The Statistical Energy-Frequency Spectrum of
Random Disturbances

By JOHN R. CARSON

A mathematical discussion of the statistical characteristics of Random
Disturbances in terms of their “ energy-frequency spectra’ with applica-
tions to such typical disturbances as telegraph signals and ** static .

N a paper entitled ‘Selective Circuits and Static Interference’
(B. S. T. J., April, 1925) the writer discussed the ‘‘energy-

frequency spectrum’ (hereinafter precisely defined) of irregular
random disturbances extending over a long interval of time. In
view of our lack of even statistical information regarding static or
atmospheric disturbances the specification of the energy-frequency
spectrum, denoted by R(w), was necessarily qualitative, and it was
merely postulated that

“R(w) is a continuous finite function of « which converges to zero
at infinity and is everywhere positive. It possesses no sharp maxima
or minima and its variation with respect to w(w = 2xf), where it
exists, is relatively slow.”

In a paper entitled ‘' The Theory of the Schroteffekt,” ! T. C. Fry
deals with a similar problem, namely, the energy or ‘‘noise’ absorbed
in a vacuum tube from a stream of electrons with random time dis-
tribution. His method of attack is widely different from that of the
present paper. In a more recent paper on ‘' The Analysis of Irregular
Motions with Applications to the Energy-Frequency Spectrum of
Static and of Telegraph Signals’ (Phil. Mag., Jan., 1929), G. W.
Kenrick, by making certain hypotheses regarding the wave-form of
the elementary disturbances whose aggregate is supposed to represent
static interference, and by applying probability analysis, arrives at
explicit formulas for the ‘“‘statistical’ or “expected” value of R(w)
for a number of different cases.

I

In the present paper the statistical or “‘expected’’ energy-frequency
spectrum R(w) of random disturbances is investigated by a method
which is believed to be somewhat more general and direct than that of
Kenrick.? The results are applicable to the Schroteffekt, telegraph

1 Jour. Franklin Inst., Feb., 1925.

2 Kenrick's analysis is based on a formula derived originally by N. Wiener instead
of proceeding directly from the Fourier integral.
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signals and similar disturbances. The writer, however, concludes that
their application to ‘‘static’ or ‘‘atmospheric’. disturbances is of
questionable value owing partly to our lack of the necessary statistical
information regarding such disturbances and also to the fact that they
cannot be expected to have the '‘quasi-systematic' characteristics
necessary to the application of probability theory.

The energy-frequency spectrum of a disturbance, as the concept is
here employed, will now be defined. Let a disturbance ®(¢) exist in
the epoch 0 = ¢t = T and let

Fiw) Clw) + 1S(w)

f " p@edr, (1)

Then, as shown in my paper referred to above,

e r
1 f | Fliw) |*dw = f .
w 0 L2}

The energy-frequency spectrum is defined by the equation

Glw) = L1m —= [F(zw) 2, (2)

so that
T
f Glwde = Lim . [ 4t (3)

T—bm 0

It is on this last equation that the physical application of the concept
of the energy-frequency spectrum rests; namely, that it determines
the mean square value of ®(f), as the epoch 7" is made indefinitely great.
Its principal application in electrotechnics depends upon the further
fact that, if ®(¢) represents an electromotive force applied to a net-
work of impedance Z(iw), the mean square current I? absorbed by the
network is given by 3

= .1 1 ®  Gw)
7 2t =
I leT ) I2dt ‘£ 70 )|2dw- (3a)

We now suppose that the function or disturbance ®(¢) is composed
of a number N of elementary disturbances; thus

‘I’(t) = ﬁ a,,,qu(i — L), (4)

% A somewhat more involved formula gives the mean power absorbed. See my
paper referred to in the first paragraph.
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the mth elementary disturbance being supposed zero until ¢ = fp.
If we now write

Fuli) = m + ism = f " om(eds, 5)
0

it is easy to show by the methods employed in my previous paper
that

| Fiw) |2 = ZI:N ay? | fm (i) [2
-+ QNE_I f} Al n(CmCn + SmSn) €OS w(ta — ha)  (6)

m=1n=m+1

N=1 N .
+ 2 Z Z a’man(cmsn - Smﬁn) sin w(t,. — fm)

m=1 n=m+1

This is more compactly expressible as
N -
| Fia)|* = 3 an?|fnia)

