Electrical Wave Filters Employing Quartz Crystals as
Elements

By W. P. MASON

This paper discusses the use of piezo-electric crystals as elements in wave
filters and shows that very sharp selectivities can be obtained by employing
such elements. [t is shown that by employing crystals and condensers
only, very narrow band filters result. By using coils and transformers in
conjuction with crystals and condensers, wide-band-pass and high and low-
pass filters can be constructed having very sharp selectivities. The circuit
configurations employed are such that the coil dissipation has only the effect
of adding a constant loss to the filter characteristic, this loss being indepen-
dent of the frequency. Experimental curves are given showing the degree of
selection possible.

In the appendix, a study is made of the modes of motion of a perpen-
dicularly cut crystal, and it is shown that all the resonances measured can
be derived from the elastic constants and the density of the crystal. The
effect of one mode of motion on another mode is shown to be governed by
the mutual elastic compliances of the erystal. By rotating the angle of cut
of the crystal, it is shown that some of the compliances can be made to
disappear and a crystal is obtained having practically a single resonant fre-
quency over a wide range of frequencies, Such a crystal is very advan-
tageous for filter purposes.

INTRODUCTION

ILTERS for communication systems must pass, without appreci-

able amplitude distortion, waves with frequencies between certain
limits, and must attenuate adequately all waves with somewhat greater
or smaller frequencies. To do this efficiently, the change from the
filter loss in the transmission region, to that in the attenuation region,
must occur in a frequency band which is narrow compared to the use-
ful transmission band. At low frequencies, ordinary electrical coil
and condenser filters can perform this separation of frequencies well
because the percentage band widths (ratio of band width to the mean
frequency of the band) and the percentage separation ranges (ratio of
the frequency range required, in order that the filter shall change from
its pass region to its attenuated region, to the adjacent limiting fre-
quency of the pass band) are relatively large.

For higher frequency systems, such as radio systems, or high fre-
quency carrier current systems, the band widths remain essentially the
same, and hence the percentage band widths become much smaller.
Here separation by coil and condenser filters becomes wasteful of
frequency space. For these filters, owing to the relatively low react-
ance-resistance ratio in coils (this ratio is often designated by the
letter () the insertion loss cannot be made to increase faster than a

405



406 BELL SYSTEM TECHNICAL JOURNAL

certain percentage rate with frequency. Hence an abrupt frequency
discrimination cannot be obtained between the passed frequency range
and the attenuated frequency range. In present radio systems,
double or triple demodulation is often used to supplement the selectiv-
ity of filter circuits.

If, however, elements are employed which have-large reactance-
resistance ratios, filters can be constructed which have small percent-
age bands and which attenuate in small percentage separation ranges.
Such high Q elements are generally obtainable only in mechanically
vibrating systems. Of these elements, probably the most easily used
is the piezo-electric crystal, for it possesses a natural driving mechan-
ism.

It is the purpose of this paper to describe work which has been done
in utilizing these crystals as elements in filters.! Since the quartz
crystal appears to be the most advantageous piezo-electric crystal, all
of the work described in this paper is an application of this type of
crystal. The possibilities and limitations are discussed and experi-
mental data are given showing that these filters are realizable in a
practical form.

Piezo-ELECTRIC CRYSTALS AND THEIR EQUIVALENT ELECTRICAL
CIrcuITs

When an electric force is applied to two plates adjacent to a piezo-
electric crystal, a mechanical force is exerted along certain directions
which deforms the crystal from its original shape. On the other hand
deformations in certain directions in the crystal produce a charge on
the electric plates. Hence the crystal is a system in which a mechanical
electrical coupling exists between the mechanical and electrical parts
of the system.

Quartz crystals, particularly when vibrating along their smallest
dimension, as they do for high frequency oscillators, have a large num-
ber of resonances which do not differ much in frequency from the prin-
cipal resonance. While this is no great disadvantage for an oscillator,
since an oscillator can pick out the strongest resonance and utilize it
only, the large number of resonances is a great disadvantage when using

1 The development of ideas in the direction of employing crystals as elements of
selecting circuits dates back to Cady who in patent—Re, 17,358 issued July 2, 1929,
original filed January 28, 1920—showed various types of tuned circuits of which
crystals formed a part. Subsequently Espenschied in patent 1,795,204, issued
March 3, 1931, filed January 3, 1927—patented broadly the use of crystals as ele-
ments of true filter structures. More recently a patent of the writer's—1,921,035
issued August 8, 1933, filed Sept. 30, 1931—describes the use of crystals in lattice
structures, and this patent, together with several others pending, forms the basis

for the filters discussed in this paper. It is only within the last few years that filter .
structures including crystal elements have been practically realized.
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the crystal to select currents over a wide band of frequencies and to
reject currents whose frequencies lie outside this pass region. Hence
it is advantageous for filter uses to obtain a crystal which has sub-
stantially a single prominent resonance over a wide range of fre-
quencies. Such a vibrating element can usually be obtained only by
making the dimension along which the crystal is vibrating, large
compared to the other dimensions, and this fact determines the best
cut of crystal to use.

Two principal types of orientations have usually been employed in
cutting quartz crystals. The first type is the so-called Curie or per-
pendicular cut in which the crystal is so cut that its major surfaces are
parallel to the optical axis and perpendicular to an electrical axis.
Such a crystal is shown by Fig. 1. The second type of cut is the parallel

OPTICAL AXIS=Z

|~ MECHANICAL AXIS=Y

r-—ELECTRICAL AXIS=X

Fig. 1—Orientation of a Curie or perpendicular cut with respect to native crystal.

or 30-degree cut in which the major surfaces of the crystal plate are
parallel to both the optical and electrical axes. Since this cut results
in a crystal vibrating along its smallest dimension, it is not of much
interest for filter uses.

When using a crystal as part of an electrical system, it is desirable
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to know the constants of an electrical circuit which has the same im-
pedance characteristic as the crystal. If attention is confined to the
single prominent resonance, the electrical circuit representing the
crystal is as shown by Fig. 2. Some theoretical consideration has been
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Fig. 2—Equivalent electrical circuit of piezo-electric crystal.

given to the electrical network representing perpendicularly cut crys-
tals by Cady,? Van Dyke,® Dye,* Vigoureux ® and others. Assuming a
quartz plate to have only plane wave motion, Vigoureux has investi-
gated the motion in such a plate, and has shown that there will be
resonances at odd harmonics of a particular frequency determined by
the length and mechanical constants of the plate. In the neighbor-
hood of the fundamental resonance of the crystal, with the electrical
plates placed on the crystal surfaces, he finds the equivalent circuit
shown by Fig. 2A, the elements of which in practical units have the

following values:
Co = LK
° 7 4xl, X 9 X 10"
TR, X9 X 108
L. — Ldmp X 9 X 10"
LT 8LEML
where lo, I, 1. are respectively the lengths of the optical, mechanical,
and electrical axes in centimeters,

K = specific inductive capacitance = 4.55 for quartz,

= capacitance in farads,
= capacitance in farads, (€))

= inductance in henries,

E = Young's modulus = 7.85 X 10" for quartz,
d,; = piezo-electric constant = 6.4 X 1078 for quartz,
p = density = 2.654 for quartz.

2 W. G. Cady: Phys. Rev. X1X, p. 1 (1922); Proc. I. R. E. X, p. 83, (1922).

3 K. S. Van Dyke: Abstract 52, Phys. Rev., June, 1925; Proc. I. R. E., June, 1928.
4D, W. Dye: Proc. Phys. Soc., XXXVIII (5), pp. 399-453.

§ P, Vigoureux: Phil. Mag., Dec., 1928, pp. 1140-53.
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Inserting these values, the element values in terms of the dimensions
become

Co = 0.402 X 1012 1 J/I,,
Cy = 0.289 X 10~ 1 Lo/l,, 2)
Ly = 118.2 Ll [l

From these values it is seen that there is a fixed ratio between these
two capacitances ¢ of

r = Co/Cy = 140. 3)

As will be evident later, this ratio limits the possibilities of the use of
quartz crystals in filter circuits.

Experiments with quartz crystals, with electrodes contiguous to
the crystal surfaces and with the optical and electrical axes small
compared to the mechanical axis, show that these values are approxi-
mately correct. The value of Cy checks the above theoretical value
quite closely. The value of C; obtained by experiment is somewhat
larger than that given by equation (2) and the value of the inductance
somewhat smaller. The ratio of Cy/C; has been found as low as 115
to 1, but a value of 125 to 1 is about all that can be realized, when
account is taken of the distributed capacitance of the holder, connect-
ing wires, etc.

