The Electromagnetic Theory of Coaxial Transmission Lines
and Cylindrical Shields

By S. A. SCHELKUNOFF

A form of circuit which is of considerable interest for the transmission
of high frequency currents is one consisting of a cylindrical conducting
tube within which a smaller conductor is coaxially placed. Such tubes
have found application in radio stations to connect transmitting and re-
ceiving apparatus to antenna. As a part of the development work on such
coaxial systems, it has been necessary to formulate the theory of trans-
mission over a coaxial circuit and of the shielding against inductive effects
which is afforded by the outer conductor. This paper deals generally
with the transmission theory of coaxial circuits and extends the theory
beyond the range of present application both as regards structure and
frequency.

HE mathematical theory of wave propagation along a conductor

with an external coaxial return is very old, going back to the
work of Rayleigh, Heaviside and J. J. Thomson. Much important
work has been done in developing and extending this theory. Among
the problems dealt with in this development may be listed the follow-
ing: the extension of the theory to systems consisting of a plurality
of cylindrical conductors; the investigation of shielding and crosstalk
in coaxial systems and the effects of eccentricity; the extension of the
particular solution to include the complementary modes of propaga-
tion, etc.; and in general the adaptation of the mathematical theory
to engineering uses, and its translation into the concepts and language
of electric circuit theory. In addition to the author’s contribution a
substantial part of this mathematical work has been done by the
group of engineers associated with Mr. John R. Carson, formerly of
the American Telephone and Telegraph Company, now of the Bell
Telephone Laboratories, Inc.

The problem is ideally adapted to mathematical investigation,
because the conductor shape fits perfectly into the cylindrical system
of coordinates, thereby making it entirely feasible to carry out a
rigorous discussion on the basis of the electromagnetic theory, instead
of using ordinary circuit theory. This has obvious advantages at
ultra high frequencies, where the uncertainties of the circuit theory are
conspicuous and not easily compensated for. It also proves to be
of greater advantage at lower frequencies than one might at first
assume. Fortunately, it turns out that the final results obtained by
means of field theory can be expressed in a familiar language of circuit
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theory, thereby gaining all the simplicity of the latter combined with
all the accuracy of the former.

CIRCULARLY SYMMETRIC ELECTROMAGNETIC FIELDS

In polar coordinates, Maxwell's equations .assume the following
form:

oH, oI, _ : 0E, 9E, .
vde 0z (g + twe)E,,v vie a5 T 1wuk,
oH, 8H., . 0E, dE, _ .
5z ap (g + twe)E,, = 0 twuH,, "
[ ] g i,
1 a{PEtp) _ i_Eﬂ -
p[ ap de | touHy,

where E and H are respectively the electromotive and magnetomotive
intensities.’

In general, all six field components depend upon each other. If,
however, these quantities are independent of either ¢ or z, the partial
derivatives with respect to the corresponding variable vanish and the
original set of equations breaks up into two independent subsets, each
involving only three physical quantities. Each of these special fields
has important practical applications.

In the circularly symmetric case, that is, when the quantities are
independent of ¢, one of the independent subsets is composed of the
first and the third equations on the left of (1), together with the second
-on the right:

WD) _ (g +iwapm., U0 = — (g +iwo,
(2)
OE, _ 9E, = twul,.
dp az

This circular magnetic field, with its lines of magnetomotive intensity

! In this paper we have adopted a unified practical system of units based upon
the customary cgs system augmented by adding one typically electric unit. This
system has three obvious advantages: first, theoretical results are expressed directly
in the units habitually employed in the laboratory; second, the dimensional character
and physical significance of such quantities as fwu and g + 7we are not obscured as
in other systems by suppressing dimensions of some electrical unit such as permea-
bility or dielectric constant; and third, the form of electromagnetic equations is very
simple. In this system of units the electromotive intensity E is measured in
volts/cm., the magnetomotive intensity H in amperes/cm., the intrinsic conductance
g in mhos/cm., the intrinsic inductance u in henries/cm., and the intrinsic capacity e
in farads/cm. Thus, in empty space p = 4710~ henries/cm. or approximately
0.01257 phf/cm. and ¢ = (1/36x) - 107" farads/cm. or approximately 0.0884 mmf./cm.
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forming a system of coaxial circles, is associated with currents flowing
in isolated wires as, for example, in a single vertical antenna and under
ordinary operating conditions it is also found between the conductors
of a coaxial pair (Fig. 1).

X
Fig. 1—The relative directions of the field components in a coaxial transmission line.

The remaining three equations of the set (1) form the second group:

a(pE'ﬂ) _— . aEg -
% twupH,, 9 twuH,,
o, _ o,

0z ap '

)

(g + twe)E, =

describing the circular electric field. Uniformly distributed electric
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current in a circular turn of wire is surrounded by a field of this type;
in this case, the lines of electromotive intensity form a coaxial system
of circles. ‘
Two-DiMENsIONAL FIELDS

By definition, two-dimensional fields are constant in some one
direction. If we take the z-axis of our reference system in this direc-
tion, all the partial derivatives with respect to z vanish, z disappears
from our equations and we can confine our attention to any plane
normal to the z-axis.

