uy = — 1to 0. In a positive branch there is a transmitting
band from x; = 0 to + 2R, thus from U, = 0 to — 1. A low pass
band is associated with a positive branch which begins at zero fre-
quency while a high pass band is associated with a negative branch
ending at infinite frequency. An internal transmitting band, on the
other hand, has this association with a pair of branches, a negative
followed on the frequency scale by a positive branch, and in reality
consists of two bands which are confluent at x;; = 0, ie., Uy = 0,
where the two branches join. Such a confluent band is formed by the
junction of two bands which occur separately in a wave-filter of higher
class than this “constant &' wave-filter but with the same configura-
tion of elements.

Since all negative branches are similar, as well as all positive
branches, an approximate representation of the frequency charac-
teristics of any ‘' constant k'’ wave-filter can be constructed from the
characteristics which belong to each of these two kinds of branches.
It is necessary to consider both a negative branch and a positive
branch since the characteristics of one branch differ in their variations
with frequency from those of the other. Differences would naturally
be expected from the fact that in formulas (6) which hold for both
branches the variable U, varies with increasing frequency from
U, = — = to 0 in a negative branch and from U, = 0 to — » ina

% See page 5 of paper in footnote 1.
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positive branch. When V) = 0, as when no dissipation is assumed,
the formulas become functions of U only but contain a certain in-
determinateness regarding the signs attributable to the phase constants
and image impedance reactances of the two branches. This difficulty
vanishes when dissipation is present to give V; a value different from
zero, as in a physical wave-filter.

With dissipation such as to preserve the ‘‘constant &' relation it is
readily shown that V, is negative in a negative branch and positive in
a positive one; that is, Vi has the sign of x. This follows directly
from the formula

U+ iV = (Eﬂ:)a _ (1‘11:2 - xucz) + z-flkxqb

2R 1R? 2R

since 7, must be a positive resistance in a passive network. On the
basis of this result it follows from formulas (6) that?® in a negative
branch

X, Vi, Br and Xy, are negative;
x0; and X o are positive.

In a positive branch these signs are reversed.

The characteristics of two such representative branches are shown
in Fig. 3, joined as they would be to form an internal transmitting
band. The scale of abscissas is U} rather than frequency in order to
be general, and U, varies in going from left to right from — « to 0 for
the negative branch and from 0 to — » for the positive branch. In
this way a movement along the abscissa-axis from left to right always
corresponds to an increase in frequency. A translation from the Uy
to the frequency-scale can be obtained in any particular case through
the known relationship between Uy and frequency. Such a translation
would be equivalent to a variable expansion or contraction of the above
characteristics parallel to the abscissa-axis. The effects of dissipation
on the different characteristics are indicated by broken lines and show
a rounding-off of abrupt changes. Here, for convenience, it was
assumed that V; = .01U, in a negative branch and V; = — .0LlUj in
a positive branch. If each pair of characteristics is considered as
separated by an imaginary line perpendicular to the Uj-axis at
U, = 0, then a comparison will yield the statement that corresponding
pairs of A, Ry and Ra are images of each other with respect to such
lines, while pairs of By, X and X are images but also opposite in
SIgn.

? See also page 377 of paper in footnote 2.
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Fig. 3—Characteristics of “‘constant &' wave-filters.
(Broken lines indicate the effects of dissipation.)
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1.4 Sequence 1

As already stated in the Introduction to this paper, the successive
wave-filter structures of any class which comprise Sequence 1 are
derived from the known “constant 2" wave-filter taken as the initial
prototype by performing in succession the operations D;(m), then
Dy(m"), Dy(m'), etc. They may be considered as wave-filters of
higher and higher order since they contain a greater and greater
number of arbitrary parameters. The parameters of the alternate
operations D,(s) and Ds(s) are in the order of s = m, m’, m", etc.

The small letter m with superscripts is used as the notation for all
the parameters in order to denote their association with ‘“mid "’ of mid-
point impedances, since mid-points are under consideration here in
ladder type networks. Where the initial prototype is the ‘‘constant &’
wave-filter, as it is here, [ have used a terminology for the derived
structures whose basis is the capital letter M with superscripts to
correspond with those of the associated small letter parameters.
Thus, I have shortened the expression ‘‘mid-series derived, parameter
m ladder type” to ‘““series A/-type’’; similarly for the other structures.

Conotamt k" Series M-Aype Shunk MM-type SeriesM MM-ype

Wy | D | Wy, Whgmami| Do | Hygmant
w, Wyomi | Dym) | Wypomy i menimi) D)ent)

Fig. 4—Sequence 1.

The wave-filters of Sequence 1, so designated, can be expressed
concisely in the following symbolic manner where any part within
brackets represents a ladder type structure. FEach operation is to be
performed upon the structure within brackets to its right; therefore, to
obtain the actual series and shunt impedances which result in any
particular case when two or more operations are involved, these
operations would begin at the right with D,(m) on [ ], the ‘' constant "
wave-filter.

“Constant 2’ = [k],
Series M-type = Dy(m)[ k],
Shunt MM'-type = Ds(m")[ D1(m)[k]],
Series MM'M"-type = Dy(m"")[Do(m")[D:1(m)[ k]]], etc.

()

A diagram which illustrates this process and gives as well the
notation of the resulting image impedances in the successive structures
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of Sequence 1 is shown in Fig. 4. Each rectangle represents a wave-
filter of ladder type having the two mid-point image impedances
as indicated. The operation symbol between each succeeding pair of
rectangles shows what operation has been performed and the arrow
points towards the derived structure of higher order, being placed in
line with the image impedances which are identical for the pair. Thus
it is seen that each derived structure has one identical and one more
general image impedance than the preceding structure. In the
sequence the new image impedances appear alternately at mid-series
and mid-shunt points, beginning with the latter here.

The series and shunt impedances of the different structures which
‘become more and more complicated with increase in parameters are
derived by performing the above operations but their detailed con-
sideration will be deferred to a later point.

The transfer constants of the various members of this sequence are
found by carrying out the proper operations based upon formulas (3),
(5) and (6) and can be expressed by one formula, namely

288U + i Va)

cosh Tu(e) = 1+ 11— a0, F iV’

(8)

where g = 1, m, mm’, mm'm”, etc., in a decreasing sequence.l® The
value of g for the structure of any order is equal to the product of all
of its parameters, the first value above, g = 1, being that of the
“constant &' wave-filter. This is, for example, because by (3)

m2m"m"* (Ui V)
14+ (1 —m2m"* m" ) (U +i Vi)

Uim, m', m' )i Vi(m, m', m"') =

)

The image impedances in Sequence 1 which are derived in a corre-
sponding manner have these formulas.

Wl.’c= Wlk!
Was(m) = Wa[ 14+-a(Uiti Vi) ]
Wilm, m’) = p?{g::féﬁj;g’j)], (10)
Pty — W‘-’klzl‘l'a(Uk‘I'in):":l'l'a”(Uk+in):|
War(m, m', m'") = [l-l_a’(Uf.—'_zVL)] , etc.,

19 Computations for the transfer constant can be made accurately from formulas
for cosh™! (x + 4y) given in Appendix 111 of the paper ‘‘Distortion Correction in
Electrical Circuits with Constant Resistance Recurrent Networks,” O. J. Zobel,
B.S5.T. 7T, July, 1928,
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where
a=1—m?
2
a =1 — m2m”,
2 2
a’ =1 — w2 m'”, etc.,

in an increasing sequence approaching unity. Wy, and W are the
‘““constant k' image impedances of formulas (6). The continuation of
this series of image impedances is quite obvious, a new factor appearing
alternately in the numerator and in the denominator.

