Mutual Impedance of Grounded Wires Lying on the
Surface of the Earth *

By RONALD M. FOSTER

This paper presents a formula for the mutual impedance between two
insulated wires of negligible diameter lying on the surface of the earth and
grounded at their end-points. The formula holds for frequencies which are
not too high to allow all displacement currents to be neglected, For any
two elements d.5, ds of the two wires the mutual impedance is obtained
from their direct-current mutual impedance by introducing the complex
factor 2(yr)"2[1 — (1 4 yr)e—7"]in the reactance term, y being the propaga-
tion constant in the earth, and r the distance between the elements d.S
and ds.

HE mutual impedance of grounded circuits may be derived from
certain results obtained by A. Sommerfeld,! who has developed
formulz for the electric and magnetic fields in the earth and in the air
due to horizontal and vertical electric and magnetic antennze situated
at the surface of the earth. For our present problem we use his formu-
lze for the electric field in the earth due to a horizontal electric doublet,
since this doublet may be regarded as a short element d.S of a wire of
negligible diameter carrying a finite current. At the end of this
present paper we shall show how the same formula for the mutual
impedance may be obtained directly from first principles.
Sommerfeld uses rectangular coordinates (x, v, z) and the corre-
sponding cylindrical coordinates (r, ¢, z), the surface of the earth,
assumed flat, being the xy plane, and the z axis extending upward into
the air. The doublet is at the origin, and its axis along the x axis.
Then the components of the Hertzian vector ?in the earth (z < 0) from
which the electric field is determined are ?

(1) = ch f Jlor) sEp,
[}

(2) Im, = 0,

* Presented by title at the Eugene, Oregon meeting of the American Mathemat-
ical Society, June 20, 1930, as “Mutual Impedances of Grounded Circuits.”

1 A. Sommerfeld, "“Uber die Ausbreitung der Wellen in der drahtlosen Tele-
graphie," Annalen der Physik, (4), 81, 1135-1153 (December 1926). This paper isa
summary and an extension of earlier work by Sommerfeld and von Hoerschelmann,
references to which will be found in the paper.

2 . Abraham and A. Foppl, “Theorie der Elektrizitit,” Sth ed., Leipzig and
Berlin, 1918; Vol. I, § 79, page 331.

3 A. Sommerfeld, loc. cit., pages 1145 and 1146, introducing the constant factor
defined on page 1152,
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where the time factor e’ is omitted throughout. J; is the Bessel
function of order zero, and the constants k and k&, are the propagation
constants in the earth and in the air for plane waves varying with the
time as e~**, Their values in Heaviside units are given by Sommerfeld
as

1

) ¢ = gt +iow),  kP= g

Euwe,

where € and ¢ are the dielectric constants of the earth and of the air,
respectively, o is the conductivity of the earth, assumed uniform, and
¢ is the velocity of light. In both media the permeability is taken as
unity. Also

® N = BNE — kF + ki — B,
© N' = NF =& + NP~ B,

and C is a constant measuring the electric moment of the doublet.

We now replace the doublet by a short element of wire d.S carrying a
current J¢**, and at the same time we assume that e and ¢ are both
negligible, so that all displacement currents are neglected. This is a
simplification which is ordinarily made as a first approximation at
power frequencies for the shorter transmission lines. Then, introduc-
ing c.g.s. electromagnetic units, in which the conductivity of the
earth is A\, and noting that we have changed the sign of w, formule
(4)—(6) become

(7) = —idmw = — 7%
(8) ke = 0,

) N = — %%,

(10) N =+ NFF A,

and the constant C is such that

Ckd
k?.