Once more the set of six electromagnetic equations breaks up into
two independent subsets. One of these is 2

L _—1% I _rl—aflz

P (g +iwe)p do ' T gtiee dp (4)
L[ 2B | OB _
P Bp 690

“

The calculation of what is commonly known as ‘‘electrostatic’’ cross-
talk between pairs of parallel wires is based upon these equations.
For this reason we shall name the field defined by (4) the eleciric
Sield.

Similarly, the remaining three equations define the magnetic field:

}[p=___Lf"_I_€_=‘ II‘P=___1__6E=!
iwup O 1w dp 5
1[a(H,) | O, _ _ . .
;[ an + 90 | = (g + iwe)E,

and are useful in the theory of what is generally known as “electro-
magnetic” crosstalk.

The distinction between electric and magnetic fields is purely prag-
matic and is based upon a necessary and valid engineering separation
of general electromagnetic interference into two component parts.
In some respects the firmly entrenched terms ‘‘electrostatic crosstalk"
and “electromagnetic crosstalk” are unfortunate; it would be hopeless,
however, to try a change of terminology at this late stage of engineering
development. .

Further consideration of two-dimensional fields will be deferred

until the problem of shielding is taken up later in this paper (page
567).

* In passing from the original set (1) we reversed the sign of E, in order to make
the set of equations symmetrical. The positive E, is now measured toward the axis.
. ?In these equations, the sign of H, was reversed so that the magnetomotive
intensity is now positive when it points clockwise. With this convention, the
flow of energy is away from the axis when both H, and E, are positive.
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EXPONENTIAL PROPAGATION

While electromotive forces could be applied in such a way that the
fields would be of the kind given by (3), in the coaxial transmission
line as actually energized the fields are of the circular magnetic type
(2) which will claim our special attention in the next few sections.

In order to solve equations (2), we naturally want to eliminate all
variables but one. This purpose can be readily accomplished if E,
~ and E, are substituted from the first and the last equations of the set

into the second. Thus, we obtain the following equation for the
magnetomotive intensity:

a [1a(pH a*H
R
where
0% = guul — wlep. (7N

Adopting the usual method of searching for particular solutions of
(6) in the form
H, = R(p)Z(z), (8)

where R(p) is a function of p alone, and Z(z) a function of z alone,
we get

1 d*Z
Zaz ~ ®)
1 d[1d(pR)] _ ,

where T' is sonte constant about which we have no information for
the time being.

Equation (9) is well known in transmission line theory; its general
solution can be written in the form

Z = Ae's + Be T, (11)

where 4 and B are arbitrary constants. The solutions of (10) are
Bessel functions. Since equation (6) is linear, we may invoke the
principle of superposition and add any number of particular solutions
corresponding to different values of I'. Thus we can form an infinite
variety of other solutions so as to satisfy the physical conditions of
various practical problems.

It is seen at once from the first and the last equations of the set (2)
that to each H, of the form (8) there correspond an E; and E, of the
same form; i.e., there exist circularly symmetric electromagnetic
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fields, all of whose components vary exponentially in the direction of
the axis of symmetry. Whether any of these fields can be produced
individually by some simple physical means is impossible to decide on
theoretical grounds alone. It may happen, of course, that the field
due to any practically realizable source is always a combination of
several simple exponential fields. In any case, however, we want to
know the properties of pure exponential solutions.

It is convenient to make the exponential character of the quantities
E,, E.and H, explicit and write them respectively in the form E, eIz,
E.e7T2and H,eT:. The new quantities ¥,, E, and H, are functions
of p only. If the suggested substitution is made in equations (2),
the factor e~''# cancels out and we have

r . dE,
= mﬁ IJ,F, 1,w,uH,, = — + I‘Ep,

dp
I .
%p—) = (g 4 iwe)pE..

E,
(12)

The quantity I is called the longitudinal propagation constant or
simply the propagation corstant when no confusion is possible.*

Recalling the implied exponential time factor ei*t, we see that the
complete exponential factor in the expressions for the field intensities
is e~P#tivt. The propagation constant I' is often a complex number
and can be represented in the form a + i3 where the real part is
called the attenuation constant and the imaginary part, the phase
constant. Thus, e~*? measures the decrease in the amplitudes of the
intensities and e~ (8«9 the change of their phases in time as well as
in the z-direction. The latter factor suggests that we are dealing
with a wave moving in the positive direction of the z-axis with a velocity
(w/8). A wave moving in the opposite direction is obtained by re-
versing the sign of T.

PeErrFEcTLY CoNDUCTING Co0AXIAL CYLINDERS ?

Let us now consider one of the simplest problems which, though
purely academic in itself, will throw some light on what is likely to
happen under less ideal conditions. We suppose that a perfect
dielectric is enclosed between two perfectly conducting coaxial cylinders
(Fig. 1) whose radii ® are b and a (b < a). Our problem is to find the
symmetric electromagnetic fields which can exist in such a medium.
4 énother set of exponential solutions is obtained from this by changing I"into — T,
5 For a thorough discussion of ‘‘complementary ' waves in coaxial pairs the reader
is referred to John R. Carson [4].

5 Only the outer radius of the inner conductor and the inner radius of the outer

conductor need be considered because in perfectly conducting mediaelectric states
are entirely surface phenomena.
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In a perfect dielectric g = 0 and the preceding set of equations becomes

T . dE,
Ep“me ""Wl-‘Hﬁp"d_p
d(PHw)

dp

+ T'E,,
(13)
= twepkE,.