Each factor in the numerator gives the image impedance a resonant
point in an attenuating band where the image impedance is a reactance

and Uy < —1; that is, at U, = —1/a, or —1/a”, etc., neglecting
dissipation with Vi = 0. A factor in the denominator gives an anti-
resonant point; at Uy = —1/a’, etc. Since a’ lies between a and a”,

etc., these resonant and anti-resonant points alternate as in a general
reactance network. Only the resonant or anti-resonant point due to
the new factor added coincides with the point of infinite attenuation
in the corresponding new structure, as may be seen upon comparing
formulas (8) and (10), neglecting dissipation. These properties out-
side a transmitting band may or may not be desirable in certain kinds
of circuits. They are of importance when considering terminal losses
in an attenuating band, as in Section 2.6.

1.5 Sequence 2

Here the derived structures are obtained by performing in succession
the operations D.(m), then D,(m’), D.(m’’), etc., where the initial

“Comslamt k> Shumb M-bype Series MMtype Shumk MMMype

VA Wy | Doy | Wi Wy fmimii) L)irri)
Wy, | D) | Wy, Wemari - Dyt | Pt

Fig. 5—Sequence 2.

prototype is the “constant k' wave-filter. Using the same notation
and terminology as before, the wave-filters of Sequence 2 when ex-
pressed symbolically are

“Constant 2" = [£],
Shunt M-type = Ds(m)[ k], (11)
Series M M’'-type = Di(m")[ Da(m)[ £]],
Shunt MM'M"-type = Do(m’" ) Dy(m")[ D2(m)[ k]]], ete.
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A corresponding diagram which illustrates this process is that of

Fig. 5.
The transfer constants of these wave-filters are also given by formula

(8) which includes (9).
The image impedances in Sequence 2 are

Wa, = Wa,
Wi
Wuwlm) = T ot + v’
) _ Walt+ (U + V0] 2
Wa(m, m') = [14a(U+iVe)]
Wull+ ' (Us+ V)] etc.

y ! " —
W, ', ") = S G AV LI+ @ (Us F 2V
where @, a’, a”, etc., have the same values as in (10).

1.6 Relations Between Sequence 1 and Sequence 2

Carrying through operations for the determination of the structures
of the series and shunt impedances in these wave-filters, the following
results are found:

a. Each pair of structures of the same order in the two sequences is a
pair of inverse networks of impedance product R
That is, if the series M-type has the series and shunt impedances
o’ (m) and z'(m), and the shunt M-type z:'/(m) and z'/(m), the
inverse network relations are

a2’ (m)zo’ (m) = s’ (m)ze’ (m) = R
For the M M’-types, using similar notation,
s’ (m, m" )z (m, m') = zu" (m, m")zg' (m, m") = R?,

and so on for the higher order pairs. Consequently, one structure of
each pair might be obtained from the other as such an inverse network."

b. The transfer conslants of boih structures of a pair are the same.
This result would come from the inverse network relations which give
both structures the same ratio of series to shunt impedances, a ratio
which determines the transfer constant. It has already been found in
formula (8) where the value of g is the same for both structures of any
order.

11 The structures indicated or to be shown in detail in Sequence 1 and Sequence 2
can be generalized as ladder type derivations from any initial prototype z1, .. This
is done by a simple replacement of zix and zzx by 21 and 3, respectively; of R? by the
product 2,2:; and by the omission of the subscripts, #, throughout.
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¢. The series and shunt image tmpedances of a pair are inverse networks
of tmpedance product R
Such results would also follow from (¢) above together with the
consideration of mid-point terminations. They are verified by com-
parison of formulas (10) and (12) which give

WuWa, = Wu(m) Wa(m) = Wi(m, m') Wa(m, m')
= Wu(m, m', m" Y Wa(m, m', m") = «++ = R%.

d. Both image impedances of either MM'-type, or of either one of a
higher order pair, may be adjusted dependently without changing
its transfer constant; the ratio of the two image impedances is
fixed when the transfer constant is fixed.

This can be seen from the fact that the transfer constant depends upon

the parameters only in their product, g, and from the formulas for two
consecutive impedances in (10) or (12).

1.7  M-Type Wave- Filters

These are the wave-filters of the first order in each sequence and
contain one arbitrary parameter, n. Although they are quite well-
known, it is necessary to include them here for the sake of continuity
and because of the fact that they are to be used later.

The series M-type has the formulas

1’ (m) = mazy,

! (m) = L;Tﬂrm + %zzk,
) . (13)
_ 2m¥ (U, + V)
cosh Ti(m) =1+ T
W = RN1 + Uk + iVh,
and
— 2 ;
Wor(m) = R[1+ (—1 i )(UL + iVl .
i+ U+ iV
In the shunt JM-type
1
zu' (m) = i 1 ,
M1 4dm
2o (m) = }f—lzgk, (14)
cosh 7% (m) = sameasin (13),
Wo(m) RVT+ Ui + iV

T+ A =—mU+ive]’
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and

R
Wg = —_——
FTNIF O+ Ve

In the above 0 < m = 1. At the limit m = 1, the two structures
reduce to the “constant " wave-filter; also Wy(m = 1) = Wy and
ng(-m = 1) = ng.

A mid-half section of each of these wave-filters is shown in Fig. 6.
It is to be remembered that the transfer constant of a mid-half section
is one-half that of the full section given in the formulas.

Mid-half series M-btype

— X
!z:%zth,
]/M A ﬂéh(m)
7 Lak
o— 0

Mid-half shunb M=bype
2 Zin

o— -WIH

f'%bg ok
O— . O

Fig. 6—Mid-half sections of M-type wave-filters.

To illustrate the propagation and impedance characteristics of
M-types, as in Fig. 7, the parameter was taken to have the value
m = .6. The attenuation constant has one maximum just beyond
each critical frequency, where Uy = — 1/(1 — m* = — 1.5625, and
in this particular case the image impedances shown have the fairly
constant resistance values over a large part of each transmitting band
to which reference has been made. With other values of m there may
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or may not be in the range from U, = 0 to — 1 one maximum for
Wi(m) and one minimum for War(m). The image impedances at the
other mid-points are independent of m and are identical with those of

the ““constant 2" wave-filter already shown in Fig. 3.

3

)
/

A )

&
3
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0 - N
(%) (feur) U""
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I\

1
! i 1
|1 1 \
) |
X,;bmﬁ i % ¢|
1 | ’:
] 1
g : —
l ! Y Uy
i i “ 24, (M)
| i }
' i _ |
i ’%’m} =Ry i X aibmi.’k W yem)=B i szrm)lj
' |
! 1
! ]
[ I

X 1 (mv) ‘E ”:w

Fig. 7—Characteristics of M-type wave-filters;
m = .0.

(Wyx and Wag are illustrated in Fig. 3. DBroken lines indicate the effects of dissi-
pation.)