When either of the dimensions along the electrical or optical axes
becomes more than a small fraction of the dimension of the mechanical
axis, the plane wave equations given above no longer hold accurately.
This is due to the fact that a coupling exists between the motion along
the mechanical axis and other modes of motion. For an isotropic
body, one is familiar with the fact that when a bar is compressed or
stretched it tends to stretch or compress in directions perpendicular to
the principal direction of motion. This state of affairs may be de-
scribed by saying that the modes of motion are coupled. In a crystal
this same relation exists and in addition, due to its crystalline form, a
shearing motion is set up whose shearing plane is determined by the
mechanical and optical axes and whose motion is parallel to the me-
chanical axis. In fact the shearing motion is more closely coupled to
the mechanical axis motion that is the extensional motion. As long
as the optical axis is small compared to the mechanical axis, this coup-
ling action manifests itself as a decreased stiffness along the mechanical
axis, but if a condition of resonance is approached for the motion along
the optical axis, the mode of motion is entirely changed. This effect is

¢In a paper contributed recently to the Institute of Radio Engineers, it is shown

that this ratio limitation is a consequence of a fixed electro-mechanical coupling
between the electrical and mechanical systems of the crystal.
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analyzed in the appendix and is quantitatively explained in terms of
the elastic constants of the crystal. On the basis of this explanation,
an investigation is also given in the appendix, of crystals cut at differ-
ent orientations, and a crystal having many advantages for filter uses
is derived.

Some experimental data 7 have been taken for perpendicularly cut
crystals for various ratios of axes. Figure 3 shows the principal reso-

275

270 F—==13 +

n
=1}
wn

260 - \

n

o

o

d
)

FREQUENCY IN KILOCYCLES PER SECOND
&
(4]

MECHANICAL AXES=10 MILLIMETERS
ELECTRICAL AXES=0.5 MILLIMETERS

n
iy
w

n
A
o

235

o] | 2 3 4 5 6 7 8 9 .10
DEPTH OF OPTICAL AXES IN MILLIMETERS

Fig. 3—Principal resonant frequency of a perpendicularly cut crystal asa function of
the width of the crystal.

nant frequency (the frequency for which the electrical impedance is a
minimum) for a series of crystals whose mechanical axes are all 10
millimeters, whose electrical axes are 0.5 millimeter, and whose optical
axes vary from 1 to 10 millimeters. ~As will be observed, increasing the
length of the optical axis in general lowers the resonant frequency.
The discontinuity in the curve for the ratio ly/l,, = .23 is discussed in
detail in the appendix.

7 The experimental data shown by Figs. 3 and 4 have been taken by Mr. C. A,
Bieling while the temperature coefficient curve of Fig. 5 was measured by Mr. S. C.

Hight.



ELECTRICAL WAVE FILTERS 411

The solid curve of Fig. 4 shows a measurement of the ratio, 7, of the
capacitances in the simple representation of the crystal shown by Fig.
2A. This ratio is measured by determining the resonant and anti-
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Fig. 4—Ratio of capacitances of a perpendicularly cut crystal.

resonant frequencies of the crystal. r is related to these by the
formula

fa¥lfet =1+ 1/r, 4)

where f4 is the anti-resonant frequency and fr the resonant frequency.

Figure 5 shows a measurement of the temperature coefficient of the
resonant frequency for the same set of crystals. It will be noted that
as the optical axis increases in depth, the temperature coefficient
increases and that crystals with smaller dimensions along the optical
axis in general have much smaller coefficients. Increasing the thick-
ness along the electrical axis has the effect of decreasing the tempera-
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ture coefficient and in fact for certain ratios of the three axes the coeffi-
cient approaches zero.
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Fig. 5—Temperature coefficient of a perpendicularly cut crystal.

When the crystals are used in filters, two quantities are usually
specified, the resonant frequency of the crystal and the capacitance of
the series condenser. The shunt capacitance of the crystal is usually
incorporated with an electrical capacitance which is specified by other
considerations. The resonant frequency is determined principally by
the mechanical axis length. The capacitance of the series condenser
is determined by the ratio of the area to the thickness or by Iloln/l..
The third condition is given by the fact that the length of the optical
axis should be kept as small as possible in order that any subsidiary
resonances shall be as far from the principle resonance as possible.
The curves of Figs. 3 and 4 and the fact that the resonant frequency of
a given shaped crystal varies inversely as the length, can be used to
determine the dimensions of the crystal. It is obvious that the
crystal should not be used in the region 0.2 < ly/l., < 0.3 on account of
the two prominent resonant frequencies.

Use or CrystaLs AND CONDENSERS AS FILTER ELEMENTS

Considering crystals as representable by the simple electrical
circuit shown on Fig. 24, these circuits can be utilized as elements in
electrical networks. They may, of course, be used in a network em-
ploying any kinds of electrical elements. Since, however, their Q is
high, it would be advantageous not to employ any electrical elements
which do not also have a high Q, in order that the dissipation intro-
dqced by these elements may not be a matter of consideration. The
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O’s of the best electrical condensers may be as high as 10,000, which
is of the same order as the crystal Q, and hence such elements can be
employed advantageously with crystals. It is the purpose of this
section to discuss the possibilities and limitations of filter sections em-
ploying crystals and condensers only.

The simplest types of filter sections are the ladder type networks
illustrated by Fig. 6. If crystals and condensers only are employed in
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Fig. 6—Ladder networks employing crystals and condensers.

this type network, there are only three types of single band sections
possible, all being band-pass filters. Figure 6 shows these sections, the
impedance characteristic of each arm, the attenuation characteristics
of these networks considered as filters, and their iterative impedances.
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These attenuation characteristics and their limitations are at once
found from a consideration of the impedance frequency curves for each
arm shown by Fig. 6C. For a ladder type network it is well known ®
that a pass band will exist when

0= iz, 1, (9)

where Z; is the impedance of the series arm and Z, the impedance of
the shunt arm. Hence, considering the first filter of Fig. 6, it is ob-
vious that the lower cut-off f¢; will come at the resonant frequency of
the crystal. The upper cut-off fcs will come some place between the
resonant and anti-resonant frequency, the exact position depending
on the amount of capacitance in shunt. The anti-resonant frequency
will be a point of infinite attenuation since the filter will have an in-
finite series impedance at this frequency.

With the restriction on the ratio of capacitances of the crystal
noted in the previous section, it is easily shown that the ratio of the
anti-resonant frequency to the resonant frequency is fixed and is about
1.004. Hence, we see that the ratio of feo to fe; can be at most 0.4
per cent. The band width must be less than this since fc; must come
between fo and fc;. A similar limitation occurs for the second filter
of this figure, for which case the separation of f« and fc, is at most 0.4
per cent. For filter number 3, a somewhat larger frequency separa-
tion between the points of infinite attenuation results, it being at most
0.8 per cent. The addition of any electrical capacitance in series or
shunt with any of the crystals results in a narrowing of the band width.

It is seen then that there are two limitations in the types of filters
obtainable with crystals and condensers in ladder sections. One,
there is a limitation on the position of the peak frequencies and two,
there is a limitation for the band width of the filters.

By employing the more general lattice type of filter section shown
on Fig. 7, the first of these limitations can be removed. By means of
this type of section it is possible to locate the attenuation peak fre-
quencies at any position with respect to the pass band, but the pass
band is limited in width to at most 0.8 per cent.

For a lattice filter a pass band exists when the impedances of the
two arms are related by the expression ?

Zy_
2‘2; - ’ (6)

8 See, for example, page 190 in book by K. S. Johnson, ‘' Transmission Circuits for
Telephonic Communications."

9 “Physical Theory of the Electric Wave Filter,” G. A. Campbell, B. S. T. J.,,
November, 1922,

0= w0
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where Z, is the impedance of the series arm (either 1, 2 or 3, 4 of Fig.
74) and Z, the impedance of the lattice arm (either 1, 3 or 2, 4 of
Fig. 74). Hence, if one pair of branches has a reactance whose sign
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Fig. 7—Lattice network employing crystals and condensers.

is opposite to that of the other pair, a pass band exists, while if they are
the same sign an attenuated band exists. Since the lattice is in the
form of a Wheatstone bridge an infinite attenuation exists when the
bridge is balanced, which occurs when both pairs of arms have the same
impedance.

Let us consider a lattice filter with a crystal in each arm as shown
by Fig. 7B. The crystals form two pairs of identical crystals, two
alike in the series arms and two alike in the lattice arms. In order that
a single band shall result it is necessary that the anti-resonant frequency
of one arm coincide with the resonant frequency of the other as shown
by Fig. 7E. It is obvious that the band width will be twice the width
of the resonant region of the crystal or at most 0.8 per cent. Since the
attenuation peaks occur when the two arms have the same impedance,
they may be placed in any desired position by varying the impedance
of one set of crystals with respect to the other. If crystals alone are
used, these peaks will be symmetrical with respect to the pass band,
but if in addition condensers are used with these grystals, the peaks may
be made to occur dissymmetrically. In fact they may be made to
occur so that both are on one side of the pass band. A narrower band
results when capacitances are used in addition to crystals since the
ratio of capacitances becomes larger. This may be utilized to control
the width of the pass band to given any value less than 0.8 per cent.
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The use of more crystals than four, in any network configuration
employing only quartz crystals and condensers can be shown to result
in no wider bands than 0.8 per cent, although higher losses can be ob-
tained by the use of more crystals. Hence by the use of quartz crys-
tals and condensers alone, a limitation in band width to 0.8 per cent
is a necessary consequence of the fixed ratio of capacitances Co/C; of
equation (3).