No force is required to sustain electric current in perfect conductors
and the tangential components of the intensities are continuous across
the boundaries between different media; therefore, the longitudinal
electromotive intensity vanishes where p equals either a or b.

Substituting E, from the first equation into the second, solving
the latter for H, and inserting it into the third equation, we have
successively :

1wedE,
o, = — mE dp (14)
and
d*E,  dE. . _
PTPE'F dp‘l‘mPEz—U, (15)

where, for convenience, we let I'* 4+ w?eu = m% The most general
solution of the last equation is usually written in the form

E.(p) = AJo(mp) + BYo(mp), (16)

where J, and ¥, are Bessel functions of order zero and 4 and B are
constants so far unknown.”

The constants A and B can be determined from the fact already
mentioned that E, vanishes on the surface of either conductor, i.e.,
from the following equations:

A.fa(mb) + B Yo(mb) = 0,
and (17)
AJo(ma) + BYo(ma) = 0.

These equations are certainly satisfied if both constants are equal
to 0. If, however, they are not equal to 0 simultaneously, we can
determine their ratio from each equation of the above system. These
ratios should be the same, of course, and yet they cannot be equal for
every value of m. Thus, the permissible values of m are the roots of

”For large values of the argument these Bessel functions are very much like
slightly damped sinusoidal functions; in fact Jo(x) and ¥o(x) are approximately
equal, respectively, to V27x cos (x — w/4) and V2/rx sin (x — =/4), provided x is
large enough. -
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the following équation:

A _ Yoimb) _ Yo(ma)
=B = Tomb) ~ To(ma) (18)

This equation has an infinite number of roots ® whose approximate
values can be readily determined if we replace Bessel functions by
their approximations in terms of circular functions. Thus, we have

, (m=1,2,3 --+). (19)

This is a surprisingly good approximation for all roots if the radius of
the outer conductor is less than three times that of the inner; and the
larger the 7, the better the approximation.® The propagation con-
stants are computed from the corresponding values of m, by means
of the following equation,

'y = vm,® — wleu. (20)

First of all, let us study the simplest solution in which both 4 and
B wvanish. In this case, the longitudinal electromotive intensity
vanishes identically. The magnetomotive intensity—and the trans-
verse electromotive intensity, as well—also vanishes unless the de-
nominator w2 in equation (14) equals zero. If all intensities were to
vanish, we should have no field and there would be nothing to talk
about; hence, we take the other alternative and let

I+ wleu = 0, ie., ' = im\fa; (21)

the positive sign having been implied in writing equations (13). In
air, eg = (1/c*) where ¢ is the velocity of light in cm.; hence, in air
this particular propagation constant equals Zw/c. Since E, equals
zero everywhere, the electromotive intensity is wholly transverse; and
the flow of energy being, according to Poynting, at right angles to the
electromotive and magnetomotive intensities, the energy transfer is
wholly longitudinal.

The above method of determining the propagation constant may
be open to suspicion; besides, the method does not tell how to obtain
the actual values of the electromagnetic intensities but merely leads
to a relation compatible with the existence of such intensities. There-
fore, let us obtain the wanted information directly from the funda-

¢ A. Gray and G. B. Mathews, ‘A Treatise on Bessel Functions” (1922), p. 261,

* It is strictly accurate if the radii of the cylinders are infinite, i.e., if we are dealing
with a dielectric slab bounded by perfectly conducting planes.
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mental equations (13) which assume the following simple form:

iwel, = TH,, jwpll, = TE,, g(_f;if_p) = 0, (22)

if . vanishes identically. Either of the first two equations determines
the ratio of the electromotive intensity to the magnetomotive; the
two ratios are consistent only if the condition (21) is satisfied. Then,

we have also

r n 4
Ep:‘T/T(&)_EIIP:\/;HW and H.,,=;, (23)

where A is some quantity independent of p. This constant can be
readily calculated from Ampere's law. The magnetomotive force
acting along the circumference of any particular cross-section of the
inner cylinder equals 2wpH, amperes, i.e., 2w4; since this M.M.F.
should equal the total current I flowing in the inner conductor through
the cross-section, the quantity 4 equals I/2w. Reintroducing the
implied factor e, we have :

I

— —TI'z
I, Zﬂ_pe )
(24)
J = ——I B g_rz.
~ i 2rp N € ’

Le

In practical measurements we are concerned with the total potential
difference (V) between the cylinders, rather than with the transverse
electromotive intensity. The former is merely the integral of the

intensity,
= ‘ = ._1 E g —TI'z
V—J: E,,dp—(zﬂ_\/elogb)fe . (25)

This voltage and the current I vary as vollage and current in a semi-
infinite transmission line whose propagation constant is T' and whose
characteristic impedance is

Zy L4 1 \/& log%- (26)

“TeT: 27N

At any point 5 the intensities E, and H, have the same values as would
the voltage and current at the same distance z from the end of a trans-
mission line whose propagation constant and characteristic impedance are

respectively oV ep and Vp/e.
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The connection between electromagnetic theory and line theory is
so important that, risking repetition, we wish to emphasize their
intimate relationship by deriving the well-known differential equations
of the line theory directly from the electromagnetic equations (2)
combined with the assumption that the longitudinal electromotive intensity
vanishes everywhere. We already know that under the assumed con-
ditions the first equation of the system (2) becomes