1.8 MM'-Type Wave-Filters

As wave-filters of the second order in each sequence they have two
parameters, m and m’. Their series and shunt impedances are derived
by means of the single operations with parameter m’ performed in the

regular manner upon the }/-type structures as prototypes which have
the formulas (13) and (14).
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Formulas for the series M M'-type are

1
zy (m, m') = 1 1 )
mm'su 4mm’
T — 2
' ’ 1 1
Dok ("tr m ) = 1 1 + mm’ Bak,y (15)
+ 3
m(1 — m™) ) m(l — m") i
am’ ¥ (= m?) ™

22 (U + iV2)
14+ (1 — m2w™)(Us+ Vi)'

- R+ Uit iVi
W =TT+ 0 —m®)(Us+ Vi)'

cosh Tp(m, m') = 1+

and 2 -
Wam, ') = — S+ (L= i )Wt V]
[1+ (1 —m)(Ue+ iV + U + iV

where 0 <m =1, and 0 <m' = 1.
As a limiting value, Wa(m, m' = 1) = W
For the shunt MM'-type

zlk”(ml mf) = 1 1 1 y

+

7 ’ — 2 !

mm'zy, - m'(1 m)zlk+ 4m o (16)
1

m(l — m'" n(l — m"™

1 — m? 1
dmm’ % + bl

s’ (m, m') =

cosh T(m, m') = same formula as in (15),

Wi(m, m') = R[1+ (1 — m)(Us+ iV INT + Ui+ iVs
e [1+ (1 - mim™) (U + iVi) ]

Ii[l + (1 — m®) (U + iVi)]
NI+ Ui+ iVi ’

where as before 0 < m =1, and 0 < m’ = 1. A limiting value here
is Wi(m, m' = 1) = Wi

The MM'-type wave-filters have structural designs which can be
inferred from their respective mid-half sections of Fig. 8; they may
have characteristics such as illustrated in Fig. 9 where the parame-

and

We(m) =
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ters are m = .7230 and m' = .4134; the reason for this particular set
of values will be explained later. The transfer constant is the same as
that of an M-type of parameter equal to the product mm’ = .2989.
With other values of m and m’ the image impedances Wy.(m, m’') and
Wak(m, m'), which in the transmitting bands are pure resistances if
dissipation is neglected, can be given a variety of characteristics as is
apparent from their formulas. In fact their physical possibilities can

Mid-haif series MM=bype

~o\\ho—
H- —0
2mm’ 2m(1-T12)
-mZ sz; { (-T2 L2k

ﬁVz 1,176 77)

2 _
> 22k

AAA.

Mid-half shumb M M:'?gf,pe
. 2) ’
ST L, Tl Lok

‘m:’fnr'z
e L2 '
Mék{m) zmm'Z’kl m&(ﬂ?f,m)
I Zaki
o] —0

Fig. 8—NMlid-half sections of MM’-type wave-filters.

then be described by the following statement. In the range from
Ur = 0 to — 1 the characteristic corresponding to the positive ratio
y = Wy(m, m')/R = R/Wau.(m, m’) may have no maximum or mini-
mum, one maximum, or one maximum and one minimum; at U; = 0,
y=1and at Uy = — 1, ¥y = 0. All of these structures which have
the same value of the product g = mm’, have the same transfer
constant. Thus, it is possible to keep the transfer constant fixed and
vary the image impedances.

No structures of any higher order will be worked out here in detail
since for all practical purposes the M M’-types just considered will be
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found capable of meeting the ideal impedance requirements. If
desired, the structures for the MM’M"-types and higher orders can
easily be derived by the regular operations indicated. In them some
slight reductions in the number of elements can be made because there
are then three or more similar impedances in one branch.

A A
ok
Ak,m.m'l _Bh,m.m: 'ul
\
1
\ / |
o o -1 77 ST 0 I
K ! &
ff&l {fé,’l H
'
'
I

| /i
| Ao N
I - 1
T
i Ui
1
| It
i G yemimiy Py m, i
E +L mma;m'] E !
i
]
| ;
! ,Xm(m,m) Xﬁn,,m 7

Fig. 9—Characteristics of M M'-type wave-filters;
m = .7230, m' = 4134,

(Wik(m) and Wai(m) are illustrated in Fig. 7. Broken lines indicate the effects of
dissipation.)

It should be quite obvious that a wave-filter of any order reduces
to the “constant k" wave-filter when every one of its parameters
reaches its limiting value, unity.

1.9 Frequency Relation in the Allenuation Characleristic of an
M-Type or Higher Order Wave-Filter of Any Class

The attenuation characteristics of M-type and MM'-type wave-
filters which have been illustrated in a limited frequency range show
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that when dissipation is neglected there is infinite attenuation at some
frequency within each branch of x;.. Formula (8), when V; = 0,
gives in the attenuating bands where U, = — 1

ngU‘_

cosh 4,(g) = |1+ T+ =AU’ an

in which g = m, mm’, mm'm", etc., for the M-types and higher orders.
The critical frequencies occur where the attenuation constant becomes
zero, i.e., at Ur = — 1, while the frequencies of infinite attenuation
occur where it becomes infinite at U, = — 1/(1 — g?). Since, when
V=0, (z1/2R)* = U, we have the following results:

At critical frequencies fy, fi1, etc.,

I = + ZZR (18)

At frequencies of infinite attenuation, fo,, fis, €tc.,

i2R
S = e, (19)
Vi — g2
the number of such frequencies being equal to the number of critical
frequencies.

A very simple relation has been found between these two sets of
frequencies in the case of any multiple band pass M-type or higher
order wave-filter. Such a relation is given here for each of the four
general groups into which all classes of band pass wave-filters may be
divided, each group having = internal bands with or without low pass
and high pass bands.

Group 1.—Low-and-z» Band Pass.

Jow fim 00 fone = ﬁfﬂfl <o fon (20)
Group 2.—n Band-and-High Pass.
Jiwfrw =+ fontve = NI = @fife++ fanrr. (21
Group 3.—Low-n Band-and-High Pass.
JosS1o = fentnae = fofi o fongr (22)
Group 4+—n Band Pass.
S frm *** Jonm = fife s+ fone (23)

For this group there is a further relation but it applies to the
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impedance characteristics. It contains those frequencies in the trans-
mitting bands where all image impedances become equal to R and
where the series impedances belonging to the different orders become
resonant. These resonant frequencies fi,, fa, etc., are the same as
those of 2y that is, where s = 0. The relation is

f1rf2r "'fm- = \’flfz "'fz,.. (24)

It may be noticed that relations (20) and (21) for Groups 1 and 2 are
the only ones which depend upon the parameter g. The proofs of all
these relations are to be found in Appendix I together with certain
reactance frequency theorems.

Part 2. FormaTioN OF TERMINAL WAVE-FILTER TRANSDUCERS

2.1 General Design Method

In the Introduction of this paper the method of forming the two
general kinds of transducers under consideration has been quite fully
discussed. Hence, only a brief repetition will be made here.

The series terminal transducer is designed for connection to the
standard mid-series image impedance, Wy, and is formed by con-
necting in tandem an arbitrary number of single mid-half sections of
successively derived structures in Sequence 1, beginning with the
series M-type. The image impedances are identical at each junction
and adjacent series or shunt impedances can be merged. The number
of arbitrary parameters in the final image impedance function is equal
to the number of mid-half sections which have been so united. This
impedance characteristic is then fixed to give a desired physical result,
whence the parameters of all intervening mid-half sections are like-
wise fixed. The attenuation peaks of successive sections are nearer
and nearer the critical frequencies.

The shunt terminal transducer for connection to the standard mid-
shunt image impedance, Wa, is designed in a similar manner from the
wave-filters of Sequence 2, beginning with the shunt A/-type.

From a theoretical standpoint the more mid-half sections used in
this composition to obtain a desired constant terminal impedance, the
better the possible approximation. The same method of solving for
the parameters can be used in all cases. But, in practice, two sections
appear to be sufficient.

2.2 Transducers Having T'wo Paramelers

Proceeding on the above basis the two-parameter structures of
Fig. 10 are obtained. Their formation will be obvious from Figs.
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6 and 8, taking into account the merging of similar impedances at the
junctions.

‘Qfemecab aeries Lermimal tramoducer

o O- ——o0
Wy, Wy () Wy emim)
o— —
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2z ik

b —20
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Ty ~ 2k
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Fig. 10—General terminal transducers.