(11) = % X current X effective length of doublet

1dS

=m-
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Substituting from (7)-(11) in (1)-(3) we have, therefore,

IdS = Ju(rp) e
(12) 11,=——f _ Dolre) g,
270 ), o+ Vo + o
_ 1dS (&P ¥Q | &0
27Nyt \ 02 ax%9z ' 0y20s )’
(13) 1, = 0.
© —
(14) n, = 1450 (7 Jolre) i,
27N Ox o P+\',P2+ 2
_1dS [#P _ §Q
T 27ayt\ dxdz dxozt )]
where
L] - dp |
(15) P= f Tolrp)erVe bt 28
Jo ! Vot + ¥°
1
— > ,—YR
RO
and
o0 — dp
(16) 0= f To(rp)eriTE P

I[3v(R + ) JKo[3v(R — z)],

with R? = r* 4 2%

The integral P is well known,* while Q is evaluated by a suitable
transformation of a Fourier integral® Iy(z) = Jo(iz) and Ky(s)
= 1miH,"(iz) are the Bessel functions of the first and second kinds
for imaginary arguments as defined by G. N. Watson.® In reducing
II, to this form we use the differential equation? for Jy to obtain the

relation
is 92 .
(5‘—\—2 + Z’;‘-’) Jo(fp) + P'.}T(](rp) = (.

The components of the electric force in the earth are obtained from
II by the formula

Qan E = grad divIl — 711,

4 See e.g. H. Bateman, **Electrical and Optical Wave-Motion,” Cambridge, 1915,
page 72; or G. N. Watson, * Theory of Bessel Functions,” Cambridge, 1922, page 416,
formula (2) of § 13.47, with x = Oand » = 4.

5 G, A, Campbell, “The Practical Application of the Fourier Integral,” Bell
System Technical Journal, 7, 639-707; using pair 936 of Table I, with & = %, substitut-
ing x? for (g — 4) in the integral of G, and generalizing the resulting integral to in-
clude complex quantities.

6 G. N. Watson, op. cit., pages 77, 78.

7 G. N. Watson, ap. cit., page 19, formula (1) of § 2.13.
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and we thus obtain E,, E,, E. in the compact form

IdS(_ PO _#P Q. »P )

A8 (B B B =3x\ ~oyos ~ 5 mayes' avee

where P and ( are given by (15) and (16). In deriving this form we
use the fact that ( satisfies the wave equation

#0 &0, FQ
dat + ay: gz T Q=0
At the surface of the earth (s = 0) the electric force takes the simple

form

_ Ids LS RN T o U L |
(19) (E:,Ey)*z—ﬂ[—g_‘—,e(,)‘F Ao axay(r)J'

where we have used the expressions for the derivatives ® of the Bessel
functions, Iy(z) = Ii(2), Ki'(z) = — Ki(z), and also the identity?
I(z)Ki(z) + N(z)Ko(z) = 1/

The mutual impedance dZ,, between two infinitesimal elements d.S
and ds is now written down as the ratio of the resulting electric force in
one element to the current in the other, with sign reversed:

(20) dZ»= dSds [cos € _6‘__(_1;) — c0551 _;we""

27\ ay*
— sin @ (1
st € dxdy \ r

_dSds[3sin®sing —cose cose e
= 2m [ r A L+ ane }

dSds | d® [1\ . cose N
~ 2mn {fmars(?) [1—(1+7r)6“’]},

where ¢ and ¢ are the angles which the elements d.S and ds make with
r, and e = & — ¢ is the angle they make with each other.

Integration over the two wires .S and s gives a general formula for
the mutual impedance of grounded wires lying on the surface of the
earth:

(21) Zyp= _ff{(ms( cos 1 — (1 + e -vr]} d.Sds

=IJ [m{;im(l)

F 40y S8 f{ (L — (1 + yr)err] } ] dSds.

r r)?-

8 G. N. Watson, op. cit., page 79, formula (7) of § 3.71.
® G. N. Watson, op. cit., page 80, formula (20) of § 3.71, with » = 0.
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The factor
p 2 oy
{22) _(,Y_r)z[l — (14 yr)e]

approaches unity as w approaches zero, and Zy. then agrees with the
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direct-current mutual impedance as given by G. A. Campbell,
Introducing this factor, which is a function of 47 only, into the re-
actance term for the direct-current mutual impedance between two
elements dS and ds gives the general expression for their mutual im-
pedance corresponding to the propagation constant y. It is interesting
also to determine, for any given value of #, the variation of the factor
(22) for increasing values of r. This is shown very clearly in Fig. 1,
where the real and imaginary parts of (22) are plotted for increasing
values of #' = |yr| = (dxhw)2. The real part, we note, decreases
rapidly from the initial value unity as ¢’ increases, while the imaginary
part is always negative, decreasing from zero to a minimum value
(approximately — 0.3 for #' = 1.5) and then increasing towards zero,
although it does not approach zero so rapidly as the real part does.
The first three terms in the expansion of Z;, for low frequencies
are given by
1 1 1 1