I

=m,

H, (27)
where I is the total current flowing in the inner cylinder through a
particular cross-section and is some function '® of 2. We can therefore
rewrite the last two equations of the system as follows:

dE, Twy 1 al .
—f = - — — = — jwek,

dz 2mp ! 2mwp 0z TweSy (28)
We have merely to integrate both equations with respect to p from
b to a and substitute the potential difference V for the integral of the
transverse electromotive intensity to obtain

av . fiep, a ﬂ' _ 2miwe
9z (ﬂ-logb) L 9z a v (29)
logz

which are the equations of the transmission line whose distributed
series inductance equals (z/27) log (a/b) henries/cm. and shunt capacity
27e/(log a/b) farads/cm.

With this, we conclude the special case in which the longitudinal
electromotive intensity vanishes everywhere, the propagation constant
equals jw\en, and the velocity of transmission is that of light.

We now turn our attention to the case in which 4 and B do not
vanish. We have already noted that the propagation constants are
given by equation (20). Since, in this case, we are interested primarily
in the nature of the phenomena rather than in the details of field
distribution, we shall simplify our mathematics by supposing the
radii of the cylinders to be infinite. Thus, the cylinders become two
planes perpendicular to the x-axis, distance a apart. The e-direction,
then, coincides with the y-direction and, therefore, all the intensities
are independent of the y-coordinate. Let us choose the z-axis half-
way between the planes. The equations describing this two-dimen-

10 On this occasion, we should remember that a particular type of this function
had not yet been ascertained at the time the equations (2) were arrived at.
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sional transmission line are

o, .

o twek,,

aH, _ .

az - inEzr (30)
0E. O8E, .
9 ox twuld,.

If » is an odd integer, these possess the following solutions:

'y . nrx
E, = A+=sin—,
Twe a
nw nwTx
E,=A4-—cos—, (31)
1wed a
. nwx
i, = A sin— ;
a
and if # is an even integer,
r nwTx
E.,=A+"cos—,
iwe a
nTr . NTX '
E,= —A-—sin—-, (32)
Twed a
nwTx
Hy = A COST '

where

2.2 .n2 4
To = Ao — @fen = T — a0 (33)

and A is the wave-length corresponding to the frequency f.
Let us now define the longitudinal impedance (Z.) as the ratio of

E; to Hy,
Zz =T, (34)

and the transverse ?Impedance (the impedance in the x-direction) as
the ratio of E, to Hy,

nmw nwx

Z, = — cot—, if # is odd,
Twed a
(35)
nw nrx e .
Z, = ———tan—, if n is even.
twea a

It will be observed that, depending on the frequency, the longitudinal
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propagation constant I', is either real or purely imaginary; it vanishes
if @ = n(\/2), that is, if the spacing between the planes is a whole
number of half wave-lengths. When the propagation constant is
real, the longitudinal impedance is purely imaginary, and vice versa,
when the propagation constant is purely imaginary, the longitudinal
impedance is real. In the former case, no energy is transmitted
longitudinally but merely surges back and forth, and in the latter
case we have a true transmission line. The transverse impedance is
purely imaginary at all frequencies and, hence, the energy merely
fluctuates to and fro.

If the frequency is sufficiently low, all of these higher order propaga-
tion constants are real and all the energy is transmitted in the principal
mode described by equations (21) to (29). The réle of the higher
propagation constants consists in redistributing the energy near the
sending terminal,! that is; in terminal distortion. But as the fre-
quency gets high enough to make the wave-length less than 2a, the
next transmission mode may become prominent, and so forth up the

- infinite ladder of transmission modes.

IMPERFECT CoAXiAL CONDUCTORS 12

We shall now suppose that the conductors are not perfect; i.e.,
the conductivity instead of being infinite, is merely large. Assuming
that our solutions are continuous functions of conductivity (this can
be proved), we conclude: first, there exists an infinite series of propaga-
tion constants approaching the values given in the preceding section
as the conductivity tends to infinity; second, one of these propagation
constants, namely that approaching iwVeu, is very small unless the
conductivity is too small. In the immediately succeeding sections we
shall be concerned only with electromagnetic fields corresponding to
this particular propagation constant.

Let us now prove that the simple expression for the magnetomotive
intensity in the dielectric between perfectly conducting cylinders is
still true for all practical purposes, even if the conductors are merely
good, and even when there are more than two of them. Since the
lines of force are circles, coaxial with the conductors, and since H, is
independent of ¢, the total magnetomotive force acting along any
one of the circles equals H, times the circumference of the circle (27p).
This M.M.F. also equals the total current I passing through the area
of the circle. Therefore, the magnetomotive intensity is (I/2wp)
amperes/cm. This expression is true at any point in the conductors as

1t And near the receiving terminal as well, if the line is finite.

2 The general theory of wave propagation in a multiple system of imperfect
coaxial conductors is amply covered by John R. Carson and J. J. Gilbert [2, 3].