FILTER SEcTIONS EMPLOVING CRysTALS, CONDENSERS AND CoOILS

As was pointed out in the last section, filters employing only
crystals and condensers are limited to band pass sections whose band
widths do not exceed about 0.8 per cent. This band width is too nar-
row for a good many applications and hence it is desirable to obtain a
filter section allowing wider bands while still maintaining the essential
advantages resulting from the use of sharply resonant crystals. Such
filters can be obtained only by the use of inductance coils as elements.
Since the ratio of reactance to resistance of the best coils mounted in a
reasonable space does not exceed 400, attention must be given to the
effect of the dissipation.

The effect of dissipation in a filter is two-fold. It may add a con-
stant loss to the insertion loss characteristic of the filter, and it may
cause a loss varying with frequency in the transmitting band of the
filter. The second effect is much more serious for most systems since
an additive loss can be overcome by the use of vacuum tube amplifiers
whereas the second effect limits the slope of the insertion loss frequency
curve. Hence, if the dissipation in the coils needed to widen the band

- of the filter has only the effect of increasing the loss equally in the
transmitting band and the attenuating band of the filter, a satisfactory
result is obtained. The question is to find what configuration the
coils must be placed in with respect to the crystals and condensers in
order that their dissipation will not cause a loss varying appreciably
with frequency.

Not every configuration will give this result, as is shown by the fol-
lowing example. The equivalent circuit of the crystal shown by Fig. 24
can be transformed into the form shown by Fig. 84 where the ratio
C1/Cy = 125. This gives the same reactance curve as before, limited
to a width of 0.4 per cent. Now suppose that we add an electrical
anti-resonant circuit in series with the crystal—Fig. 8 B—resonating
at the same frequency and having the same constants as the anti-
resonant network representing the crystal. If this circuit were dissipa-
tionless we could combine the two resonant circuits into one with twice
the inductance and half the capacitance of that for the crystal alone
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and hence the capacitance ratio would be 1/2 (125) or 62.5. The band
width possible would then be twice that of the crystal alone. However,
when the effect of dissipation is considered it is found that not much
has been gained by employing the anti-resonant circuit. For the re-
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Fig. 8—Use of an anti-resonant circuit to broaden the resonance region of a crystal.

sistance, at resonance of the crystal and electrical circuit combination,
will be the resistance of the electrical resonant circiit since that of the
crystal is small compared to the electrical element. Hence we have
doubled the impedance of the anti-resonant circuit and have the re-
sistance of the electrical circuit. Hence the ratio (Q) of reactance to
resistance of the anti-resonant circuit is double that of the electrical
element alone. Even this Q, however, is insufficient to make a narrow
band filter whose band width is 1.6 per cent (twice that possible with
a crystal alone) and hence no useful purpose is served by combining a
crystal with an electrical anti-resonant circuit.
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Fig. 9—Circuit showing resistances on the ends of filter sections.

Suppose, however, that all of the dissipation of the filter section be
concentrated at the ends of the sections, either in series or in parallel
with the filter as shown on Fig. 9. Then provided these resistances are
within certain limits, they can be incorporated in the terminal resist-
ances of the filter by making these resistances either smaller or larger
for series or shunt filter resistances respectively. Between sections the
resistances on the ends of the filter can be incorporated with other
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resistances in such a way as to make a constant resistance attenuator of
essentially the same impedance as the filter. For a series coil, this
can be done by putting a shunt resistance between sections, while for a
shunt coil it can be done by putting series resistances between sections.
If this is done the whole effect of the dissipation is to add a constant
loss to the dissipationless filter characteristic, this loss being independ-
ent of the frequency.

Since the lattice type network provides the most general type of
filter network, attention will first be directed to this type of section
employing inductances. It is easily proved that if any impedance is in
series with both sides of a lattice network, as shown by Fig. 104, then
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Fig. 10—Two network equivalences.

this is equivalent to placing this impedance in series with each arm of
the lattice network as shown. Similarly, if a given impedance shunts
the two ends of a lattice network, as shown by Fig. 10B, a lattice net-
work equivalent to this is obtained by placing the impedance in shunt
with all arms of the lattice. We are then led to consider a lattice net-
work which contains coils either in series or in shunt with the arms of a
lattice network, these arms containing only crystals and condensers,
since the dissipation will then be effectively either in series or in shunt
with the lattice network section.

If an inductance is added in series with a crystal the resulting re-
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actance is shown by the full line of Fig. 11, the dotted lines show the
reactance curves for the individual elements. It is evident that the
resonant frequency of the crystal is lowered, the anti-resonant point
remains the same, and an additional resonance is added at a frequency

o]

REACTANCE

Fig. 11—Impedance characteristic of crystal and coil in series.

above the anti-resonant frequency. For a crystal whose ratio of ca-
pacitances 7 is about 125 it is easily shown by calculation that if the
resonances are evenly spaced on either side of the anti-resonant fre-
quency the percentage frequency separation between the upper reso-
nance and the lower resonance is in the order of 9 per cent.

Suppose now that this element is placed in the series arm of a lattice
network and another element of similar character is placed in the lat-
tice arm, the second element having its lowest resonance coincide
with the anti-resonance of the first element, and having the anti-
resonance of the second element coincide with the highest resonance of
the first element. This condition is shown by Fig. 12C. This network
will produce a band-pass filter whose band extends from the lowest
resonance of the series arm to the highest resonance of the lattice arm,
a total percentage frequency band width of 13.5 per cent. By design-
ing the impedances correctly the impedances of the two arms can be
made to coincide three times so that there is a possibility of three
attenuation peaks due to this section as shown by Fig. 12D. The loss
introduced by the filter is equivalent to that introduced by three simple
band-pass sections. Ordinarily the coils in the two arms are made
equal so that their resistances are equal and for this case one of the
peaks occurs at an infinite frequency. Since the resistances are
equal, then by the theorem illustrated by Fig. 104 these resistances
can be brought out on the ends and incorporated with the terminal
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resistances, with the result that the dissipation of the coils needed to
* broaden the band has only the effect of adding a constant loss to the
filter characteristic, this loss being independent of the frequency.
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Fig. 12—Lattice network band-pass filter employing series coils.

To vary the width of the band below the 13.5 per cent band ob-
tained with crystals only, added capacitances can be placed in parallel
with the crystals increasing theratio#. This results in a smaller separa-
tion in the resonant frequencies and hence a narrower band width.
By this means the band width can be decreased indefinitely, although
the dissipation caused by the coils introduces large losses for band
widths much less than 1/2 per cent. By this means, however, it is
possible to obtain band widths down to the widths which can be real-
ized with crystals alone. On the upper side electrical filters can be
built whose widths are as small as 13.5 per cent, hence this method fills
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in a range not practical with electrical filters, or with crystals alone.
Another important characteristic of the filter is its iterative im-,
pedance. For a lattice filter this is given by ?

Z[ = VZIZ2r

where Z; is the impedance of the series arm and Za that of the lattice
arm. For a dissipationless filter, this is shown by Fig. 12E, as can be
easily verified by a consideration of the reactance curves of Fig. 12C.
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Fig. 13—Lattice network band-pass filter employing parallel coils.

This type of filter results in a relatively low impedance, for example
about 600 ohms for a filter whose mid-band frequency is 64 kilocycles
and whose band width is that shown on Fig. 19. Since the band width
is decreased by adding more capacitance, it is evident that smaller
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percentage band width filters will have lower impedances than the
.wider ones. For example, the filter whose characteristic is shown by
Fig. 20, has an iterative impedance of 25 ohms.

It is evident that a still wider band can be obtained with the sec-
tion discussed above by making the two resonances of Fig. 11 dissym-
metrical. If the lower one is brought in closer to the anti-resonant
frequency the top one extends farther out in such a manner that the
total percentage frequency separation is greater than 9 per cent. If
one element of this type is combined with one whose lower resonance is
brought farther away from the anti-resonance than is the upper reso-
nance, a filter whose pass band is greater than 13.5 per cent is readily
obtained. On the other hand as the band is widened by this means,
the cross-over points of the impedances of the two arms are of necessity
brought very close to the cut-off frequencies, so that such a filter would
introduce most of its loss very close to the cut-off frequencies. This
type of characteristic might be useful in supplementing the loss charac-
teristic possible with electrical elements, but by itself would not pro-
duce a very useful result.

