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An Extension of the Theory of Three-Electrode
Vacuum Tube Circuits

By S. A. LEVIN and LISS C. PETERSON

The relations between input voltage and output current of the three-
electrode vaccum tube are discussed when arbitrary feedback is present
between grid and plate circuits. Fundamental assumptions are that the
amplification factor is constant and conductive grid current absent. The
relations developed in the present paper are generalizations of those given
by J. R. Carson in I. R. E. Proc. of 1919, page 187. The use of the theory is
illustrated by application to a simple modulator circuit. The numerical cal-
culations in this case indicate that neglecting the effects of interelectrode
tube capacitances may introduce serious errors.

INTRODUCTION

THE relations between input voltage and output current of the
three-electrode vacuum tube when connected to impedances in
both input and output circuits have been the subject of several papers.
One of the first more extensive treatments of this problem was given
by J. R. Carson,! using a method of successive approximations. The
theory was further extended by F. B. Llewellyn,2 E. Peterson and
H. P. Evans,® and J. G. Brainerd.* The theories given by these
authors did not take into account any feedback between input and
output circuit except in the first approximation.

The aim of the present paper is to extend the theory of the three-
electrode vacuum tube to include the effects of feedback between
input and output circuits not only in the first but also in the second
and higher approximations. The assumptions underlying Carson's
treatment, constancy of the amplification factor and absence of con-
ductive grid current, will be maintained. The extension of the present
theory to such cases as treated by Llewellyn, Peterson-Evans and
Brainerd still remains to be done.

1J. R. Carson: I. R. E. Proc., April, 1919, page 187.

*F, B. Llewellyn: B. S. T. J., July, 1926, page 433.

3 E. Peterson and H. Evans: B. S. T. J., July, 1927, page 442.
*J. G. Brainerd: I. R. E. Proc., June, 1929, page 1006.
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THEORY

Let us consider the circuit arrangement shown in Fig. 1, where
Z., Zy and Z; are linear impedances which may include interelectrode
admittances. The impressed variable electromotive forces whose
instantaneous values are denoted by E, and E, are in series with
the impedances Z, and Z,, respectively. In the absence of these
electromotive forces direct currents and voltages are established in
the circuit due to constant grid and plate electromotive forces. With
the variable electromotive forces impressed incremental currents and
voltages are produced. The instantaneous values of these incremental
. voltages are indicated on Fig. 1 by g, ¢, v and p. The incremental
plate current is J. The positive directions of these quantities are
given by the directions of the arrows.

1
[
<

Zp |P

155 EP]

on,
—_—

N

o
1
| S

Fig. 1—Three-electrode vacuum tube and circuit.

We will now make two restrictive assumptions: first that the grid
is never positive so that conductive grid current is absent, and second
that the amplification factor p is constant.

The basis for the analysis is given by the characteristic tube equa-
tion:

1=f(E,,+%). (1)

where I is the total instantaneous current flowing from plate to
filament; E,. is the total instantaneous potential difference between
grid and filament and E, the total instantaneous potential difference
between plate and filament. p is the amplification factor. The
relation between the increments e, v and J is given by the following
equation:

J = Py(ue + v) + Po(ue +0)* + +++ + Palue + )" + ---, (2)
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and has to be evaluated at the operating point.!
We have further:

v=g+te Ep,=p+u 3)

The equations (3) are obtained by applying the circuital laws to the
network external to the tube.

We now proceed to a solution of equations (2) and (3) by means of
a method of successive approximations. Let

J=$J’;, g=z.::gi, e=);';e.-, 4)
p=3ps v=13w

and let us define the relations between the terms in the series (4) as
follows:

Jy = Pi(uer + v1), Eg=g1+ ey, E, = p1+ vy, (5)
Jy = Pi(pe: + ‘Uz) + Pz(#b’l + w1)2, (6)
0= g2+ e, 0= pa+ v

Js = Pi(ues + v3) + 2P2(uey + v1)(pee + v2) + Pa(uey + v1)?, )]
0=gstes 0= ps+ s

Jy= Pi(pes + vs) + Pa(ues + v2)* + 2P2(per + v1) (ues + vs)
+ 3P3(P-32 + Ua)(ﬂﬂl + '01)2 + Pi(.ﬂel + ﬂ1)4, (8)
0= gs+ ey 0= ps+ vy

and so forth for subsequent terms.®
If we now let

Ro‘—‘l—,—l, 9)

! Loc. cit.