544 BELL SYSTEM TECHNICAL JOURNAL

well as in the dielectric between them. In a conductor the total
current I passing through the area of the circle is a function of p since
the current is distributed throughout the entire cross-section of the
conductor. Strictly speaking, the same is true of any circle in the di-
electric. There is one important difference, however; the conduction
current passing through such circles is the same and the displacement
current is usually so small that it can be legitimately neglected.
Thus, in the dielectric, we have to an extremely high degree of accuracy
unless p is very large

II¢ =5 (36)

where I is merely a constant, namely, the total conduclion current
passing ‘through the area of the circle of radius p.

That the longitudinal displacement current can be neglected, unless
the conductivity of the conductors is small, has been already indicated
in the opening paragraph. The following comparison is an aid to the
mathematical argument. The density of the longitudinal conduction
current is gF and that of the displacement current is iweE. Near the
boundary, E is substantially the same in the conductor and in the di-
electric. In copper, g = (1/1.724)10° and in air e = (1/367)107""
Thus, even at very high frequencies, the density of the displacement
current is very small compared to that of the conduction current.
On the other hand, the conduction current is ordinarily distributed
over a small area while the displacement current may flow across a
large area. The latter area would have to be very large, however,
before it could even begin to compensate for the extremely low current
density.

ELECTROMOTIVE INTENSITIES IN DIELECTRICS

With the aid of equations (12) and (36), we can now calculate the
electromotive intensities in the dielectric between two conductors.

Thus, the transverse intensity is

TI

Ee = 2alg + fwelp en

Substitﬁting this in the second equation of the set (12), we obtain
the following differential equation for the longitudinal intensity:

dE. _[. _ TI? I
Ti; - |:1,m1u g+ iwe] 2mp’ (38)

where u is the permeability of the dielectric. Integrating with respect
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to p, we have

N [ 2
E. = zﬂ_[iwu P -I-iwe] Ilogb,-l-A, (39)

where A is a constant to be determined from the boundary conditions.!3

ToE PoTeENTIAL DIFFERENCE BETWEEN Two CoaxiarL CYLINDERS

Equation (36) relates the transverse electromotive intensity to the
total current flowing in the inner conductor. In practice, however,
we are interested in the difference of potential between the conductors,
that is, in the transverse electromotive force rather than the electro-
motive intensity. This potential difference 17 is obtained at once
from equation (37) by integration:

TIlog %

(™ B r7 “dp _ T C W
= Endp—wfw o g Tiwn 40

This transverse E.M.F. produces a transverse electric current which
is partly a conduction current—if the dielectric is not quite perfect—
and partly a displacement (or ‘‘capacity ") current.

Now, the total transverse current per centimeter length of line is

I, = 27p(g + iwe)E,.
Then, by equation (37), we have
I, =TI (41)

Therefore, equation (40) becomes

a
lOg?

V= 9ne Fiwe

(42)

The ratio of a current to the electromotive force that produces it
is called admiftance. Hence, the distributed radial admittance per

18 The following system of notation will be adhered to throughout the remainder
of the paper: The inner radius of any cylindrical conductar is denoted by a, and its
outer radius by & When several coaxial conductors are used, they are differen-
tiated by superscripts; a’, a’’, a®, --- referring to their inner radii, for example,
and &, ", b, --. to their outer radii. This convention also applies to conduc-
tivities, permeabilities, and other physical constants of the conductors in question,

For convenience, we have written the ratio of p to the outer radius of the inner
conductor in place of p; this change affects only the arbitrary constant 4 which will
eventually be assigned the value required by the boundary conditions. When
written in this form, the first term of E. vanishes on the surface of the inner con-
ductor which is a convenience in determining the value of 4.



546 BELL SYSTEM TECHNICAL JOURNAL

unit length between two cylindrical conductors is

y = L) _ ¢y, (43)
log—b—,

the symbols G and C being used in the usual way to designate the
distributed radial conductance and capacity. Writing these sepa-
rately, we have

G= 27"\3” ' C= 27!-6/: . ‘ (44)

a a
log 7 log ¥

Returning to (40), we find that V can be written in the form

But the ratio of the transverse electromotive force I to the longitudinal
current { is known as the longitudinal characteristic impedance of the
coaxial pair. [Its value is obviously T'/Y.

THE EXTERNAL INDUCTANCE

In dealing with parallel wires it is customary to use the term
“external inductance” for the total magnetic flux in the space sur-
rounding the pair.® We shall adopt the same usage in connection
with coaxial pairs. Strictly speaking, we must therefore consider it
as being composed of two parts: one being the flux between the cylinders,
the other the flux in the space surrounding them. But the longi-
tudinal displacement current is negligible by comparison with the con-
duction current, and effects due to it have been consistently ignored
throughout this part of our study.” To the same order of approxima-
tion, the flux outside the pair is negligible by comparison with that
between them, whence we find the ‘“‘external inductance” to be

M f H:pdp u a'’
L, = '_b'I__ = log 7 henries/cm. (45)

14 While this definition is very descriptive, it is not strictly accurate unless the
wires are perfectly conducting. The correct definition should read as follows:
The external inductance of a parallel pair is the measure (per unit current) of mag-
netic energy stored in the space surrounding the pair. The reason the simpler
definition fails for imperfectly conducting parallel wires is because some of the lines
of magnetic flux lie partly inside and partly outside the wires. This does not happen
in connection with coaxial pairs even when they are not perfectly conducting.
Hence we are warranted in using the simpler idea.
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Comparing this with equation (44), we have the following relation
between the external inductance and the capacity