We have so far discussed the characteristics which can be obtained
by placing coils in series with crystals. An equally useful result is
obtained by placing coils in shunt with crystals as shown by Fig. 13B.
This arrangement results in a band-pass filter capable of giving the
same band width as the first type discussed above. The only difference

i
i\l & : _
1)1 [ - T [t -|||r|
>
S 0 K
——

Fig. 14—Band-pass filter used between vacuum tubes.

occurs in the iterative impedance which will be as shown by Fig. 13E.
For narrow band widths this type of filter has a very high iterative
impedance. For example, for a one per cent band width, using ordin-
ary sized coils and crystals, the iterative impedance may be as high as
400,000 ohms. Such filters can be used advantageously in coupling
together high impedance screen gird tubes without the use of trans-
formers, One such circuit is shown schematically by Fig. 14.

Filters made by using either series or shunt coils in conjunction
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with condensers and crystals make very acceptable band-pass filters
capable of moderate band widths. It is often desirable to obtain low
and high-pass filters having a very sharp selectivity. The filter of Fig.
12 can be modified to give a high-pass characteristic by leaving out
the coils in the series or lattice arms of the network. However, it will
be found that the cross-over points in the impedance curve of necessity
come very close to the pass band and hence no appreciable loss can be
maintained at frequencies remote from the pass band. A broader and
more useful characteristic is obtained by using a transformer having
a preassigned coefficient of coupling, in conjunction with crystals and
condensers, as the element for broadening the separation of resonances.
Such an element is shown by Fig. 154. As is well known, a trans-
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Fig. 15—Impedance characteristic of a transformer, condenser, and crystal.

former with a specified coupling can be replaced by a T network of
three inductances as shown by Fig. 15B. The impedance character-
istic, as shown by Fig. 15C, has two anti-resonant frequencies f; and f;,
and two resonant frequencies f; and fi.

Suppose now that an element of this type is placed in one arm of the
lattice and a similar element having a condenser in series with it is
placed in the other arm as shown by Fig. 164. If the elements are so
proportioned that the anti-resonances of one arm coincide with the
resonances of the other arm and vice versa, as shown by Fig. 168, the
impedances of the two arms are of opposite sign till the last resonance.
Hence, a low pass filter results. It is possible to make the two im-
pedance curves cross five times, so that an attenuation corresponding
to five simple sections of low-pass filter results. Other arrangements of
the resonances are also possible and are advantageous for special
purposes. For example, as shown by Fig. 16C, we can make the last
resonance and anti-resonance of both arms coincide, and the other
resonances of one arm coincide with the anti-resonances of the second
arm. This arrangement results in a low-pass filter having an attenua-
tion corresponding to three simple low-pass filter sections and an
impedance which can be made nearly constant to a frequency very near
the cut-off frequency. This is advantageous for obtaining a filter with
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.a sharp cut-off, for otherwise the mismatch of impedance near the
cut-off frequency causes large reflection losses which prevent the
possibility of obtaining a sharp discrimination.
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Fig. 16—Lattice network low-pass filter employing transformers, condensers, and
crystals.

The effect of dissipation in the transformer on the loss characteristic
is not so easy to analyze in this case as in the case of a series coil. The
effect can be obtained approximately as follows. Of the three coils of
Fig. 15B representing the transformer, the shunt coil has the least
dissipation since no copper losses are included in this coil. For an
air core coil, the Q of this shunt coil becomes very high and its dissipa-
tion can be neglected. The resistance of the primary winding can be
incorporated in the terminal resistance as in the series coil type of
filter and hence will cause only an added loss. The resistance of the
secondary will be in series with the crystal and condenser, and for a
reasonably good coil is of the same order of magnitude as the crystal
resistance at resonance. Hence its effect will be much the same as
cutting the Q of the crystal in half, so that instead of a crystal whose
Q is 10,000, we use one whose Q is 5000 and a dissipationless coil.
We see then that the Q of the crystal is still the most important factor
in determining the sharpness of cut-off in the filter as in the previous
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ones described, and hence a very sharp selectivity can be obtained with
this circuit. It is possible to save elements in this filter by using two
primaries for each coil, putting one primary in one series or lattice arm
and the other in the corresponding series or lattice arms as shown by
Fig. 16D. Only half the number of elements per section are required.

By replacing the series condenser of the series arm of Fig. 164 by a
parallel condenser, it is possible to change the filter from a low-pass
to a high-pass filter. Condensers in series, or in parallel with both
arms result in wide band-pass filters. It is possible to obtain a wider
pass band with this type of filter than with the single coil type since the
resonances will be spread over a wider range of frequencies.

In a good many cases it is desirable to have unbalanced filter sec-
tions rather than the balanced type which results from the use of a
lattice network. This is particularly true for high impedance circuits
for use with vacuum tubes. Since the lattice type section is the most
general type, it gives the most general characteristics obtainable.
The filter sections described here can in some cases be reduced to un-
balanced bridge T sections by well known network transformations,
with, however, more restrictions on the type of attenuation character-
istics physically obtainable.

A very simple bridge T network, which is equivalent to a lattice
network of the kind shown on Fig. 13, with two crystals replaced by
condensers, is shown on Fig. 17. This section employs mutual induct-
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Fig. 17—Single crystal bridge T band-pass filter.

ance, and the resistance 1 shown is necessary in order to balance the
arms of the equivalent lattice. This type of network is able to repro-
duce some of the characteristics of the lattice filter, but is not so general
and is, moreover, affected by the dissipation of the coil to a larger extent
than the equivalent lattice.

10 The use of this resistance was suggested by Mr. S. Darlington and practically
all the work of developing this filter has been done by Mr. R. A. Sykes.
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EXPERIMENTAL RESULTS

A number of filters have been constructed, during the past four
years, which employ quartz crystals as elements. Figure 18 shows the
measured insertion loss characteristic of a narrow band filter ! employ-
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Fig. 18—Measured insertion loss characteristic of a narrow band-pass filter.

ing only crystals and condensers. This filter employs two sections of
filter No. 3 of Fig. 6. It will be noted that in spite of the very narrow
band width, the insertion loss in the transmitted band is quite small.

A number of the broader band filters employing coils as well as
condensers and crystals have also been constructed. The frequency
range so far developed extends from 36 kilocycles to 1200 kilocycles.
Figure 19 shows the insertion loss characteristic of a band-pass filter
whose mid-frequency is 64 kilocycles and whose band width is 2500
cycles. The insertion loss rises to 75 db, 1500 cycles on either side of
the pass region. This filter was constructed from two sections of the
band-pass type described in Fig. 12. A similar insertion loss character-
istic, but shifted to a higher frequency, is shown by Fig. 20. The
insertion loss in the center of the band for this higher frequency filter
is considerably larger due to the smaller percentage band width. Itis -
interesting to note that practically all of this loss is due to the dissipa-
tion introduced by the coils. The useful percentage band width is
about one-half per cent and the filter reaches its maximum attenuation

1t The filters whose characteristics are shown on Figs. 18 and 21 were designed and
constructed by Messrs. C. E. Lane and W. G. Laskey. The author wishes to call
attention to the fact that they and others associated with them in the Laboratories
have made considerable progress in connection with the practical difficulties en-
countered in the design and construction of these filters such as working out the
high precision element adjustment methods required, in methods of mounting, and
in shielding methods,



o
o

ELECTRICAL WAVE FILTERS

427

@
o

~
o

N

o
o

o
o

B
=]

INSERTION LOSS IN DECIBELS
w
=]

n
o

S

\
\

/

(=]

\

/

58

85

59 60

6l 62 63

64 65

66

67

68 69

FREQUENCY IN KILOCYCLES PER SECOND

70

71

Fig. 19—Measured insertion loss characteristic of a band-pass filter.
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in less than one-fourth per cent frequency range on either side of the
pass band.
Figure 21 shows the insertion loss characteristics of a filter employed
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Fig. 21—Measured insertion loss characteristic of a band-pass filter used in a single
side band radio receiver.

in an experimental radio system for separating the two sidebands of a
channel at a high frequency. Here the separation is effected in about
0.15 per cent frequency range. With the best electrical filters the
frequency space required for such a separation is about 1.5 per cent.

Figure 22 shows the insertion loss characteristic of a high-pass filter
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constructed by using the circuit of Fig. 16D, modified by using a paral-
lel condenser rather than a series condenser. The filter obtains a
65 db discrimination in less than a 0.12 per cent frequency separation.

Figure 23 shows a characteristic obtained by employing a filter of
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Fig. 23—Measured insertion loss characteristic of a single crystal bridge T filter.

the type shown by Fig. 17, together with a screen grid vacuum tube.
The result is plotted as the gain of the circuit since this gives the most
significant result for this type of circuit.