: = — - — == — - — ' I
(23) Zu (Au Ab Ba+Bb) T+ Vs,

+ (1 — )L(87he®)' 2 ABabcos @ 4 - -,

where Ng, is the mutual Neumann integral between the two wires .S
and s of arbitrary form but with end-points 4, B and a, b respectively;
0 is the angle between the straight lines AB and ab. The first two
terms in this expansion are precisely the direct-current mutual im-
pedance as given by G. A. Campbell.

The first term in the expansion of Z, for a long straight wire .S and
any wire s located near the midpoint of .S is

1 T - ., -
(24) f[m —;‘A‘;‘:Kl('y-\):l LOSEdS,
x being the positive distance from ds to S, and e the angle between ds
and S. Ki(z) = — $wH,™(iz) is the Bessel function of the second
kind for imaginary argument as defined by G. N. Watson.!' In ob-
taining (24) from (21) we use the derivative with respect to x of the

integral
me,.y,_
[ = K,
4

which is a special case of the integral used above in evaluating Q, with
x assumed positive.

G, A. Campbell, “Mutual Impedances of Grounded Circuits,” Bell System
Technical Journal, 2, 1-30 (October 1923).
11 G. N. Watson, op. cit., page 78.
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The expression in square brackets in (24) is the mutual impedance
gradient parallel to an infinite wire at a positive distance x from the
wire. It agrees with the results published independently by F.
Pollaczek, J. R. Carson,”® and G. Haberland," and has been employed
by us to obtain numerical results since 1917. Pollaczek has also in-
vestigated the case of two gounded circuits of finite length.®

The mutual impedance dZ;; between a short grounded circuit S
and a counterclockwise small loop of area da, on the surface of the
earth, is given by the formula

dSda sin ¢
2N rt

(25) dZys = [3 — (34 3yr + +¥De™],

where ¢ is the angle which d.S makes with 7, the line from da to dS.
This may be obtained from Sommerfeld’s formula for the horizontal
electric force due to a vertical magnetic antenna, or it may be obtained
by an application of Stokes'’s theorem to formula (20) above.

By a further application of Stokes’s theorem we may obtain the
mutual impedance between two counterclockwise small loops d4 and
da, namely,

(26) dZqs = ,‘%‘I’ . ;1;[(9 + 9qr + 4422 + ¥3r)e " — 9]
This result might also be derived from Sommerfeld’s formula for the
vertical magnetic force due to a vertical magnetic antenna.

We shall now indicate briefly how the same value of E as given in
(18) above may be obtained directly, though more laboriously, from
first principles. In this method we start from the fundamental
solution

27 u = elztmytnzglel

of the wave equation

u | u | Pu y

(28) o T o T o7 Yu = 0,

12 F, Pollaczek, ' Uber das Feld einer unendlich langen wechselstromdurchflossenen
Einfachleitung,” Elektrische Nachrichten-technik, 3, 339359 (September 1926).

1 J, R, Carson, “Wave Propagation in Overhead Wires with Ground Return,”
Bell System Technical Journal, 5, 539-554 (October 1926).

1 (i, Haberland, “Theorie der Leitung von Wechselstrom durch die Erde,”
Zeitschrift fiir angewandte Mathematik und ‘Mechanik, 6, 366=379 (October 1926).

15 F, Pollaczek, ‘‘ Gegenseitige Induktion zwischen Wechselstromfreileitungen von
endlicher Linge,” Annalen der Physik, (4), 87, 965-999 (December 1928). His as-
sumptions regarding conditions at the ground connections seem to depart considerably
from the conditions assumed in the present paper, and moreover his results are not
expressed in convenient form for direct comparison with the formula given above
for Zu.

18 1, Bateman, op. cit.,§ 4, pages 6, 7; § 11, page 26.
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which is satisfied by the electric force in the earth; v = (idm\w)V? is
the propagation constant for plane waves which vary with the time as
¢!, The parameters I, m, n satisfy the relation

(29) B4 m? 4 nt— 4= 0.