CL, = ep. (46)

PrROPAGATION CONSTANTS OF COAXIAL PAIRS

Since the relation between electromotive intensity and current is
linear, we are justified in writing the intensities at the adjacent
surfaces of the pair in the form

E.(b) = Z)/1, E.(a") = Z,'1, (47)

where Z,/ and Z,"” depend only upon the material of the conductors
and the geometry of the system. These quantities will be called sur-
face impedances of the inner and outer conductors, respectively.
Inserting (47) in (39) we obtain
A = Z/1,

17. I? - a” _ '

ﬂ[zwy g+1ﬁwe]110g?+A = —Z/ I, (48)
by means of which A and T" may be expressed in terms of Z,’ and Z,”.
If we solve the first of these for 4 and substitute the value thus derived
in the second we get, by virtue of (45),

g% = Z 4 2+ iwl (49)
2r(g + dwe) B Y T Lo T A TRk
or, by (43)
=Yz (50)
where for brevity we have written
Z =2+ 2Zy + iwL.. (51)

DirecT CONVERSION OF THE CIRCULARLY SYMMETRIC FIELD EQua-
TIONS INTO TRaNsMIssION LINE EqQuaTIiOoNns

As the practical applications of Maxwell's theory become more
numerous, it becomes increasingly important to formulate its exact
connection with transmission line theory. With this purpose in mind,
let us attempt to throw (2) into the form of the transmission line
equations, :

The obvious plan of attack is to introduce into (2) the transverse
voltage V" and the longitudinal current I, in place of the intensities
E and II. The total current is introduced by substituting (I/2rp) for
H,, and the total voltage by integrating the set of equations (2) in
the transverse direction. The first equation gives us nothing of
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importance.’® The second and third equations, on the other hand,
give

av

torl 1og 7 = BJ'(a) — ESO) — 5 (52)

27
("‘f.f
log5r 51

V= = 5rlg Fiwe) 05

But, upon substituting (45), (47) and (51) in the first of these equations
and (43) in the second, we get

v

az 21

aI
w Yv, (53)
where Z and ¥ are to be interpreted respectively as the distributed
series impedance and shunt admittance.

CURRENT DisTRIBUTION IN CYLINDRICAL CONDUCTORS

So far, we have been dealing with electromagnetic intensities in
dielectrics. We now turn our attention to conductors and determine
their current distributions with the ultimate view of calculating their
surface impedances. One of our sources of information is the familiar
set of equations (12). In these equations, however, we now lete=0
since the displacement current in conductors is negligibly small by
comparison with the conduction current. From these equations, we
eliminate electromotive intensities and thus obtain a differential
equation for the magnetomotive intensity. The latter is in fact
equation (6) with only one difference: the exponential factor e~T* has
been explicitly introduced and cancelled so that the equation has

become
%[%d(z_?] = (¢* — T)H,,
or o
: d_% %dfpp _ % = (¢* — T0H,,
where

o? = guwui = 2mgufi.

This o will be called the intrinsic propagation constant of solid metal.

15 Qur standard practice of neglecting the longitudinal displacement currents
has given us the general rule that 2xpH, = I'is independent of p. Using this relation
in the first of equations (2.2), we get

(g + iwe)E; = 0;
but this merely reflects the fact that g + iwe is very small.
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The attenuation and the phase constants are each equal to Vmguf.
The intrinsic propagation constants of metals are large quantities
except at low frequencies as the accompanying table indicates.

PropacaTioN ConNsTANT OF CoMMERcCIAL COPPER

g = 5.800 10° mhos/cm.
p = 0.01257 ph/cm,
; . T
0 0.0
1 0.1513
10 0.4785
100 1.513
10,000 15.13
1,000,000 151.3
100,000,000 1513.

On the other hand, T is very small; if air is the dielectric between the
conductors, T is of the order of (1/3)iw 107'°. Hence, even at high
frequencies I is negligibly small by comparison with ¢ and we can
rewrite (54) as follows:

if1d

dp| pdp

This is Bessel's equation and its solution can be written down at
once ! as

(pH,,)] = o', (55)

H, = AL(op) + BK(cp), (56)

where the functions I,(x) and K,(u) are the modified Bessel functions
of the first order and respectively of the first and second kind. For large
values of the argument we have approximately

_ e 3
Il(ﬂ) —m(l — '8;)! (57)
Ki(n) = \/2—7; e—"( 1+ %) ;

16 [t is interesting to note that in the case of a fairly thin hollow conductor whose
inner radius is not too small there exist very simple approximate solutions of (53).
Under these circumstances p varies over such a small range that no serious error is
introduced in treating the factors (1/p) and p in (55) as constants, and the equation
becomes .

a*H,
dp?

which is satisfied by the exponential functions e°? and e=??. The larger the value
of p and the faster the change in H, with p, the better is the approximation.

2
= o’




550 BELL SYSTEM TECHNICAL JOURNAL

while for small values

(58)
Ki(u) = ” log%-

The function I;(x) becomes infinite and K,(#) vanishes when = is
infinite.)” When # is zero, I;(u) vanishes and K,(z) becomes infinite.