The transfer constants of both structures are identical being given by
T = 3[Ti(m) + Ti(m, m')]. (25)

At their initial terminals the image impedances are respectively the
standard ones, Wy and Wa, which have the relations
Wik

T=W2'—W/m (26)
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and at their final terminals the image impedance relations are functions
of m and m', namely,

_ Wi (m, m’) _ R
B R B Wg,v,-(m, m’)
_ [+ a4 iVOINT + U + Ve
[1+a (U + Vi) '

wherea = 1 — m?, and @’ = 1 — m'm’>.  Since m and m’ lie between
zero and unity, it follows that 0 = a =a’ < 1.

When there is no dissipation in the network elements, V; = 0 and
all these image impedances are pure resistances in all transmitting
bands. Then the image impedance ratio y is there real and it can be
given a variety of characteristics depending upon the choice of parame-
ters ¢ and a’. For the range U, = 0 to — 1, y as a function of Uy
may have no maximum or minimum, one maximum, or one maximum
and one minimum;at U = 0,y = landat Uy, = — 1,y = 0.

The parameters corresponding to any such physical characteristic
can be determined from the values of y at two non-zero values of U,

where now

(27)

[1 + ﬂUk]\h + U .

YT T+ U]
This, when rewritten, yields the general linear equation in a and a’
— ua + va' = w, (28)
where
u = — Uk'\{‘l + Uk.
== yUkr
and

w=y—\f1-|—Uk.

For generality, let the data be

y =M at (UA-) 1s
and

¥y = at (Ur)e.
Substitution of these values in (28) gives two simultaneous linear
equations in ¢ and a’ whose solution is

UWy — Ul
= =,
U1V2 — U
and (29)
WU We — U

U Ve — U2

L —
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Then from (27)

m =Vl — a,
and (30)

m’=\/1_a’-
1—a

The maximum and minimum values of y (where dy/d U, = 0) are at the
two values of U

—(3a —a') £ V3a — a')? — 4aa’(1 + 2a — 24d’)
- 2aa’ - G

Ui
Where it is desired to have an especially constant value, y = 1, in
the neighborhood of U, = 0, the parameters might be determined
from an expansion of the expression for y in powers of Ui, Equating
these coefficients of the first and second powers separately to zero
would give two independent equations from which to derive the
parameters.'”

2.3  Fixed Designs

The primary interest here is to obtain designs in which the final
image impedances are approximately constant resistances equal to R
over the entire useful parts of all transmitting bands. Such imped-
ances require a y-characteristic which is close to unity from U = 0 to
the neighborhood of U, = — 1. With this objective a few preliminary
trials showed that very satisfactory results are obtained with the
assumed data

Y1 = 1 at (Uk)[ = — 65,
Y2 = 1 at (Uk)g = — .90.

Then from (29) and (30) of the previous Section
a = 4773, a’ = .9107;

and (32)
m = .7230, m' = .4134.

These values fix the general structures of Fig. 10, giving the specific
ones of Fig. 11 which are made up of definite proportions of the
impedances zy and 2z of the ‘‘constant k" wave-filter of that class,
assumed known. The detailed y-characteristic of Fig. 12 shows
that in this case there is less than a 2 per cent departure of v from the
constant value unity over the continuous range from U, = 0 to

12 A problem of terminal impedance is also included in the paper, ‘‘Die Sieb-

schaltungen der Fernmeldetechnik,” W. Cauer, Zeitschrift fiir Angewandte Mathematik
und Mechanik, October, 1930, p. 425-433.
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Fixed series Ltermimald lramoducer
J646 2, 1379 Z
3615 2, AL

Fig. 11—Fixed terminal transducers;
m = .7230, m' = 4134,
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Fig. 12—Detailed terminal image impedance characteristics in the transmitting
bands of fixed terminal transducers.

(Broken lines are for dissipation with Vi = == .01U).
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Fig. 13—Transfer constants (" = 4 + iB)—
(1) of fixed terminal transducers,

(2) of comparison transducers.

(A comparison transducer consists of one mid-half section of the “constant &' wave-
filter and one of either M-type, where m = .6. Broken lines are for dissipation with
Vi = =4 .01U%).
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U, = — .92 in every branch, which range includes the useful part of a
branch. In low pass and band pass wave-filters this total range
corresponds to 96 per cent of the theoretical band widths. From (31)
there is a minimum y = .9857 at Uy = — .3696, and a maximum
y = 1.0198 at U, = — .8297. Of course, other values of the parame-
ters in this neighborhood would also be quite satisfactory. They
might even be fixed by choosing the frequencies of infinite attenuation
in the two half sections. But the above were taken in order to fix the

final networks.

b L

/z/b/ — 10 \z\b

/’ 12 ;
a A

A i I B B 0o -z -|a, -l -8 IO
l” UHJ

. -z
w o :

W -4

w_ B

YT R
M&(mp"n"} A

b Y = T Sy (770 TV=134)

s
=

1

|
N
3

Fig. 14—Image impedance characteristics in the transmitting bands—

(1a, 1b) of fixed terminal transducers,
(1a, 2b) of comparison transducers.

(Broken lines are for dissipation with Vi = == .01 Ug).

The transfer constants of these fixed terminal transducers of Fig.
11 are represented by the general attenuation and phase characteristics
of Fig. 13. Here also are shown the corresponding characteristics
of two comparison transducers, one of which is made up of a mid-half
section each of the “constant k" and of the shunt M-type wave-
filters and has the image impedances Wy and Wy(m). The other,
made up similarly, has the image impedances Wy, and Wa(m). In
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both comparison transducers m = .6, this value of the parameter
giving results which are representative of the best constant terminal
impedances possible in transducers with terminal M-types. (These
comparison networks are identical with the general ones of Fig, 10
in which m =1 and m = .6.) Corresponding image impedance
ratios in a transmitting band are given in Fig. 14 where curves la
and 16 are characteristics for the two ends of the new terminal trans-
ducers of Fig. 11, while curves la and 26 are those of the comparison
networks. The superior merits of the new transducers can be seen
from Figs. 13 and 14; for in addition to giving improved and prac-
tically ideal terminal impedances they have attenuation characteristics
just outside the transmitting bands which rise more rapidly than those
of the comparison transducers.

By the use of such and other fixed terminal transducers at one or
both ends of a wave-filter network, the flexibility of the composite
method of designing wave-filters is still retained. The transducer
transfer constants and terminal losses due to reflection at given termi-
nating impedances are known in advance. The interior of the com-
posite wave-filter can then be built up of ladder, lattice or other types
of sections so that the desired total transmission characteristic is
obtained. Constant resistance phase networks can also be added at a
resistance termination to help improve the phase characteristic in the
transmitting bands, if necessary.

2.4 Designs for Low Pass, High Pass, Low-and-High Pass and
Band Pass Wave-Filters

These fixed transducers of Fig. 11 may readily be translated into
the particular designs which they assume for any class of wave-filter
with 2, and 2o known. For low pass, high pass, low-and-high pass
and band pass wave-filters, the four most important classes, the actual
physical arrangements and formulas for the inductances and capacities
have been worked out. As a convenience in reference these designs
are placed in Appendix II where all necessary formulas are given,
making use of Appendix II of the paper mentioned in footnote 1.
Little further discussion will be given here except to add the relations
between Uy and frequency for these different classes, with dissipation
neglected. By this means the characteristics which have been shown
as functions of U, may be referred to the frequency scale as the
abscissa-axis, if desired in any particular case.

I.—Low Pass

-~ (4):
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and x; is made up of one positive branch.