APPENDIX

THE MoDES OF VIBRATION OF A PERPENDICULARLY CuT QUARTZ
CRYSTAL

Introduction

Quartz crystals have been cut into two principal types of orienta-
tions with respect to the natural crystal faces. The first type is the so-
called Curie or perpendicular cut in which the crystal is so cut that its
major surfaces are perpendicular to an electrical axis and parallel to the
optical axis. Figure 1 shows such a cut. The second type is the so-
called parallel or 30-degree cut in which the major surfaces are parallel
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to both the optical and electrical axes. In this appendix a study is
made of the modes of motion of a perpendicularly cut crystal. The
effect has been studied of rotating the direction of the principal axis
while still maintaining the principal surfaces perpendicular to the
electrical axis. Such a crystal is designated as a perpendicularly cut
crystal with an angle of rotation 6.

The perpendicularly cut crystal has received considerable theoret-
ical and experimental consideration especially from Cady,? Van Dyke,?
Dye % and Vigoreux.® They have assumed that the crystal has a plane
wave vibration, and have calculated the frequencies of resonance in
terms of the elastic constants and the density of the crystal, and have
derived equivalent electrical networks for giving their electrical im-
pedance. Such representations indicate that there should be one
resonance for the crystal, the frequency of which is inversely propor-
tional to the length and independent of the width of the crystal. As
long as the length of the mechanical axis is large compared to that of
any other axis, this prediction agrees with the experiment, but when
the length of the other axes become comparable with that of the
mechanical axis, the prediction is no longer fulfilled by experiment.
It has long been recognized that this deviation is due to the failure of
the plane wave assumption. Rayleigh '? has given a correction for
taking account of lateral motion, which is applicable to an isotropic
medium. In a crystal, shear vibrations may be set up as well and
for this case Rayleigh's correction can only be regarded as qualitative.
Also if the other sets of resonance frequencies are to be investigated,
account must be taken of the resonances of the other modes of vibra-
tion, and their reaction on the mode to be studied.

In this appendix experimental results have been obtained showing
the frequencies of resonance found in perpendicularly cut crystals of
various shapes and orientations. These frequencies are correlated
with the elastic constants of the crystal and are shown to be com-
pletely accounted for by them. A coupled circuit representation is
developed which is capable of predicting the main features of the
principal vibration, including the change of frequency with the shape
and orientation of the crystal, and the temperature coefficient curves.

Experimental Determination of the Resonant Frequencies
In order to investigate the modes of motion in a perpendicularly
cut crystal in which the main axis coincides with the mechanical axis
of the crystal, a set of measurements has been made on crystals whose

2,3.4,5 [ oc. cit.
12 Rayleigh, * Theory of Sound,” Vol. I, Chapter VII, page 252.



ELECTRICAL WAVE FILTERS 431

mechanical axes are all 1.00 centimeter long, whose electrical axes are
very thin, being 0.05 centimeter, and whose optical axes vary in
dimension from 0.1 centimeter to 1.00 centimeter. In order toeliminate
the effect of a series capacitance due to an air gap, the crystals were
plated with a very thin coat of platinum. The effect of an added shunt
capacitance in parallel with the crystal, due to the electrode capaci-
tances, was practically eliminated by running the crystal electrodes in
an outer grounded conductor as shown in Fig. 24, which shows the
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Fig. 24—Measuring circuit used to measure the resonances of a crystal.

measuring circuit. Contact to the crystal plating is made by means of
small electrode points placed at the center of the crystal and kept in
place by a small pressure. An increase in pressure over a moderate
range was found to have no effect on the frequency of the crystal.
The lowering of frequency due to plating was evaluated by depositing
several films of known weight on the crystal and plotting its resonant
frequency as a function of film weight. The intercept of this curve
for a zero plating was taken as the frequency of the unplated crystal.

When the frequency of the oscillator was varied, the current in the
detector showed frequencies of maximum and minimum current out-
put which are respectively the frequencies of resonance and anti-
resonance of the crystal. In order to locate accurately the frequencies
of anti-resonance, it was found necessary to insert a stage of tuning in
the detector, in order to discriminate against the harmonics of the
oscillator. For a given crystal the frequency of the oscillator was
varied over a wide range and the resonant and anti-resonant frequen-
cies of the crystal were measured. The results of these measurements
are shown by Fig. 25. In this curve the bottom part of the line repre-



432 BELL SYSTEM TECHNICAL JOURNAL

sents the actual measured frequency, while the width of the line is
proportional to the frequency difference between resonance and anti-
resonance. In order to make this quantity observable, the frequency
difference between resonance and anti-resonance is multiplied by a

factor 6.
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Fig. 25—Measured resonances of a perpendicularly cut crystal.

As long as the ratio of the optical to the mechanical axis is less than
0.2, the assumption of plane wave motion agrees well with experiment
since there is only one resonance and its frequency does not depend
to any great extent on the optical axis. However, above this point two
frequencies make their appearance and react on each other to produce
the coupled circuit curve shown. Finally when the ratio of optical
to mechanical axes becomes larger a total of four resonant frequenices
appear. Since a large number of crystals are used whose ratios of
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optical to mechanical axes are greater than 0.2, it becomes a matter of
some importance to investigate the causes of the additional resonances.

Interpretation of the Measured Resonance Frequency Curves of a Per-
pendicularly Cut Crystal

The plane wave assumption is valid for crystals whose width is

less than 1/5 of their length, but it fails for wider crystals. It fails to

represent a rectangular crystal because it does not allow for a wave

motion in any other direction. That such a motion will occur is readily

found by inspecting the stress-strain equations of a quartz crystal,

given by equation (7).
— %, = suX: + sV, + suZ. + su¥,
— Yy = s1e Xz + Suyy + 5132, — s Y,
—z, = suX.+ sV, + 53342, (7)
— v = suXz — su¥y + sul
—z, = sul:+ 514Xy,
— Xy = suZs + (s — 512) X 4y

where x,, ¥, 2. are the three components of extensional strain, and
Vs, 2z, Xy the three components of shearing strains. X., ¥y, Z., ¥, Z.,
and X, are the applied stresses and 51, etc. are the six elastic compli-
ances of the crystal. Their values are not determined accurately but
the best known values are given in equation (42). In this equation the
X axis coincides with the electrical axis of the crystal, the ¥ axis with
the mechanical axis, and the Z axis with the optical axis.

Z AXIS

Y AXIS

Fig. 26—Form of crystal distorted by an applied ¥, force.

Limiting ourselves now to an X or perpendicularly cut crystal the
only stresses applied by the piezo-electric effect are an X, a ¥y, and
a ¥V, stress. Hence for such a crystal only four of the six possible types
of motion are excited, three extensional motions %z, ¥y, 2 and one shear
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motion y,. Under static conditions, then, the motion at any point in
the crystal is given as the sum of four elementary motions, three ex-
tensional motions and one shear motion. Moreover, these motions are
coupled ' as is shown by the fact that a force along one mode produces
displacements in other modes of motion. Figure 26 shows how a
perpendicularly cut crystal will be distorted for an applied ¥, force.

Suppose now that an alternating force is applied to the crystal.
The simplest assumption that we can make regarding the motion is
that the motion of any point is composed of four separate plane wave
motions of the four types of vibration and that these react on each
other in the way coupled vibrations are known to act in other mechan-
ical ¥ or electrical circuits. For the present purpose we can neglect
motion along the X or electrical axis since this axis has been assumed
small. The three remaining motions ifsexisting alone will have reso-
nances as shown by the solid lines of Fig. 27. That along the mechan-
ical axis will have a constant frequency, since the mechanical axis is
assumed constant, and is shown by the line C. The extensional motion
along the optical axis will have a frequency inversely proportional to
the length of the optical axis and will be represented by the line 4 of
the figure. The shear vibration v,, as shown by the section on the
resonance frequency of a crystal vibrating in a shear mode, will have
a frequency varying with dimension as shown by the line B.

In view of the coupling between the motions, the actual measured
frequencies will be as shown by the dotted lines in agreement with well
known coupled theory results.

If we compare these hypothetical curves with the actual measured
values some degree of agreement is apparent. The main resonant
frequency except in the region 0.2 < [y/l,, < 0.3 follows the dotted
curvedrawn. Also, the extensional motion along the optical axis has a
frequency agreeing with that of Fig. 25. The shear vibration, however,
has an entirely different curve from that conjectured. What is happen-

13 The idea of elementary motions in the crystal being coupled together appears
to have been first suggested in a paper by Lack ‘' Observations on Mades of Vibration
and Temperature Coefficients of Quartz Crystal Plates,” B. S. T. 7J., July, 1929,
and was used by him to explain the effect of one mode of motion on the temperature
coefficient of another mode and vice versa. The idea of associating this coupling
with the elastic constants of the crystal occurred to the writer in 1930 but was not
published at that time. It is, however, incorporated in a patent applied for some
time ago on the advantages of crystals cut at certain orientations. More recently
the same idea is given in a paper by E. Giebe and E. Bleckschmidt, Annalen der
Physik, Oct, 16, 1933, Vol. 18, No. 4. They have extended their numerical calcula-
tions to include three modes of motion.