In the air, the same equations hold, but with the propagation constant
v equal to zero, and we note that the solution in the air must be chosen
to vanish at an infinite height, while in the earth the solution must
vanish at an infinite depth.

For convenience in this method we start with a short straight wire of
length 2 lying along the x axis, later allowing a to approach zero.
Thus we suppose that the current /¢ enters the earth at the point
(a, 0, 0) and leaves it at the point (—a, 0, 0). The factor ¢“* will be
omitted, however, throughout the following work. The current flow
in this system is symmetrical with respect to the vertical plane through
the wire, the xz plane, and is also symmetrical, but with sign reversed,
with respect to the vertical plane normal to the wire at its midpoint,
the yz plane. Then if we replace the three parameters I, m, n of (27)
by two independent parameters g, », such that

(30) = + iy, m = =+ iv, n= 4+ Vu+ ¥ 4+ 9,

formula (29) is identically satisfied, and we can then replace the four
solutions e=*** by their corresponding expressions in terms of sines
and cosines, namely,

sin xu sin yy, sin xu cos yv, cos xpu sin vy, COS Xu COs Y.

The above considerations of symmetry will eliminate, for each com-
ponent of the electric force, all but one of these forms. With the re-
maining solution as a basis we build up, by means of the Fourier in-
tegral, a general expression for any possible steady harmonic oscilla-
tion. Hence we may write down the general solutions for the total
electric force in the earth (z < 0), as follows.

(31) E;. = I f Fo(p, v)eV#* 47 cos xu cos yv dudp,
0 0

(32) E, f f Fy(, )Y@ sin x sin y dudy,
0 0

(33) E,

a o0
f f F.(u, v)@V 7 gin xp cos yv dudy,
o Jo
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where the positive sign is chosen in the exponential term containing z
since the solution must vanish at an infinite depth, z being negative in
the earth; and that value of the radical is taken which has a positive
real part. F., F,, F;are arbitrary functions of their arguments, to be
determined by the physical conditions of the problem.

In the air (0 < z) we may formulate the corresponding solutions for
the total electric force as

(34) E, = f f P.(u, v)e~ ¥t cos xp cos yv dudv,
0 o

(35) E, = f f Py(p, v)e ™" sin xp sin yv dudy,
o Jo

(36) E.= f f P, e~ ™etisin xp cos yv dpdy,
a Jo

where the propagation constant is zero in the air; the negative sign is
chosen in the exponential term containing z since the solution must
vanish at an infinite height, z being positive in the air; and P:, Py, P:
are arbitrary functions of their arguments.

To determine these six arbitrary functions we need six independent
relations among them. Two of these relations are obtained by
utilizing the fact that the divergence of the electric force either in the
earth or in the air is equal to zero, that is,

0E. A oE, OdE.
E +__1+__

ax | ay 0

By means of this we obtain from (31)—(33),

37) — wFe+ vFy + @ + 7 + 7#F. =0,
and from (34)-(36),

(38) — wP. + vPy — Nt + #P. = 0.

Since the horizontal components of the electric force are continuous
at the surface of the earth (z = 0) we see that we must also have, from
(31) and (34),

(39) F, = P,
and from (32) and (35),
(4’0) F, = P,
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We may obtain a fifth relation from the fact that the current I
flows through the earth from one grounding point to the other. To
utilize this fact let us compute the total current flowing out through
five faces of a rectangular prism in the earth, the sixth face being a
rectangle in the surface of the earth surrounding the grounding point
(a, 0, 0), the prism extending from x = a — ¢ to ¥ = a + £, from
y= —ntoy=n and froms= — ¢ toz= 0. The components of
the electric force being given by (31)-(33), and A being the conductivity
of the earth, we obtain for this current the expression

© . s
(41) — 4 f‘ f' Fzsm au sin fusin nvdydv,
0 /0

uv

after simplifying by means of the divergence condition (37). This
current flowing out through the prism is 7 if the face in the surface of
the earth includes only the one grounding point (a, 0, 0), but is zero
if it includes both grounding points; that is, the above integral (41)
equals I'if £ < 2a, but equals zero if 2a < £, for any positive value of 7.
[t is readily verified that the Fourier integral