[I.—High Pass
U, = f1\?

and xy consists of one negative branch.
[1I.—Low-and-High Pass

(fi — fo)® 1
foha (JE _f )2 '
f Jfua
where fi, = \ijfl, the anti-resonant frequency where U, = o and
xy = . For this class xy; has a positive branch from 0 to fi, and a
negative branch from fi, to .

IV.—Band Pass
___Ahfs (fu_ LY
Us =~ —f.)?( 7 flr) ' (36)

where fi, = Vfifs, the mid-frequency or resonant frequency where
U, = 0and x;x = 0. Here x, is made up of a negative branch in the
frequency range from 0 to f;, and a positive branch from fi to «.

U= — (35)

2.5  Equivalent Structures

Many structures can be obtained which are externally equivalent to
each of the above transducers; in fact, an infinite number is possible.
That this is so can be seen from a consideration of the general trans-
ducers of Fig. 11, for example. It will not even be necessary to
include the entire networks in this discussion but only the branches
containing three impedances of two kinds, zix and zx%. The branch
containing one of zy; in parallel with the series combination of one of zi
and one of z.; may be transformed completely by a well-known formula
into one of z,; in series with a parallel combination of one of z1; and one
of 2. No change in the number of impedance elements results and the
magnitudes are fixed. If, however, an arbitrary part of the original
parallel zy; branch is kept out of the above transformation the final
equivalent structure would have one more 3, impedance and one more
mesh than the original. The proportions of each impedance may
obviously be varied continuously as the arbitrary division is so varied,
thereby giving an infinite variety of magnitudes. This four impedance
structure, equivalent to the original one, reduces at the limits to the
two structures each having three fixed impedances, as we know. A
similar process can be carried out with the shunt branch in the shunt
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transducer which contains three impedances. In this case the series
so, impedance of this branch would be arbitrarily divided and one part
transformed by another well-known transformation with the parallel
branch in series with it. The final result would be a 2 in series with a
parallel combination of a z.. and series z;: and 2s;; that is, four imped-
ances but no additional mesh. Here again the magnitudes would
have a continuous range but at the limits with three impedances they
are fixed. Other methods of transformations can be used on the
network as a whole and most of the equivalents have more elements.

As a matter of interest a number of equivalents of the networks of
Fig. 11 will be pointed out, all of which have the same minimum
number of impedances. Starting with the transformations mentioned
above, the latter series transducer has a star of z;; impedances which
may be transformed into a delta, thereby adding another mesh.
Similarly the latter shunt transducer has a delta of z. impedances
which may be given the form of a star which eliminates a mesh. Two
other forms are given as V; and V; in Appendix II, being respectively
equivalent to the series and shunt transducers. They are inverse
networks just as are the originals in Fig. 11. In V7 a still further
transformation can be made from a star to a delta of z;, impedances;
in V, from a delta to a star of zs impedances. The possibility of
obtaining the particular forms V; and V; was pointed out by H. W.
Bode. I have derived them directly from the networks of Fig. 11
by a transformation of the major part of each network, using the
simple formulas for the equivalent transducer transformations, re-
spectively 1 and 2, of Appendix III.

The transformation formulas for these latter equivalent transducers
in Appendix III are readily verified by the ordinary transformations
from T to = networks, and vice versa.

In the higher class wave-filters which contain more than one element
in z;; and zq, transformations of only parts of z; and 2. are also possible.
For various other kinds of transformations see footnote 16 to Appendix
IIT.

2.6 Terminal Losses at MM'-Type Terminations

When the terminal image impedance of a wave-filter is Wy.(m, m') or
Wai(m, m') and the wave-flter is terminated by a resistance R, there
is a reflection loss at the junction due to the impedance irregularity
which will be called the terminal loss L, . [t is defined by the
relations
R+ Wy(m, m')

eLm.m‘ —
2NRW .(m, m")

_ ‘R + Wa(m, m') (37)

2VR Wor(m, m’)
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which are exactly analogous to formulas (33) and (34) of the paper
cited here in footnote 2. Thus L,, .» may be plotted so as to give an
additional chart for use in the method of calculating wave-filter
transmission losses considered in that paper, which will apply when
there are these kinds of MM -type terminations. As a convenience a
chart for Ly nis given in Appendix IV for the particular values of the
parameters m = .7230 and m' = 4134 already chosen in the fixed
terminal transducers. To take account of dissipation several curves
are shown for each one of which there is a different fixed relation
between Vi and Ui. This chart, being an extension to the former set
of charts, is numbered consecutively with the others as Chart 20. It
shows that the terminal loss at R has two maxima beyond each critical
frequency where Uy = — 1. Their locations correspond to one reso-
nant and one anti-resonant point of Wiy(m, m') or Wax(m, m') in
an attenuating band. Moreover, the position of the first and lowest
maximum coincides with that of the maximum attenuation of the
terminating wave-filter, the MM’-type, while the position of the
second coincides with that of the maximum attenuation of the related
M-type. (An M-type termination gives only the first maximum;
an MM'M"-type gives three maxima, etc.) The transmission unit,
the Neper, is the same as that which was called the aitenuation unit
on the previous charts. The corresponding number of decibels is
obtained by multiplying the number of Nepers by 8.686.

When such a termination is used the interaction loss is practically
negligible.

PART 3. SIMULATION OF WAVE-FILTER IMPEDANCES

So far the two networks of Fig. 11 have been considered only from
the standpoint of their use as terminal wave-filter transducers with
desirable propagation and image impedance characteristics. While
this is their major purpose they can have a minor use to be shown
here, namely, as parts of two-terminal networks whose purpose is to
simulate wave-filter impedances where such networks may be desired.
This possibility is suggested by the fact that the image impedances
at the final terminals are approximately equal to a constant resistance
in all transmitting bands which can be simulated at these frequencies
by a simple resistance R. It follows that if each pair of final terminals
is terminated by a resistance R, the impedances at the two remaining
pairs of terminals will be approximately equal to their image imped-
ances, Wy and Wa, respectively, in the transmitting bands. More-
over, on account of the high attenuation of the transducers in the
attenuating bands which reduces transmission through them, the large
impedance irregularities at those frequencies between each network
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and its terminating resistance R will produce only a small effect upon
the impedances at the other terminals. As a result the latter imped-
ances will be approximately equal to Wy and We in the attenuating
bands also. Higher order transducers might also be used.!

Mid-series ompedance mebwork
which simulales Wy,
1686 Zyy, 1379 Zyy,
roW-o—oAp o

3615 Z,5,

Mid-shumb impedamnce mebwork
which simudales Wy,
5110 Zyp,
© 1 Y6028,
4.282 Zoy,
725 3
Z, 2766 2y, 7230 2y, A
66972,
O

Fig. 15—Impedance networks which simulate the image impedances, W and Wag,
of “constant k' and related wave-filters of any class.

With this explanation of their origin the general impedance
networks of Fig. 15 have been assembled. One of impedance Z,
simulates the image impedance Wy; the other of impedance Z,, the
image impedance Wy. The degree of simulation attained can be
seenn from the characteristics of Fig. 16, wherein the effect of small
dissipation is included by assuming Vi = -4 .01U, in a negative
branch and Vi = — .01U; in a positive branch, as before. Over most
of a transmitting band the agreement is within a few per cent; outside
it is still quite satisfactory. Near the critical frequencies, where

12 Still other forms of networks have been considered by R. Feldtkeller in a paper
“Uber einige Endnetzwerke von Kettenleitern,”” Elektrische Nachrichten-Technik,
Band 4, Heft 6, p. 253, 1927.
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U, = — 1, the simulation is improved by dissipation, as we might
expect.