4 This coupling is shown clearly for a mechanical system by one of the few
rigorously solved cases of mechanical motion for two degrees of freedom—the vibra-

tion of a thin cylindrical shell—given by Love in ‘‘The Mathematical Theory of
Elasticity,” Fourth Edition, page 546.
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ing there is I think evident from a consideration of Fig. 28. Here in
solid lines are drawn two frequency curves one of which, B, is the shear
frequency curve of Fig. 27. The other curve, D, has a rising frequency
with an increase in the optical axis dimension. Assuming these vibra-
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Fig. 27—Theoretical resonances of a perpendicularly cut crystal showing effect of
coupling.

tions coupled a resonance frequency curve shown by the dotted line
will be obtained. If this curve is substituted for the shear curve of
Fig. 27 and the actual resonant frequency raised to take account of the
effect of coupling with the longitudinal motion along the mechanical
axis, a curve very similar to the measured curve of Fig. 25 is obtained.

The type of motion coupled to the shear motion is easily found. Its
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frequency increases as the optical axis dimension is increased and
about the only type of motion which does this is a flexural motion as
shown by Fig. 29. This figure shows the second type of motion possi-
ble to a bar in flexure rather than the first for experiments by Harrison !5
show that the frequency for the first type of motion is too low to ac-
count for this vibration. Harrison has also measured the frequencies
of a bar in its second flexural mode and the solid line, D, of Fig. 28 is an
actual plot of these measured frequencies up to a ratio of ly/l» = 0.25,
which is as far as Harrison carries his measurements. The rest of the
curve is obtained by extrapolation. There is no doubt then that a
flexural motion is involved in this coupling. The mechanism by which
the bar is driven in flexure will be evident if we observe what happens
to a square on the crystal in the unstrained state. As shown by Fig.
29, its deformation is similar to that of a shear deformation. The
amount of shear depends on the distance from the nodes of the crystal.
Some of the shear is in one direction and some in the other but the
two amounts are not balanced and hence a pure shear in one direction
can excite a flexural motion of the crystal.

The strength of the coupling from the mechanical axis motion y, to
the shear motion ¥, and the extensional motion along the optical axis
z, are indicated by the coupling compliances s34/ VsoaS1s and Szs/Vsaesss,
respectively. From the values of these constants we find that the
shear motion is more closely coupled than the z extensional motion,
and this is indicated experimentally by the greater width of the shear
line.

Effect of a Rotation of the Longest Axis with Respect to the Electrical
Axis on the Resonances of a Crystal

From the qualitative explanation of the secondary resonances
given above, it is possible to predict how these resonances will be
affected by any change in the crystal which changes the constants
determining the three modes of motion and their coupling coefficients.
One method for varying these constants is to change the direction for
cutting the crystal slab from the natural crystal. In the present paper
consideration is limited to those crystals which have their major faces
perpendicular to an electrical axis, i.e., a perpendicularly cut crystal
with its longest direction rotated by an angle 8 from the direction of the
mechanical axis. The convention is adopted that a positive angle is a
clockwise rotation of the principal axis for a right handed crystal,
when the electrically positive face (determined by a squeeze) is up.

16 ¢ Piezo-Electric Resonance and Oscillatory Phenomena with Flexural Vibration
in Quartz Plates,” J. R. Harrison, I, R. E., December, 1927.
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For a left-handed crystal a positive angle is in a counter-clockwise
direction.

In the section dealing with elastic and piezo-electric constants for
rotated crystals (page 449) is given a method for determining the elastic
constants of a rotated crystal and curves are given for the ten elastic
constants. These have been worked out by Mr. R. A. Sykes of the
Laboratories. The method of designation is the following: The X
axis remains fixed and is designated by 1’. The axis of greatest length
is designated by 2’, since in the unrotated crystal the mechanical axis,
corresponding to the ¥ direction, is the axis of greatest length. Exten-
sional motion perpendicular to the 2’ axis is designanted by 3’, and
shear motion in the plane determined by the 2’, 3’ axes is designated by
4’. The ten resulting constants si1’, S22/, $33’, $14’, S12”, S13’, S14” 23,
s24', 534" are shown evaluated in terms of the angle 8 on Fig. 30. Since
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Fig. 30—Elastic compliances of a perpendicularly cut crystal as a function of the
angle of rotation.

motion and coupling to motion along the X axis can be neglected, the
constants of interest are Sa3’, Sas’, S44”, S23’, 524”, 534", Since the 2’ or y’
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axis is the principal axis of motion, the mutual compliances of principal
interest are sq3’, determining the coupling between the ¥’ extensional
motion and the Z’ extensional motion, and 534" determining the coupling
between the Y’ extensional motion and the V,’ shear motion. It is
the shear motion which is most objectionable, because it is more highly
coupled than the Z’ extensional motion, because it is lower in frequency,
and because it is coupled to a flexural mode. Hence, if this motion
can be eliminated or made very small, a much better crystal for most
purposes is obtained. We note that if 8 is —18.5° or if § = 41.5° the
shear coupling coefficient vanishes and hence a force in the Y, direction
produces no v, shear or vice versa. Of these the —18.5° crystal is
driven more strongly by the piezo-electric effect and hence has a more
prominent resonance.
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Fig. 32—Measured resonances of a 8 = -~ 18.5° perpendicularly cut crystal.
Accordingly the resonances of a # = —18.5° cut crystal have been

measured in a similar way to the # = 0° cut crystal shown in Fig. 25.
The result is shown on Fig, 31. As will be seen from the figure, the
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shear resonance indicated by B is barely noticeable, while the z exten-
sional mode indicated by A4 is somewhat stronger although higher in
frequency. The frequency of the principal mode is not greatly affected
by an increase in the z’ axis until the ratio of axes is greater than .6.
Another angle of some interest is § = + 18.5° since there the z’ ex-
tensional coupling disappears. The resulting resonances are shown on
Fig. 32. It will be noted that the z’ extensional resonance curve 4 is
very weak, while the shear curve B is quite pronounced.

An Equivalent Electrical Circuit for a Crystal Possessing Two Degrees
of Motion

The above explanation accounts qualitatively for all the resonances
observed in the crystal and how they are varied by a rotation of the
crystal. It is desirable, however, to see if a quantitative check can be
obtained from the known elastic constants of the crystal. To obtain
a complete check would require a system capable of five degrees of
motion. However, if we take the simplest case, the —18.5 degree cut
crystal, only two modes of motion have to be considered, and even for
the zero cut crystal, a good agreement is obtained by lumping the
shear and extensional mode as one mode of motion and considering its
reaction on the fundamental mode. Hence consideration is limited
in this paper to a circuit having two modes of motion.

The properties of a single mode of motion can be represented for
frequencies which do not exceed the first resonant frequency of the
crystal, by the simple electrical circuit of Fig. 334. Here the capaci-

Ly Cy Ly Cy -Cm -Cm Cz Lz

i

A B
Fig. 33—Equivalent electrical circuit of a crystal having two modes of motion.
tance represents the mechanical compliance of the bar, the charge on the
condenser represents a displacement per unit length of the bar, while
the current flowing through the circuit represents the velocity of a
point on the bar. The inductance represents the mass reaction of the
crystal. The representation of the motion of a bar by a simple lumped
circuit assumes that the bar moves as a whole, that is, if a force is
applied to the body it contracts or expands equally at all parts of the
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bar. This is contrary to actual conditions, since expansions or con-
tractions proceed in the form of a wave from the ends of the bar toward
the center. However, if consideration is limited to low frequencies,
i.e. frequencies which do not exceed by much the first resonance of the
bar, the approximation is good and a considerable simplification in the
analysis is made. To take account of wave motion, the representation
has to be an electric line as was pointed out in connection with acoustic
filters.'®

To represent two separate modes of motion and their coupling, the
circuit shown by Fig. 338 is employed. A little consideration shows
that the type of coupling existing in a crystal is capacitative since an
extension along the mechanical axis produces a contraction along the
optical axis, and vice versa. Since strains in mechanical terms are
equivalent to charges in electrical terms, this type of coupling can be
represented only by a capacitative network. This representation is
entirely analogous to the T network representation for a transformer.”
The constants of the network can be evaluated in terms of the elastic
constants of the crystal as follows: For a —18.5 degree cut crystal,
we can write the stress strain equation (7) as

Yy = s’ ¥y + sa'Z,, (8)
2, = 323’Yy + 53’ Z,,

since we are neglecting motion along the X axis and since sq4’, the
coupling coefficient of the shear to the ¥’ axis is zero. No ¥, force is
assumed acting. If we work out the equation for the charges on the
condensers of the equivalent representation shown in Fig, 338 we have,
with the charges and voltages directed as shown

s VC,C.K
Ql_l_Kg—I'ezl_Kgl (9)
_ e,NC,C.K e.C,

Q=—T"fx Ti—x

where K the coupling factor between the two modes of motion, is de-
fined by the relation

K=Yz (10)

Associating Q; with y,, the displacement per unit length, Q; with

16 See '‘Regular Combination of Acoustic Elements,” W, P, Mason, B. S. T. J.,

April, 1927, p. 258,
17 See, for example, p. 281 in the book ‘Transmission Circuits for Telephonic

Communication' by K. S. Johnson.
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z,, €, with ¥, and e, with Z,, we have on comparing (9) with (8)

’ Cy ’ vC,C.K e b C.