N—1 N .
+2X 2 {@m@nfm(iw) fa( — 1w) e gt pare (62)
m=1 n=m+1

Now, obviously, if the amplitudes a,, - -+, ay and the wave form of
the elementary functions ¢, ---, ¢y are specified, G(w) is uniquely
defined and determined by the preceding formula. This, however, is
not the case in the problem under consideration, where at best the
functions are specified only statistically by probability considerations.
Under such circumstances, when the problem is correctly set and
sufficient statistical information is furnished for its solution, we
introduce the idea of the statistical energy-frequency spectrum R(w)
defined as follows:

The statistical energy-frequency spectrum R(w) is equal to the weighted
average of G(w) for all possible values of G(w), the weighting being in
accordance with the probability of the occurrence of each particular
possible value.

For example, the statistical value of a function f(x1, %2, -+, %a),
where the variables x, - -+, %, are defined only by probability con-
siderations, is, in accordance with the foregoing definition,

dxipa(xs) - f dapals) - f dtnpa(a) f(Ers %2y ) %a),

where pm(*m)dxn is the probability that xm lies between x, and
Xm T d%m.
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To apply the foregoing concept and definition of the statistical
value of a function to the problem at hand it is necessary to suppose
that the typical impulse f,.(iw) is a function of w and certain parameters
A1, Az, + ¢, Ay, and that these parameters are statistically specified by
probability considerations. Thus we suppose that pn(An)d\, is the
probability that A, lies between A, and Ay + dh,.  G(w) will then be
a function of w and Ay, Ns, - -+, A, the amplitudes a;, -+, ay being
regarded as parameters, when defined by probability functions. We
then have, in accordance with the foregoing,

R(w) = I:d?\.pl(?\) - £::ixgpg(k1)

% f AN NGl My Ay -0 A, (7)

II
To apply the foregoing to the simplest possible case let us suppose
that the elementary impulses are all identical; a; = a3 = «-- ay = 1,

and that their distribution in time is purely random. With these
assumptions it follows at once from (6) that

_ Y s VY pioygel — cos T B
Rw) = —|flie)|* + 2+ —|flio)*——r——, T =. (8
If f(#0) # 0, this has a singularity at = 0; however
1 [T “
Lim—f d2dt =f R(w)dw
7w 1 0 J
9

- VJ'&df—;—yﬂ[ fqbdtilb-

Here v = N/T = mean frequency of occurrence of the elementary
impulses. This formula is in entire agreement with Fry's results for
the Schrotefiekt (l.c.).

To consider a somewhat more involved problem, we shall suppose
that the durations of the individual impulses and their amplitudes are
distributed at random. We further denote the probability that the
duration of any impulse, selected at random, lies between A and
A =+ d\ by p(Nd\.  Correspondingly, g(a)da denotes the probability
that its amplitude lies between ¢ and a + da. The durations and the
amplitudes are then the statistically specified parameters.

We now postulate that ®(f) is an alfernating series of impulses of
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the same wave form; i.e.

2() = 3 (= 1) endnlt — ),

om(t) = ¢(0), 0=t=M
=0 L > M
tn =M+ X+ 200 A

and we denote the mean frequency of occurrence, N/T, by ».
Substitution in the preceding formulas and straight-forward opera-

tions give
R(w) =2 fo a2q(a)da - fo i, \) [2(N)aN

plus the real part
2v . : . ‘o ® .
-;r-[fﬂ‘ ag(a)da] . jﬂl Fiw, N)p(N)e'rd\ - j; S(— 1w, N)p(N)d\

% Lim~3 3 (—1)n-m[fmp(x)e*wlda]"_m_l- (10)

N—® Nm=1 n=m+1

If we write

[ poyean = ptia) = . (11)
0
we have by straightforward procedure

Lim L 3" §04w{f3mwarﬂ=—LL-um
N i T )’

N—> o m=1 n=m-+41

whence

R =2 [ w@da [ 1ftia, 0000
e TS e 09

fliw, N) = j; s(Beedt = c(w, N) + is(e, N,

where

Ulw) = jomf('iw, N p(N)etrdh, (14)