The longitudinal electromotive intensity is calculated from the
third equation (12) with the aid of the following rules for differentiation
of modified Bessel functions of any order n:

d
a(x ITI) =X Iﬂ—ly

d (59)
d_x (x"Kn) = — x"Kn_l.
Thus,
= y[AI(op) — BKo(op)], (60)
where )
= T _ e
n==7 (61)

For reasons which will appear later, this quantity » will be called the
intrinsic impedance of solid metal.
The current density is merely the product of the intensity E. and

the conductivity g.

In a general way the behavior of the functions of zero order is
similar to that of the functions whose order is unity. Thus, for large
values of the argument,

mm=é%x1+é)

(62)
T _ i
Ko(u) —\/ﬂe (1 Su)'
and for small values
2
Io(n) = 1-% .
Ko(u) = — log u + 0.116. )

17 This statement is correct only as long as the real part of « is positive. This is
so in our case because out of two possible values of the square root representing o
we can always choose the one with the positive real part.
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SURFACE IMPEDANCE OF A SoLiD WIRE

On page 547 we defined the surface impedances of a coaxial pair as
the ratios of the longitudinal electromotive intensities on the adjacent
surfaces of the cylinders to the total currents flowing in the respective
conductors. In that place, however, we were unable to give explicit
formulz for the impedances so defined because we did not yet have a
precise value for E.. Now that this omission has been supplied, we
are prepared to compute Z,’ and Z,".

We consider the case of a solid inner cylinder surrounded by any
coaxial return, and seek to determine the constants A and B in (60).
Since the E.M.I. must be finite along the axis of the wire we must
make B = 0, because the K-function becomes infinite when p = 0.
On the surface of the wire the magnetomotive intensity is I/2xb if
I is the total current in the wire. By equation (56) this intensity
equals AI,(cb); hence,

I

4= 27b1,(cb)

and the final expression for the electromotive intensity within the
wire is

nlo(op

E.(p) = 575 )

= Tublr(ob) - (64)

Thus, we have the following expression for the surface impedance of
the solid wire:
_ E.(b) _ nlo(ad)

Z I~ 2xbl(cb)’

ohms/cm. (65)

As the argument increases, the modified Bessel functions of the
first kind (the /-functions) become more and more nearly proportional
to the exponential functions of the same argument. Thus, if the
absolute value of ob exceeds 50, the Bessel functions in the preceding
equation cancel out and the following simple formula holds within
1 per cent:
=1 = ’;—; (1 + i), ohms/cm. (66)

This surface impedance consists of a resistance representing the
amount of energy dissipated in heat, and a reactance due to the mag-
netic flux in the wire itself. Separating (66) into these two parts,
we have, approximately,

Rb=wLb=— g—
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However, most of the error in (66) occurs in the real part. If more
accurate approximations for Bessel functions are used, then

S N .
R = 2b\/1rg+41rgb2’
uf

L
wLb_-z_'b' "T_g'

(67)

these are correct within 1 per cent if |¢b| > 6. The surface inductance
Ly equals (1/47b)Vu/mgf henries/cm.; it decreases as the frequency

increases.
If the wire is so thin or the frequency is so low that |gb | < 6,

equation (65) has to be used. Its use in computations is quite simple,
however, because the argument ¢b is a complex number of the form
u\7: and the necessary functions have been tabulated. Lord Kelvin
introduced the symbols ber # and bei « for the real and the imaginary
parts of To(uvi), so that we now write

To(uni) = ber u + i bei u. (68)
Differentiating, we have
Vi I’ (uv1) = Vi Ii(uvi) = ber’ u + i bei’ u,

and therefore

. ber’ . bei’
Il(u‘ﬁ) _ ber’u -I-j ei’ u (69)
Vi
If we insert these values in (65), and recall that the d.-c. resistance
of a solid wire is 1/7gh?, and that ¢ = gy, we obtain at once

Zy ., _ tber ubei’u — beiu ber’ u
Rewo bz = 3 (ber” u)? + (bei” u)?
n i ber u ber’ 1 + bei u bei’ %
2 (ber” u)? 4+ (bei’ u)* !

(70)

where u is the absolute value of ¢b. The accompanying graph
illustrates the real and imaginary parts of this equation '* (Fig. 2).

THE SURFACE IMPEDANCES OF HorLow CYLINDRICAL SHELLS '

In the case of a hollow conductor whose inner and outer radii are
respectively equal to @ and b, the return coaxial path for the current
18 For equation (70) and various approximations see E. Jahnke and F. Emde.

19 [n the case of self-impedances the more general equations of two parallel

cylindrical shells were deduced by Mrs. S. P. Mead. For the special formula
concerning self-impedances of coaxial pairs see A. Russell.
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may be provided either outside the given conductor or inside it or
partly inside and partly outside. We designate by Z.. the surface
impedance with internal return, and by Z, that with external return.
These impedances are equal only at zero frequency; but if the con-

_. 4.0 4.0
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Fig. 2—The skin effect in solid wires. The upper curve represents the ratio of

the a-c. resistance of the wire to its d-c. resistance and the lower curve the ratio of
the internal reactance to the d-c. resistance.

ductor is thin, they are nearly equal at all frequencies. If the return
path is partly internal and partly external, we have in effect two
transmission lines with a distributed mutual impedance Z, due to
the mingling of the two currents in the hollow conductor common to
both lines. However, since this quantity Z, is not the total mutual
impedance between the two lines unless the hollow conductor is the
only part of the electromagnetic field common to them, it is better to
call Z,, the transfer impedance from one surface of the conductor to
the other.