So = T3 =

-k " T-g'"" " 1-K (1

or inversely

12 ’ ”? Soa’
Cy=m’[1— 5% ];Cg=333’[1—i];K ——- (12)

T 7 To 7 = T 7
S22 S33 S22 S33 \’Szz Sa3

If, now, alternating forces are applied to the crystal, another reac-
tion to the applied force enters, namely the mass reaction of the crystal
due to the inertia of the different parts. To take account of this reac-
tion, the inductances are added to the two meshes representing mass
reaction for the two modes of motion. To determine the value of the
inductance, consider first the representation for one mode of motion
shown by Fig. 334. The resonant frequency of the system is given by

1
y = ————- 13
! 2nVLC (13)
On the other hand, the resonant frequency of a bar is given by
fo= e (14)
" 2Wps

where 1 is the length of the bar, s its compliance, and p its density.
But in the above representation the capacitance C is the compliance
constant s so that, on comparing (13) and (14) we find

_
L= - (15)

In a similar manner for the coupled circuit, Fig. 33B, there results

1.2

L

2
Ly=€”—p;L,=

L 2, (16)
where 1, is the length of the crystal in centimeters along the y axis, and
I, the length of the crystal in centimeters along the'z axis. Hence all
of the constants of Fig. 33B, which represents the crystal for mechanical
vibrations subject to the restrictions noted above, are determined and
we should be able to predict all of the quantities which depend only
on the mechanical constants of the crystal.

Of these the most important are the resonance frequencies of the
crystal and their dependence on dimension, temperature coefficient and
the like. To determine the natural mechanical resonance of a crystal,
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we solve the network of Fig. 33B to find the frequencies of zero im-
pedance for either an applied ¥, force or an applied Z, force. The
result is two frequencies f; and f given by the coupled circuit equations

12 = 3w + 1) — U = 2 + 5K,

17
AN S Fok s < 7o M
where
fim— L and fs——1 . (18)
2evVL,C, 2eVL,C,

Then f4 and f5 represent the natural frequencies along the ¥ and Z
axis respectively when these two motions are not coupled together.

Two limiting cases of interest are obtainable from these relations.
If f5 is much larger than f4, the equations reduce to

IR = — L,
he oot (19)
fae=fr=

2N pss’[1 — 523" [520"533" ]

upon substituting the value of the constants given before. The first
equation shows that for a long thin rod the frequency depends on
the elastic constant sz, which is the inverse of Young's modulus.
For the frequency fs, which corresponds to that of a thin plate, a
different elastic constant appears. Upon evaluating the expression
s33'[1 — 523"2/522'535' ] in terms of the elastic constants which express
the forces in terms of the strains—see equation (25)—we find that
Ssa’(1 — 595" /5007533") = 1/c33. €33 measures the ratio of force to strain
when all the other coupling coefficients are set equal to zero, and
corresponds to the frequency of one mode vibrating by itself without
coupling to other modes. Hence the frequency of a thin plate should

be

where ¢, represents the elastic coefficient for the mode of motion con-
sidered, and ¢ is the thickness of the plate. This deduction has been
verified by experimental tests on thin plates.

Let us consider now the curves for the —18.5 degree cut crystal
shown by Fig. 31. The values of the elastic constants for this case are

Sae’ = 144 X 1074 cm.?/dynes; 553" = — 21.0 X 107%;
533' = 02,5 X 10714, (21)
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Hence from equations (17), (18) and (21) one should be able to check
the measured frequency curves of Fig. 31. The result is shown on the
dotted lines of these curves. The agreement is quite good although a
slightly better agreement would be obtained if ss;; had a smaller value.
Since these constants have never been measured with great accuracy,
it is possible that they deviate somewhat from the curves of Fig. 30.

This theory can be applied also to a § = + 18.5 degree cut crystal
since the extensional coupling coefficient vanishes for this angle. The
agreement is quite good if the frequency for the uncoupled mode given
by the section on vibration in shear mode (page 446) is used in place of
equation (14). The resonances for the 6 = 0° cut crystal shown by
Fig. 25 cannot be accounted for quantitatively by the simple theory
given here since there are three modes of motion operating. The
shear mode of motion is more closely coupled to the principal mode
than is the Z, extensional mode and hence a fair approximation is ob-
tained by considering only the shear mode. However, for complete
agreement the theory should be extended to a triply coupled circuit and
that is not done in this paper.

Another phenomenon of interest which can be accounted for by the
circuit of Fig. 33B is the temperature coefficient of the crystal and its
variation with different ratios of axes and different angles of rotation.
To obtain the relation, we assume thati each of the vibrations may have
a temperature coefficient of its own as may also the coefficient of
coupling K. If a small change of temperature occurs, f1 will change
to fi(1 4+ TAT), fa to fa(l + T4AT), fs to fz(1 + TpAT) and K to
K(1 4+ TxAT). Assuming AT small so that its squares and higher
powers can be neglected, we find from equation (17) that

el — 2K*) — fa?
V(I8 = [ + 4K A8
L OBy
V(fs* — fa2)? + 4K 4*f35*
_ 2TKfA2f32 ] . (22)
\f(fﬂz _ fAz)z + 4K2f42f32
The temperature coefficients of the six elastic constants have been
measured at the Laboratories 8 by measuring the frequency tempera-

ture coefficients of variously oriented crystals. The temperature
coefficients of the six elastic constants can be calculated from these

T=—1—12|:T4f,42]:1+

3 } + Tsfs?

18 These coefficients have been evaluated in cooperation with Messrs. F. R.
Lack, G. W. Willard and I. E. Fair and their work is discussed in detail in their
companion paper in this issue of the B. §. T. J.
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measurements and have been found to be, in parts per million per
degree centigrade:

Ty, =+ 13; T,, = — 1230; T, = — 347; (23)
T,, = 4+ 130; T, = + 213; T, = + 172.

Using these values and neglecting the extensional motion Z,, the tem-
perature coefficients calculated from equation (22) for a 0 degree cut
crystal are shown on the dotted line of Fig. 5 and agree quite well with
the measured values.

The Resonance Frequencies of a Crystal Vibrating in a Shear Mode
The equations of motion for any aelotropic body are

u _8X, , X, , 0X.
PaE = ax T ay T oz’

& 8V, K 3Y, , dY,
PoE = ox "oy T oz’

Pw 0Z, dZ, 0Z,

P ~ox Tay T oz

where u, v, w are the displacements of any point in the crystal along the
x, ¥, 2 axes respectively and X ., etc. are the six applied stresses. The
strains have been expressed in terms of the stresses by equation (7).
It is more advantageous for the present purpose to express the stresses
in terms of the strains, which can be done by the following equations:

(24)

X: = (1% + C12Yy + €132, + C14Yzy

Y, = crox, + Cazyy + €233 + C24s,
Z; = cpx; + €a3¥y + €332z, : (25)
Y. = c1ax: + coqyy + Casys,

Lz = €48z T C14%y,
Xy = cuz: + %(Cn - Cu)xy.

where the ¢'s are the elastic constants and the strains x., etc., are given
in terms of the displacements #, v, w by the equations

du av ow dv |, dw
(%+%)

1

-’JC:—'a—x,yy—@.Zz az'y.

Jw , du du , dv
= (Gt )m = (G +5)
In equation (24) there exist the reciprocal relations
X,=YVuX.=2Z.Y. =2, (27)
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For a free edge, i.e. no resulting forces being applied to the crystal, the
conditions existing for every point of the boundaries are

X, = X.cos (nx) + X, cos (v,y) + X: cos (v,3) = 0,
Y, = Y. cos (vx) + ¥, cos (ny) + Y:cos (vz) =0, (28)
Z, = Z, cos (vnx) + Z,cos (vy) + Z;cos (v2) =0,

where » is the normal to the boundary under consideration.