Viw) = J; " f(= i, NPV
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If, on the other hand, we suppose that the impulses, instead of
systematically alternating in sign, are equally likely to be positive or
negative, the double summation term of (9) vanishes and

R@w) =2 f " dq(a)da - f " | fGiws N [260)dN. (15)

This follows from the fact that the amplitude e is equally likely to
be positive or negative. Consequently the integration with respect
to da must be extended from — e« to + « and, since by hypothesis
g(— a) = g(a), it follows that

fw aq(a)da = 0

-0

To apply the preceding formulas to actual calculations, it is necessary
to know the function f(iw, A) and in addition the probability functions
involved. These latter may be supposed known from statistical data
or calculable on theoretical assumptions. For example, if we assume
that the times of incidence of the elementary disturbances are dis-
tributed entirely at random, the application of well-known probability
theory gives p(A) = ve™".

A third case is of interest. Here, instead of postulating that the
termination of one impulse coincides with the start of the next (i.e.
tmi1 = tm + Am), we suppose that the times of incidence are entirely
unrelated, and that the amplitudes are equally likely to be positive
or negative. For this case the formula for R(w) is formally identical
with (15).

111

The foregoing analysis will now be applied to deriving what repre-
sents more or less accurately the statistical energy-frequency spectrum
of telegraph signals. To this end we shall suppose that the elementary
disturbance may have any one of three possible values (all equally
probable), characterized by durations A;, X2, A3 and amplitudes
ay, @z, as. The corresponding spectra of the elementary disturbances
are then determined by the equations,

Ay

1(iw) = f s()ed,
Ay

faliw) = f S(D)ewids, (16)
0

M
fa(iw) = | ¢()edL.

0
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The application of the preceding analysis to this case gives
R(6) = 2= (@lfilio)|* + ag|falie) |* + o fslie) )
plus the real part of

g_':(a-:f (iw)é™M + agfslie)e 4 asfs(iw) ¢ons)
X (@ifi(— i0) + aafa(— ) + aafs(— i) (17)
N=1 N
x Lim % Z E [%(g"")‘l + efﬂh + efﬂﬂ;)]n:—m—l'
N—® m=1 n=m--1
It is to be understood that the real part of the second term is alone to

be retained.

If we write
x = _:li(eiw)tl + e’m?\: + eiml;)’

1 N—l_._«c_l—x"‘l
1 —x N N 1—x

Iiv Z Z L‘% (31“7\1 + e’lw}\., _|_ (,’imhn):lu—m—l —

and
1

1 —x

Lim LYY = ¥ <0

N=—>® N

o] =

There is therefore an infinity at w = 0, as we should expect. Its
measure, however, is finite.

The preceding is merely an example which admits of extension to
more complicated types of signals, as will be obvious to the reader.
For example, the probabilities of the elementary signals need not be
the same and their number need not be restricted to three.

1AY

In all the cases discussed above it will be observed that the dis-
turbance is ‘‘quasi-systematic” in the sense that the elementary
disturbances are all of the same wave-form differing only in duration
and amplitude. Indeed, some such assumptions as these are essential
to the application of the mathematical theory. In the case of atmos-
pheric disturbances we have no reason to suppose any such quasi-
systematic character exists. Furthermore, even if for the sake of
argument, we suppose that the elementary disturbances, which make
up static, have a common wave form at the point at which they
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originate, they would vary widely in this respect after arriving at a
common receiver. The writer is therefore of the opinion that the
quotation from his previous paper appearing at the start of this article,
represents all that can safely be said regarding the spectrum of static
and that our present knowledge is insufficient to justify the application
of probability analysis to the problem. All that we can say is that
the part of R(w) which contributes to “static interference” is simply

v 1 X .
Lim =+ = 3 a2 |fm(fw) |2,
N—no T N 1

a result deducible from (6) and in agreement with the conclusion of
my original paper (l.c.). It is here supposed that the times of incidence
are distributed at random. This formula, however, supplies no useful
information in the absence of data regarding the wave forms and
amplitudes of the individual disturbances.