This physical possibility of closely simulating the image impedance
of a wave-filter shows that the assumption of such a physical termi-
nation, as made in a previous paper,'* was practically justified when
solving the problem of the behavior of wave-filters under non steady-
state conditions.

112
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Fig. 16—Simulation of the image impedances Wi and W2 by the impedance net-
works of Fig. 15. (Broken lines are for dissipation with i = =4 .01U%).

The particular structures for simulating the impedances of “con-
stant &' low pass, high pass, low-and-high pass and band pass wave-
filters, which correspond to the general ones of Fig. 15, are obtained
by terminating the networks of Appendix IT with resistances R. It is
understood, of course, that others than the ‘‘constant 2" wave-filter
of any class have either the image impedance Wy or Way. Obviously,
it would be possible to simulate the impedance of any wave-filter which
by proper combination on the image basis can be linked with these
networks simulating Wiz or Wa. This, therefore, gives a method for
obtaining in a limited frequency range or ranges almost any resistance
characteristic with zero reactance.

Likewise, the impedance of a mid-series section of the shunt MM’-
type or a mid-shunt section of the series MM’-type which has the
parameters of formula (32) and one pair of its terminals closed by a

W “Transient Oscillations in Electric Wave-Filters,” J. R. Carson and O. ].
Zobel, B. S. T. J., July, 1923,
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resistance R, is a good simulation of Wy(m, m') or Wa(m, m'). The
latter are, as we know, approximately constant resistances equal to R
over desired frequency ranges and are reactances at other frequencies.
An interesting use of either or both of these simulating networks would
be as a balancing network against a resistance R or against each other
in a hybrid set. At frequencies in those ranges where the balance is
quite accurate, currents in the main circuit would be highly attenuated,
these attenuating bands corresponding to the transmitting bands of the
wave-filter impedance section.

Part 4. SimuraTioN ofF LoapiEp LINE IMPEDANCES

The networks of Fig. 17 are capable of giving impedance simu-
lation over the greater part of the principal transmitting band of a

Mid-load impedance metwoerk
whicky aimulates K,

Supplementary BRasic
mebwerk metwork
Ry J646 Ly, 7250 Cyy,
& W 36151, —<T00>—o{fo—
7 2 1k
3 —= 000 9—
A 1494 Ly,
z; Z Z; . 2335 L,v];, g Hz
T.‘)’/IU Cax
o . .

Mid-section impedance mebwort
avhichy simulales K,

> Baoic
networt metwrorty
Vi 5110 Ly,
Ay Cy
0—--—~vw~»Eo-| po= -
N I > J 23350y %5 Cak
. 72501 :
ZQ z Zz - T ok g R
3675 Cap, !
?494 Cap,
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Fig. 17—Impedance networks which simulate the iterative impedances, K, and K3, of
a loaded line at mid-load and mid-section terminations, respectively.
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loaded line. They are useful in cases where it is desirable to extend
nearer the critical frequency the range of simulation possible by
means of the networks described by R. S. Hoyt.!®

Designs are given for mid-load and mid-section terminations.
Results for other terminations can be obtained by building out the
load or section. From an economic standpoint it might be pointed out
that the basic networks for the mid-point impedances to be described
each have seven elements, whereas corresponding designs based upon
Figs. 14 and 15 of Hoyt's paper would have six elements. However,
the new mid-load basic network which extends the range of simulation
requires only one-half the total amount of capacity but slightly more
inductance than that required by the corresponding Hoyt network;
the new mid-section basic network requires only one-half the total
amount of inductance but slightly more capacity than the corre-
sponding Hoyt network.

4.1 Foundation of Designs

The design of any simulating network usually involves two processes,
namely, a determination first of structural form and second of mag-
nitudes.

The structural forms of the new designs follow readily from the well-
justified assumption that either mid-point impedance of a loaded line
in its principal transmitting band is approximately equal to the
corresponding mid-point impedance of a “constant 2" low pass wave-
filter as the basic network, with the series addition of the impedance of
a supplementary network which simulates the additional impedance
introduced by dissipation at low frequencies. While this assumption
is really the same one which underlies the designs by Hoyt, the new
basic networks have considerably different forms and were derived
from wave-filter theory, which explains their inclusion in this paper.
In fact, the desired basic networks of Fig. 17 are immediately available
from the results of Part 3, being special cases of the networks of Fig.
15 which use the low pass wave-filters of Appendix II.

The particular supplementary network chosen, one already con-
sidered by Hoyt but designed differently, has four elements, two
resistances and two capacities, and is known to have the desired
impedance characteristic. The same one will generally do for either
mid-load or mid-section impedance, as it contributes impedance only
at the lower frequencies of the range.

The magnitudes of the elements of these networks are all determined

15 “ Impedance of Loaded Lines, and Design of Simulating and Compensating
Networks,”” R. S. Hoyt, B. 5. T. J., July, 1924,
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from computed loaded line impedances (or perhaps from measured
impedances), instead of directly from certain primary line and coil
data. This makes it comparatively easy to take account of variations
with frequency of the constants, such as line leakance and loading
coil resistance.

The mid-load iterative impedance is given by the formula

Kl—k\/(1+—tnh )(1-}—;'—2(:0&%); (38)

the mid-section iterative impedance by

(39)

In these formulas v and % are the propagation constant and iterative
impedance, respectively, of the non-loaded line which may be computed
on the basis that the shunt capacity of each loading coil and its leads is
assumed to be concentrated, half at each end, and that each half is
added in the formulas to the line capacity of the adjacent section.
S is the load spacing and z, the load impedance.

4.2  Mid-Load Basic Network

This basic network has the structure and general design shown in the
upper part of Fig. 17. The magnitudes of its elements are fixed
when R and f; are known, since

I

le R/Wfﬂl
and (40)
Co, = 1/7l'fuR:

where R is the impedance VLy/Ca; and f; is the critical frequency.
Its impedance in the frequency range considered is quite accurately

given by
Z, =R 1/1-<f0)2 ’, (a1)

which relation will be used for design purposes. The values of R and
fo are here determined for any particular loaded line by assuming that
at two frequencies, f, and f;, the corresponding values of 7, respectively
7. and 7, are equal to the resistance components of K; as computed at
those frequencies from (38). The frequencies f; and f, are chosen in
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the upper part of the desired range where the reactance components of
K, are small. Substitution of these values in (41) gives two linear
equations in R—? and fo=? from which

e lin)

)

and (42)
1 — ( Jaro )2
fbra .
- (2)
ta
The actual impedance, Z,, of the network with these values may be
computed as for any finite network.

f():fb

4.3 Mid-Section Basic Network
This network in the lower part of Fig. 17 is the mid-shunt simulating

network corresponding to Fig. 15.
Its impedance in the desired range is approximately given by the

formula
Zym R =
=0

To determine R and f,, assume two values of r to be equal to 7, and ry,
the resistance components of K, as computed from (39) at two fre-
quencies f, and f;, where the reactance components of K. are small.
Then from (43) we obtain two linear equations in R* and fo* from

7. (43)

which
=)
_ b
R =ra L (fgr,, 2
Jurs
and (44)

The actual impedance of this network is Z:. The values of R and f
from (44) will be practically the same as those from (42).
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4.4  Supplementary Network

Shown in both simulating networks of Fig. 17, this network has an
impedance expression of the form

@+ agf _ . -
ST b= + ix, (45)
where
ag = R‘h
a, = 27I'R]R4C29
by = 27 (RCe + RiCo + RGY),
and

b') = 41r2R1R4CzC3.