® The procedure of finding these equations is as follows: By substituting the first
term in each of the series (4) into (2) and (3) and neglecting all terms higher than
the first order equations (5) are obtainad. By substituting the first two terms in
each of the series (4) into (2) and (3), and neglecting terms of higher order than the
second and by noting (5) equations (6) are found and so on for the remaining equa-
tions,
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where R, is the internal resistance of the tube, equations (5), (6), (7)
and (8) may be rewritten as:

" RoJ1 — vy = pey, E,= g1+ ey E,= p1+ vy, (10)

RoJy — vy = pes + RoPa(uer + v1)% (11)
0= ga + ey, 0=P2+U2;

RoJs — vs = pes + 2RoPa(uer + v1) (nex + v2) + RoPi(per + 1) (12)
0 = gs + e, 0= ps+ vs

RoJs — vs = pes + RoPa(ues + v2)? + 2RoPa(uer + v1) (ues + vs)
+ 3RoPs(ues + v) (uey + v1)* + RoPylues + v1)*, (13)
0= g4+ ey, 0= p4+ vy

and so forth.

Equations (10) to (13) admit of simple physical interpretations.
Referring first to equations (10) it is clear that the equivalent circuit
corresponding to Fig. 1 for first order quantities is given by Fig. 2.
Similarly Fig. 3 is the equivalent circuit of Fig. 1 for second order
effects and Fig. 4 for third order effects. Higher order effects corre-
spond to similar circuits.

afl |2 4| S "o t
O N O

Fig. 2—Equivalent circuit, first order effects.

The equivalence expressed by Fig. 2 is the familiar circuit which
has found such wide application, for instance, in amplifier and oscil-
lator work; while the equivalent circuits in Figs. 3 and 4 represent
the second and third order effects. With no feedback, that is when
Z, is infinite, they reduce to the equivalences given by Carson.! Com-
paring now any two equivalent circuits for same order effects with and
without feedback we find different values of the electromotive forces
appearing in series with the internal tube resistance Ro. Otherwise

1 Loc. cit., equations (23) and following.
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the two circuits are identical except that for one the impedance Z, is
finite and for the other infinite.

By the aid of the equivalent circuits given, that is by using equations
(10), (11), (12), (13) and so forth, the terms in the series (4) can be
calculated. These series formally satisfy equations (2) and (3) and
are the solutions if they converge.
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Fig. 3—Equivalent circuit, second order effects.
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Fig. 4—Equivalent circuit, third order effects.

For the purpose of fixing our ideas we assumed at the start a definite
circuit to which the tube was connected. It is obvious, however,
that no matter how complicated the linear network is to which the
input and output terminals of the tube are connected the procedure
given above can be followed.

APPLICATION TO A MobULATOR CIRCUIT

As an illustration of the theory just presented we shall calculate
the steady state second order effect assuming the circuit configuration
to be that given in Fig. 1. In so doing we shall assume that no variable
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e.m.f. is impressed in the plate circuit and that the impressed e.m.f.
in the grid circuit is given by ©

e, = K cos wit + S cos wat. (14)

We now find the instantaneous value of pe; + v, by solving the mesh
equations for the equivalent circuit of Fig. 2. The result is:

ey + v, = Ru[ ;E:::; ‘ K cos (wit — ¢(w1))
+| ZeB s cos (ent = o) |, 19)
where .
F((A}) — Zl(#ZZ + ,l'.th + ZP)

(Zo+ Z0)(2) + Z2) '

Z(w) = Ry + Zpr + Zy (RU + HZa’)

22 +Zg’ ’
16
Z! = ZJZD Z! = ZlZo ( )
P Za+zpr @ Z]. +Zg’
Flw) _ F(w) e @i(f = \f—-_l)

Z(w) | Z()

In equations (16) we note that Z,, Zs, Z3, Z, and Z, all are complex
impedances. The driving e.m.f. for the second approximation is
RoPs(ues + v1)?. Letting

M = RiPs, (a7
we get from (15)
RoPs(uer + v1)*
- u[3(|zG[ =+ |75 )
+% %—:—3 " K cos 2wyt — 2¢(w1))
+% i;%% 252 cos (2wt — 2¢(ws)) (18)
+ | ZdZ ) 5 cos ((or = anlt = () + ()
%8—3 KS cos (w1 + wa)t — (w1) — ¢(w2))].