(42) 8__1; f f sin® @p sin £y sin nvd#dv
™Jo Jo my
has the desired properties. Accordingly, we must have
27 .
(43) F.= — ——sinay.
TN

To obtain the one additional relation which is needed, we make use
of the fact that the current I flows through the straight wire from one
grounding point to the other. Let us integrate the magnetic force
around a rectangle in a plane perpendicular to the wire, that is,
perpendicular to the x axis, the rectangle extending from y = — 5
to y = n and from s = — { to z = {, the path of integration being
taken in the clockwise direction looking along the positive direction of
the x axis, and then equate this integral to 4= times the total current
threading the rectangle. The components of the magnetic force
which we need, H, and H,, are found from the fact that curl E= —iwl,
that is,

__OE, OE,
(44) iatl, = 522 - 052
(45) iwH, = 98z _ 9B,

ay dx '
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where the E's are given by (31)—(33) for z < 0 and by (34)—(36) for
0 < z. We now subtract from this integral 4= times the current in
the earth which threads the rectangle, this quantity being found by the
appropriate integration of E., as given by (31), over that portion of the
area of the rectangle which lies below the surface of the earth. As a
final result we obtain the expression

o &7 [T NEEE R + uF = N P — P
(1] 0

14

X cos xu sin qvdudy,

after simplifying by means of the divergence conditions (37) and (38).
The net current threading the rectangle, aftér subtracting the current
in the earth, is I if the rectangle is situated between the two grounding
points, but is zero if it is outside them; that is, the above integral (46)
equals 471 if |x| < a, but equals zero if a < ||, for any positive value
of 7. It is readily verified that the Fourier integral

161 [* (*®sin au cos xp sin qv
= dudy
T Ja Jo py

has the desired properties. Accordingly we must have

(41) — NFF A PE A uF. — N T PP — P,

_ 8iwl sinap

We can now solve equations (37)-(40), (43), and (47) for the six
arbitrary functions, obtaining

R R -
(48) F,=P,= o I:,u\'uﬂ — ” sin ay,
27 v .
(49) F,=P,= oy ———\,“2 T sin au,
21 .
(43) F.= — — sin ap,
(50) P.= 20 Vet + v+ Yy au.

A N2 + 2

Substituting these values in equations (31)—(33) and letting a
approach zero such that 2¢ = dS, we find, for the electric force in the



MUTUAL IMPEDANCE OF GROUNDED WIRES 419

earth,

s ™~ 2
(51) E:.= ﬁf f ["F__,!_av,*_ = — Vit + ¥ ’Y"] ACSEaEE
0 0 M 4

X cos xp cos yv dudv,

I R e i .
(52) E,= ,:z_Sf f %e’ ¥ gin wp sin yv dudvy,
0 0 ® v
I Y — .
(53) E.= — fﬂi?\ f f peVE Y sin e cos yv d pdv.
o Jo

These are precisely the values found by the former method, for the
integrals P and Q may be expressed as double integrals by substituting
for Jo(rp) the integral expression given by the formula ¥

2 [T
(54) Jo(rNp? + ) = if cos(ru cos 6) cos (rv sin 8)db,
0

and introducing rectangular coordinates in place of 7, §. These inte-
grals may, therefore, be written in the equivalent forms,

7 e pw o EVEERERT
(55) P = ‘—f f l—*._._._:COS X COS Vv dp.dlﬂ',
TJo Jo VA
(56) Q=2 f i j - i dud
== = ——— = - cos xp cos Yy dudv,
TJo Jo V4 PN+ 2+

and comparison with (51)-(53) again leads to the values

_I1dS #Q 9P PO a*P
(18)  (Ex By E:) ___(_Ey_ﬂa_z_&?' dxdydz' ﬁz)’
where P and ( are evaluated in (15) and (16). Thus the mutual im-
pedance formula presented in this paper may be derived directly from
first principles, without reference to the work of Sommerfeld.

I am greatly indebted to my colleague, Dr. Marion C. Gray, for
putting into its present form the derivation of my formula from
Sommerfeld’s results.

17 G. N. Watson, op. cit., page 21, formula (1) of § 2.21.