If these equations are combined and completely solved, the motion
of a quartz crystal is completely determined. The results which were
obtained above in an approximate manner could be rigorously solved.
However, on account of the difficulty !® of the solution, this is not at-
tempted here. In the present section it is simply the purpose to find
out what resonances a crystal will have if it is vibrating in a shear mode
only. To avoid setting up motion in the other modes of vibration, the
coupling elasticities €14, €24, €34 are assumed zero. Similarly if ¢,
13, €33 were set equal to zero we should have the possibility of three
extensional modes and one shear mode vibrating simultaneously with
no reaction on one another, and the equation of motion would be

I

0 (o
Pag ~ gx v 1)

0% a a
Pag = 53,‘ (c22yy) + a [casy.], (29)

’w 0 d
PW = @ (cays) + 7z [Caazs:l-

The displacements #, », and w would be the sum of the displacements
caused by the four motions. To find the displacements and resonances
caused by the shear mode y., we neglect the other modes and have the
equations
% i

P=7m = Caam (3s),

at 0z
(30)

Pw _ c i( )
Pap = Ciigy Ve

Differentiating the first of equations (30) by -'%. and the second by

i, and adding, there results,

dy

0 [ov  dw Ays | 8?

P —+ - )= € —3; +——y22 . (31)

at\az = ady ay dz

19 For example if motion is limited to the ¥ and z directions, and the coefficient ¢i4

is set equal to zero, the equations reduce approximately to those for a plate bent in

flexure, and this case has never been solved for the boundary condition of interest

here, namely all four edges being free to move—see Rayleigh ‘' Theory of Sound,”
page 372, Vol, I, 1923 edition,
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Smce —|— — = 9,, this reduces to
%y: _ | 8% 8%y,
EYD = { I:'a? + 3z |’ (32)

where ¢ = c¢ufp.
For a simple harmonic vibration, of frequency f, the equation

reduces to
oy, = a%y, »
[.6_3;2 _é_z‘i'] + czy’ =0, (33)
where p = 2zf. The solution of this equation consistent with the

boundary conditions (28) is
Y, = ZZAun [sin mTwsinnTﬁ:I cos i, (34)

where a is the length of the crystal in the y direction, b the length of the
crystal in the z direction, and m and #» are integers. Substituting this
equation in the equation (32), we find that it is a solution provided

mir?  nin? P2 (27rf)2
[ a? +_b_2-]_ & ¢ (35)
Hence the resonant frequencies of the crystal in shear vibration are
c (m* n?
f=a\Ngz T3 (36)

To find the shape of the deformed crystal, we have from (30) for
simple harmonic vibration

_ ¢ 8y, — a?h? 3.
v= 3?2 9z minh® + nirla® 9z (37)
2 — 2B
w=_f_%___L%. (38)

The cases m = 0,z = 1 and m = 1, » = 0 require a stress known
as a simple shear to excite them, whereas the stress applied by the
piezo-electric effect is a pure shear. Hence the case m =1, n = 1
provides the lowest frequency solution. The displacements » and w
for this case are by equations (34), (37) and (38)

v = —— abr y LAY
= T T A sin == cos 3

w— — ab’r TY . TE\ (39)
= T ARt cos — sin -

The resulting distortion of the crystal is shown by Fig. 34.
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We can conclude, therefore, that the solution for a shear vibration
in a quartz crystal will be given by equation (34). It is obvious from
Fig. 34 that the shear vibration will have a strong coupling to a bar
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Fig. 34—Form of crystal in shear vibration.

bent in its second mode of flexure, since the form of the bent bar, as
shown by Fig. 29, is very closely the same as a given displacement line
in the crystal vibrating in shear. Little coupling should exist between
the shear mode and a bar in its first flexure mode, since this mode of
flexure requires a displacement which is symmetrical on both sides of
the central line whereas the bar vibrating in shear has a motion in
which the displacement on one side of the center line is the opposite
of the displacement on the other side of the center line.

The Elastic and Piezo-Electric Constants of Quartz for Rotated Crystals *
W. Voigt 2 gives for the stress strain and piezo-electric relation in a
quartz crystal, for the three extensions and one shear found above,

—x; = suX. + sV, + suZ, + suY,

— 3y, = 512Xz + 502V, + 532, + 504 Y, (40)
— 2, = suX: + su¥, + suZ. + sul,

— ¥ = suX: + 52V, + 533Z, + su¥.,

—_ P_-, = duX; ‘[‘ d12Yy + d13Zz + thYz; (41)

20 The material of this section was first derived by Mr. R. A. Sykes of the Bell
Telephone Laboratories.

W, Voigt, Lehrbach Der Kristallphysik.
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where

Xzy Yur 22
X2 ¥y, Z,
Yz

Y.

Sij

dij

P,
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= extensional strains = elongation per unit length,
= extensional stresses = force per unit area,

= shearing strain = cos of an angle,

= shearing stress = force per unit area,

= elastic compliances = displacement per dyne,

= piezo-electric constants = e.s.u. charge per dyne,
= piezo-electric polarization = charge per unit area.

The best measured values for these constants when the X axis coin-
cides with the electric axis of the crystal, the ¥ axis with the mechanical
axis and the Z axis with the optical axis, are

S11 = S22 = 127.2 X 107" cm.?/dyne,

s12 = — 16.6 X 10~ cm.2/dyne,
Si3 = S5 = — 15.2 X 1074 cm.?/dyne,
Saq = — s = 43.1 X 107 cm.2/dyne,
s; = 97.2 X 10" cm.?/dyne,
s34 = 0, (42)
s1 = 200.5 X 10™ cm.?/dyne,
dy = — dig = — 6.36 X 10-8&S: charge’
dyne
diz =0

d].} = 1.69 » 108

e.s.u. charge .
dyne

If, now, we maintain the direction of the electrical axis but rotate
the direction of the principal axis by some angle 6, the resulting con-
stants of equations (40) and (41) undergo a change.

Let the direction cosines for the new axes be given by

x y z
x' 11 mi 1
¥ Ia e 7 (43)
g’ Is My 3

The convention is adopted that a positive angle 6 is a clockwise rota-
tion of the principal axis of the crystal, when the electrically positive
face (determined by a squeeze) is up. For a left-handed crystal a
positive angle is in a counter clockwise direction. @ is the angle be-
tween the previously unprimed and the primed axes.
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If we transform only the y and z axes, there results

h=L=m=n=0,
L=1,
me = n3 = cos 8, (44)

—ng=ma=sin8.

Love 22 gives the transformation for the stress and the strain func-
tions as

x. = xd? + yym?® 4+ znd + yomm,

’

v, = x.® + yyme® + zn + y.mans,

3. = xd + yymd® + z.ms® + yamana, (43)
v, = 2xdals + 2y, mams + 2z.nams + y.(mans + mgns),
X =XJA2+ Yym? + Zn + YV.2miny,

YV, = XJ? + Yym? + Z.n* + V.2mans, (46)
Z) = X2 4+ Y ym? + Z.n® + Y. 2mgns,

V. = X.bls + Yymams + Z.nang + Yi(mang + mgns).

Substituting (44) in (45) and (46) and then expressing %z, ¥, . . .
X. ¥,... etc, in terms of x./, v,/ . . . X., V) . . ., elc, we
may substitute these values in equations (40) and (41) to give the stress-
strain and polarization in a crystal whose rectangular axes do not coin-
cide with the real optical and mechanical axis. Performing the above
operations, a new set of constants s;;’, are obtained which are functions
of 6, namely:

r
S11 = S1in

si’ = §[s12 + s + (512 — 51) cos 26 — 514 sin 26,
513’ = L[5 + s12 + (513 — $12) cos 26 + 514 sin 26],
s14’ = S14cos 20 + (512 — s13) sin 26,
S20’ = 511 cos? 8 + 533 sin? 8 + 2514 cos® @ sin
+ (2513 + 544) sin® @ cos® 6,
ses’ = su(cost @ + sin? #) + s4(sin® 6 cos 8§ — cos® 8 sin 6)
+ (511 + S35 — S44) sin® 8 cos? 8,
594’ = — sy1s(cos? 8 — 3 sin? 0 cos® 0) + (2511 — 2513 — S44) coOs® Osin @
+ (2513 — 2533 + 544) sin’ 6 cos 6,
533’ = 533 cost @ + 511 sin* @ — 2514 sin® 0 cos 0
+ (2513 + 544) sin® 8 cos? 8,

2 “The Mathematical Theory of Elasticity,” Cambridge University Press, pp.
42 and 78.
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s34’ = su(sin® @ — 3 sin? 8 cos? 8) + (2511 — 2513 — 544) sin® 6 cos @
+ (2513 — 2533 + 544) cos? @ sin 8,

S.H’ = (4533 + 4511 — 8.5'13 — 2344) sin® @ cos? @ + 4314

X (sin® 6 cos § — sin 6 cos® ) + sa(sin® § + cos* §)
and
du’ = du,
di’ = — 3[dnu(1 4 cos 26) + dq4 sin 26],
dy’ = — 3[du(1 — cos 20) — di4 sin 2607,

du’ = d“ cos 20 — du sin 26.

The curves representing the s’ values for varying angles of orienta-
tion are plotted on Fig. 30 while the values of d’ are plotted on Fig. 35.
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Fig. 35—Piezo-electric constants of a perpendicularly cut crystal as a function of the
angle of rotation.