The resistance and capacity elements are obtained from the above
impedance coefficients as

Ry = aw?/(aab; — ad®bs — a.?),
Co = (aaibr — ao*bs — a,*)/2rag’a,,

C3 = bg/Q?le, (46)
and

R4 = dy.
From (45) the pair of impedance linear equations is

ag +fxb1 +f2rbg =1
and (47)
far — frhy + fxbs = .

With the above formulas we can proceed to indicate the method of
design.
Ideally the network should have the impedance characteristic

z=r-|-'i;t:=K1*Z1, (48)

or

z=r4i1x = Ky — Z,, (49)

depending upon which mid-point impedance, K, or K,, is being simu-
lated. Usually these two values of z are practically the same. To fix
the four impedance coefficients, assume that the network has the ideal
components of (48) or (49) at two important low {requencies, the data
with increasing frequency being,

Ju ry+ ixg;
Ja r2 + dxa.

and
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These values are to be substituted in (47) to obtain four linear equa-
tions. The solution of these linear equations gives
ay = r1 — fixiby — fi¥ribs,
ay = riby — fuieibe + x1/f1,
_ fufa(fixs — faxa) (r1 — ro) + (fixs — fox)) (i1 — fo¥re)
b = D + (50)

Bo = f1fz(?‘1 — )t 4 (fixn _f2x2)(f2x1 '“f1x2),
- D

where

D = fifo{ (211 = fR) (s — 72) + (S — faxa)?}.

From the values of ao, @1, b1, and &, the network constants can be
computed by formulas (46). The network impedance is then given at
any frequency by formula (45).

The actual impedance simulating K, is the sum, Z," = Z; + z; that
simulating K, is the sum, Z,' = Zs 4 z.

It should be pointed out here that the supplementary network may,
if desired, be given other structural forms having two resistances and
two capacities and having an equivalent impedance characteristic.
These other forms may be obtained by transformations from the
known one above or their elements determined from other formulas
corresponding to those of (40).

Likewise, a supplementary network which has a smaller or larger
number of elements than the one above might be used satisfactorily
with the same basic networks or their equivalents. That depends upon
the low-frequency impedance characteristics of the given loaded line
and upon the closeness of simulation desired.

4.5  Application of Results

To illustrate the possibilities of these impedance networks, mid-load
and mid-section designs are given here for a 19-gauge B-88-50 loaded
side-circuit. The "B’ spacing is S = .568 mile (3000 feet).

Data for the mid-load basic network, taken from computations of
K, are

Il

fo = 3000, 1, = 1324;

J» = 5000, ry = 720.

and

These give from (42), R = 1564.4 ohms, and fo = 5632 cycles per

second.
Data for the mid-section basic network, taken from computations
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of K., are
fa = 3000, Ta

1848;
and
f» = 5000, 7y, = 3387.

Then from (44), R = 1564.6 ohms, and fo = 5638 cycles per second.
Because of the close agreement between these two sets of results,
their approximate mean values will here be used in both basic networks,
namely

R = 1565 ohms,

and
fo = 5635 cycles per second.

With these values in (40), Ly, = 88.38 mh., and Cy = .03611 mf. We
have then for the mid-load basic network the inductance and capacity
elements:

3615 Ly = 31.95 mh.; .2335 Ly = 20.64 mh.;

1646 Ly; = 14.55 mh.; 1494 Ly, = 13.20 mh.;

5110 Cg = .01845 mf.; 7250 Co, = .02618 mf.;
and for the mid-section basic nelwork

5110 Ly = 45.16 mh.; .7250 Ly = 64.08 mh.;

3615 Cy = .01305 mi.; 2335 Cor = 008431 mf.;

1646 Cy, = 005943 mf.; 1494 Cy, = 005395 mf.;

with their locations as in Fig. 17.

The impedance characteristics of these basic networks, Z; and Z,,
were computed directly from the finite networks on the assumption of
small coil and condenser dissipation constants, d = &’ = .005. Com-
paratively small reactance components begin to appear above 4500
cycles per second. Increasing the amount of dissipation in the
reactance elements would tend to increase the reactance components of
Zy, and Zs at the upper frequencies.

The design of the single supplementary network was made from low
frequency data representing the average values of (K; — Z;) and
(K — Z3). The data are

f1 = 100, r1 4+ dx; = 152 — 4700,
and
fg = 300, ¥a + 'I:xz = 20 — 2252,
From formulas (50) we obtain
ap = 7839.0; a; = 233.12;
by = 17.600-107%; by = 30.481-101.
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From (46) these give

R, = 5327 ohms; C, = .8886 mf.;
C; = 2.081 mf.; R, = 7839 ohms.

The impedance characteristic above 100 cycles per second as computed
from formula (45) is mostly that of negative reactance, both com-
ponents decreasing rapidly with frequency.
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Fig. 18—Simulation of the iterative impedances, K and K», of a 19-Ga. B-88-50

loaded side-circuit by the impedance networks of Fig. 17. (Coil and condenser
dissipation constants are d = d’ = .005.)

Final results showing the characteristics of the complete simulating
networks are compared with those of the loaded line in Fig. 18.
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Simulation is within .7 per cent of the impedance over the continuous
range from 100 to 3000, within 2 per cent from 3000 to 5000, and within
4 per cent from 5000 to 5500 cycles per second; the per cent accuracy
is best in the case of the mid-section network. This upper frequency is
approximately 97 per cent of the critical frequency, 5635 cycles per
second. There is good simulation even considerably beyond the
critical frequency, as may be inferred from Fig. 16.

For still greater precision, networks which originally have three or
more parameters and which are formed in a manner similar to those
of Fig. 15 may constitute the basic networks.

4.6 Other Approximate Designs

Alternative designs of networks simulating K; and K. can be made
with the networks of Fig. 15 as foundations. The method of doing
this will merely be outlined here since the networks do not appear to be
as practical as the ones already described in detail.

This procedure assumes that the actual loaded line structure can be
quite accurately represented physically in the desired frequency range
by a ladder structure of series and shunt impedances, z; and z., re-
spectively. Roughly, 2, would be series resistance and inductance and
22 would be parallel resistance and capacity. Then throughout the
two networks of Fig. 15 the impedance of 2y is to be replaced by that
of z; and the impedance of zy by that of 2. Also the terminating
resistance R is to be replaced by Vzz., the impedance of the corre-
sponding uniform line, which in this case might be approximately
simulated by a resistance in series with a network like the supple-
mentary network of Fig. 17. The resulting impedance networks
would then approximately represent K, and K.. However, no design
formulas are needed to show that even if these networks give as good
simulation as the networks of Fig. 17 they would require more elements.

ArpPENDIX [

Reactance Frequency Theorems and Proofs of Frequency Relations in
M-Type or Higher Order Wave- Filters

There are certain simple frequency relations which hold in the
reactance characteristics of non-dissipative impedances. A statement
and proof of these relations will first be given. From them will follow
readily the proofs of the frequency relations in the characteristics of
M-type or higher order wave-filters, which are represented by formulas
(20) to (24), since they require a consideration of the ‘“constant k"
series impedance z; only.
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Reactive Impedance Characteristics

All non-dissipative impedances have reactances which can be
separated into four forms of impedance functions, each of which can be
expressed as the ratio of two frequency-polynomials in if, where
i =+v—1, and f is frequency. It is known that such a reactance
necessarily has a positive slope with frequency and hence the resonant
and anti-resonant frequencies alternate on the frequency scale. The
four mathematical forms may be separated on the basis of the general
location of their resonant frequencies and have finite resonant fre-
quencies with or without zero and infinite resonant frequencies. These
reactive impedance forms are as follows:
Form 1. Resonant at zero and = finite frequencies.

_andf + as(@f) + - -+ @@
? 14 ba(if)2+ --- + bz,:r(,;f)zn = x. (51)

Form 2. Resonant at # finite and infinite frequencies.