o The extension to any number of sinusoidal e.m.f.'s of arbitrary phases in both
plate and grid circuit is obvious.
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The driving e.m.f. given by (18) thus consists of a number of
sinusoidal components including one of zero frequency. By means
of the superposition theorem and the mesh equations we obtain the
current and voltage distribution for our equivalent circuit in Fig. 3.
Let us for instance calculate the instantaneous current flowing through
the impedance consisting of Z, and Z; in parallel and indicated by C in
Fig. 3. The result is

1/] Flw)]® F(uws)|?
Z K+ 52
_ 2 ( Z{w)) ‘Z(w ) )
C= M[ ! 70) : +
1 F(wl) 2
+ 2—% cos (2wt — 2¢(w1) — ¥(2w1))
1 F(wz) 2
—}-2—%&)5 (2wt — 2¢(ws) — ¥(2wa)) (19)
F(“-’I)F(mﬂ) KS
+ lzi(zw(lilz(—wﬂlzﬂ cos ((w1 — we)t — p(wy)
R Flwd + o(ws) — Ylwy — “’2))
+ Jz(ml)z(w”) KScos (@1 + @)t — o(w)
1 Z(wn + wn)] G et '

— ¢(ws) — Yl + wa))
where ¥(w) is defined by
Z(w) = |Z(w) e = +— 1). (20)

Let us now consider the peak value of the current of lower side-band
frequency. This value is from (19)

J F(wy) F(ws) . :
MES ‘Z(wl)zmg)zm . (21)
If we write
Ry Ru + #Z !
A = - -7 ’ 4
2@ |y + 1+ 3 (22)
22 + Zn’ @
JF(w)J=(u+1){ Zy L gz, @)
Z, ¥ Z0Z/ + Zy || v 12 T &
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expression (21) becomes:

Zy
WZ + 22,
X ‘ Z:
(Zo+ Z)(Z) + Z3)

MKS(# + 1)2’ Z, +Z

]

K ' M ’
L4 Z —Z Z
X'F_i_l 2+ p‘w1ﬂ+1 s+ Zy “ 8)
‘1+Rn+uzg' ’1+Ro+uz; | L Rt iz, '
Z2 + Zﬂ.’ wy 'Zﬂ + Zg’ w, Z'.". + ZJJ’ (wy—w,) -
Ru RO
Zg 4 — | |z
X p+1+RU+#‘Zg p+1+RU+#Zﬂ’
Z2 + Zg’ wy Z2 + Zgi w,y
R,
Z) +———
X yy + 1 +R[| + #Zgr
Z2 + Zq’ (w—wy)

With no feedback present, that is when Z, = =, equation (24)
reduces to

Z1 Zl
MK Su?

i Zi+ 2w Zl+ZU Ll (25)
JZ:.D’+RU[W1IZ.‘P’+ROI"’2IZF'+RDI(”I_%).'

But in this case K ‘ ﬁZZ

is the peak value K’ of the grid voltage

@

of frequency w; and similarly S is the peak value S’ of the

Zy
Zl + Z2 Wy
grid voltage of frequency w,. Expression (25) may thus be written:

Mu*K'S’
JZP’ + RUJ wllzp’ + R0|wa|zp’ + RU‘ (wy—w,) '

which is the well known expression given by Carson.”

For the purpose of getting an idea of the magnitudes involved let
us consider a numerical example. A Western Electric No. 101D
vacuum tube may have the following constants when used as a modu-
lator: Ry = 9000 ohms; p = 6; grid-cathode capacitance C, = 10.5,
plate-grid capacitance C, = 4.8, and plate-cathode capacitance Cj
= 8.1 micromicrofarads. The impedances Z, and Z, are assumed to
be pure resistances at all frequencies with the values 9000 and 10,000
ohms, respectively. The impressed e.m.f. is of the form given by

7 Carson: I. R. E. Proc., June, 1921, page 243.
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the equation (14) where w;/2 is equal to 250,000 and we/27 is equal
to 5,000,000 cycles per second. As a reference condition let us take
that for which the effect of the interelectrode capacitances is neg-
lected. The plate current for this condition is obtained from equation
(25) when Z, and Z; as well as Z; are made infinite. As a next step
we compute the plate current from equation (24) when Z,, Zs, and Z;
are the impedances corresponding to the interelectrode capacitances
Ci, Cs, and Cs, respectively. It is found that this plate current is
12 db below that obtained in the reference condition. Finally it is
of some interest to compute the plate current when the grid-plate
capacitance alone is effective. This plate current is obtained from
equation (24) by assuming Z, and Z; to be infinite and Z; to be the
impedance corresponding to the capacitance C,. This current is
found to be 24 db below that of the reference condition.