1+ al(if)* + --- + an(if)>™ .
S T T R T T D@ (52)

Form 3. Resonant at zero, # finite and infinite frequencies.

_aif + as(if)* £ - -- + agnp1(if)nH .
Tl bR+ -+ bgwj(;f)gnﬂ = 1x. (53)

Form 4. Resonant at » finite frequencies.

_ ttat o+ el
5T bl balf) I - F baaaGf) ix. (54)

Each of these forms has a simple frequency relation which is expressible
‘as a theorem.

Reactance Frequency T heorems
The product F of the frequencies at which the reactance x is % ¢ in each
of the four reactive impedance forms is the following:

Form 1. Fopyq = —C-, proportional to c.
Q2nt1

Form 2. Fonyy = L , inversely proportional fo c.
chant1

Form 3. Fopye = b independent of c.

b2ﬂ+2 ’
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When ¢ = o, meaning anti-resonance of s, each anti-resonant frequency
appears twice in the product,

T .
Form 4. Fo, = = independent of c.
2n

When ¢ = 0, meaning resonance of z, each resonant frequency appears
twice in the product.

To prove the theorem for Form 1 first square the expression in (51)
and clear the fraction. This gives a polynomial in f* of degree
21 -+ 1, of which only the terms of highest and zero powers need be
shown for our purpose. Thus

(2t 4 oo — — =0, (55)

which expresses the general relationship between x* and f*. If a? is
givén some constant value as a* = ¢2, thatis x = = ¢, the roots of (55)
will be the 2n + 1 distinct values of f* where x = & ¢. By the theory
of equations, the product of these 2z + 1 values of f* is (%/a3,41).
Since we are interested only in positive frequencies, we may take the
positive square root of both sides with the result that the product of all
frequencies at which x = = ¢ is ¢/@ant1, which proves the theorem.

The proofs of the theorems for Forms 2, 3 and 4 are exactly similar
and should not need further explanation. In Form 3 the values
x = = o occur at the anti-resonant frequencies of 3, namely fia, fa,
etc.; hence, when ¢ = = the total frequency product includes each of
the latter frequencies twice. The result for Form 4 has a meaning
even at the limit ¢ = 0. These frequencies are the resonant ones of z,
where z = 0, and each one of them must obviously appear twice in the
total product.

Proofs of Wave-Filter Frequency Relations

As was stated in Section 1.9, 2z, satisfies certain conditions at the
particular frequencies of interest.
At critical frequencies, fi, f1, etc.,

s = =+ 12R. (56)
At frequencies of infinite attenuation, fox, 1., €tc.,

12R

s = =+ ($7)
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Every negative or positive branch of 2y includes one each of these
frequencies.

For those wave-filters with only internal transmitting bands the
additional relation will be used which specifies the frequencies where all
image impedances equal R and the series impedances become resonant.
At these resonant frequencies, fi, far, etc., in the transmitting bands

2 = 0. (58)

We know that in a ‘‘constant k"' wave-filter the transmitting bands
include the frequencies at which the series impedance zy is resonant.
Hence, to the four forms of impedance function for 21, as in (51) to (54),
there correspond four groups of wave-filter classes as already men-
tioned. These groups were designated according to the general
locations of their transmitting bands which obviously correspond to the
locations of the resonant frequencies of 2. For this reason each wave-
filter group and the corresponding impedance form of zix have the same

number designation.

Group 1. Low-and-n Band Pass.
An application of the theorem for Form 1 with (56) and (57) gives
immediately the desired relation (20)

fﬂmflm -t 'f2:1nn \[1 — fﬂfl fn-

Similarly the relations (21), (22) and (23) are obtained for Groups 2,
3and 4. Relation (24) for Group 4 is derived from (56) and (58), the
latter corresponding to ¢ = 0 in the theorem for Form 4 where each
resonant frequency appears twice; the square root of the resulting

relation is (24).
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ArPENDIX II
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Fixed Terminal Transducers of Several Wave-Filler Classes

[. Low Pass.

1= Series _termimal Aramaducer

3615 L g, —< 000 >—odfo—y
4 —O O—

2000 »
494 Ly,

2335 L,

W;,, W, ) %(mm’) éﬁ/
5//0 Cz
- O e

./546.[,1}9 7250 Cgh,

5”0L1};,
-0 O O O
2335 C,
L1696 Ca,
> Fhg VFay T 3675C 25 2107, 770)
—i-.ig.%’ Cax,
0] O- O O
R 1
Ly = 1?f; ’ Cor m .

R
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I1. High Pass.

I~ Serien tevmimal Aramoducer

1379 Ly, 6076 Gy
2766 Cyx, —d'O'OU'\»—HI-"-T

O—o] ’ —e) O—
&691 Cr,
1957 Lag, <
Wy, W Waemm) $R)
O O

IL,-Shumk Ltermimal {ramoducer

4282 Ly,
o o— ’ —0 o©
155
1379y,
S My Mo 27551,657&% T Moy 31
6697 Lzx
—0 O O
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III. Low-and-High Pass.

Il -Series Lermimal Lramaducer

337

./4.94 ‘L}"I/
36751, 1646 Ly,
dad " 13790,
fo—d Ly 7250 Cop)
2766 Cyp, 076,
o
233510 &5 1 6691 Cy,
S M s n Hyimim=Fe
- e} _f 0 o

M,-Shumi  termimal Lramoducer
S0 Lyg,
SO0

4382 an 2335Con

o]

L, = =R Lot R

?I'fufl ’ = 47"(f1 — fo) ’

. 1 _fi—h
Coo = —F——% Co iR
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IV. Band Pass.

IV, ~ Series Ltevmimal Aramoducer

1379 Loy
16426 Ly, 6076 Cyy,
365 Ly, 2766 Cry,
’—O O—JW—°“| 4 72 002]6‘ O O—
<000 » it
2335 L, 1994 Ly, 669/ Ciy
W, W, 4282 C, Wmm) SR
1957 Loy, 5770 Cap,
l—o O— - -0 o—
W,=Shuné Lermimal Aramodiucer
4282 Loy,
SO0 >
SIHOLy 1957 Cry
—0  O— 000 r——=f —0 0

7250 L,

2335 oy, 5
. 2k
2 2760 L 1 6061, ? + , %
W, W, : £ 1 Wyomm) SR

1..55/5 Cz s
1379 Cy
6:69/.[,355;}./494 Cax,

—0 © o o

R (f: — R
Lu Tl'(fz fl) sz - 4Tl'f|fz
_ fa—= N 1
Cie = TR Co = L =R
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V. Equivalents of Fixed Terminal Transducers of Fig. 11.

V.-
1494 Zyy, 3615 Z,p,
o, —oAAA MW o]
1078 Z)y, 3981 Zyg,
W, Wy tom,miy
47302, 33362,

O ¢ o]
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AprEnDIX III

Equivalent Transducers and Transformation Formulas '°

Transformation 1

Zy
il { J
G A &
Z;
az,
o : o
CZ,
o, + oAMA O
bz,
CZ,
bz,
o 0
Equivalent when
b =a(l-+a), c=1+a.
Transformation 2
az;
o— oy AW ’ o
Z;
az,
Zz
o ‘ ‘ )
2
bZ, "‘V";
9 —0
4
bz, ’
o o
Equivalent when
b= c=rE .
“1+¥a’ “1Fa

1 For transformations of simple equivalent two-terminal or impedance networks
containing two kinds of general impedances, see Appendix 111 of paper in footnote 1.
Also U. S. Patent No. 1,644,004 to O. J. Zobel, dated October 4, 1927.
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