In order to determine these impedances, let us suppose that of the
total current I, + I flowing in the hollow conductor, the part 7,
returns inside and the rest outside. Since the total current enclosed
by the inner surface of the given conductor is — I, and that enclosed
by the outer surface is f;, the magnetomotive intensity takes the values
— (I./27a) and (I,/27bh), respectively, at these surfaces. This infor-
mation is sufficient to determine the values of the constants 4 and B
in the equation (59) governing current distribution. In fact, we
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have
ATL(oa) + BKy(oa) = — 22 |
27a
; 1)
AI(ob) + BKy(cb) = ﬁ
and therefore
Ki(ab) I(ca)
A =FaD e T 2mp 1o B
B = _II(O'b)I _Ilftm)I (72)
T 27aD "* 276D "
where
D = I,(eb)Ki(oa) — I(ca)K(ab). (73)

Substituting these into the second equation of the set (59), we obtain
the longitudinal electromotive intensity at any point of the conductor.
We are interested, however, in its values at the surfaces since these
values determine the surface impedances. Equating p successively
to ¢ and b, we obtain

Ez(a) = ZaaIa + ZabIb;

74
Ez(b) = ZbaIa + beIbl ( )
where 20
Zaa = -ZW% [Lo(oa)K1(cb) + Ko(oa)I1(eb)],
Zuw = 5 p [D(eB) Ku(aa) + Ko(ob)Ts(aa) ], (75)
1
ub = Zba = W *

The results embodied in equation (74) can be stated in the following
two theorems:

Theorem 1: If the relurn path is wholly external (I, = 0) or wholly in-
ternal (I, = 0), the longitudinal electromotive intensity on that
surface of a hollow conductor which is nearest to the return path
equals the corresponding surface impedance per unit length multiplied
by the total current flowing in the conductor; and the intensity on the
other surface equals the transfer impedance per unit length multiplied
by the total current.

20 To obtain the last equation, it is necessary to use the identity

Lix)K1(x) + Ko@) i(x) = % .
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Theorem 2: If the relurn path is partly external and partly internal the
separate components of the intensity due to the two parts of the total
current are calculated by the above theorem and then added to obtain
the total iniensities.

At high frequencies, or when the conductors are very large, (75) can
be replaced by much simpler approximate expressions.” If, however,
we are compelled to use the rigorous equations in numerical computa-
tions, it is convenient to express the Bessel functions in terms of
Thomson functions. Two of these, the ber and bei functions, or
Thomson functions of the first kind, have already been introduced.
The functions of the second kind are defined in an entirely analogous
fashion as

Ko(xVi) = ker x + 1 kei x. (76)
Differentiating, we have
. Vi Ko (xVi) = — Vi Ki(xvi) = ker’ x + i kei’ x, (77)
so that
Ka(xVd) = — ker’ x +_1: kei’ ¥ (78)

i

All these subsidiary functions have been tabulated;® but the
process of computing the impedances is laborious nevertheless.

TaE CompPLEX POYNTING VECTOR %

In the preceding sections we have been able to determine the surface
impedances of the coaxial conductors by reducing the field equations
to the form of transmission line equations, and interpreting various
terms accordingly. However, if the conductors are eccentric or of
irregular shape, the effective surface impedances are more conveniently
calculated by the use of the modified Poynting theorem.

This theorem states that, if E and H are the complex electromotive
and magnetomotive intensities at any point, and if E* and H* are
the conjugate complex numbers, then ?* :

f f [(EH*]dS = g f f f (EE*)dv + iwu f f f (HH*)dv. (79)

2 See portion of this text under the heading ‘' Approximate Formule for the
Surface Impedance of Tubular Conductors,”’ page 557.

22 British Association Tables, 1912, pp. 57-68; 1915, pp. 36-38; 1916, pp. 108-122.

2 For an early application of the Complex Poynting vector see Abraham v.
Foppl, Vol. 1 (Ch. 3, Sec. 3).

24 The brackets signify the vector product and the parentheses the scalar product
of the vectors so enclosed. The inward direction of the normal to the surface is
chosen as the positive direction. The division by 4r does not occur if the consistent
practical system of units is used as it is done in this paper.
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To get an insight into the significance of this equation, let us con-
sider a conductor which is part of a single-mesh circuit, and extend our
integrals over the region occupied by this conductor. Then the first
integral on the right of (79) represents twice the power dissipated in
heat in the conductor, while p JS° S S (HH*)dv is four times the average
amount of magnetic energy stored in it.

On the other hand, when we look at the conductor from the stand-
point of circuit theory, these two quantities are respectively RI? and
LI%; R and L being by definition the ‘‘resistance’ and ‘‘inductance"”
of the conductor. Hence we have the equation,

f f [EH*].dS = (R + iwl)I* = ZI?, (80)

from which the émpedance Z can be computed when the field intensities
are known at the surface of the conductor.

If, on the other hand, the conductor is part of a two-mesh circuit
and I; and I. are the amplitudes of the currents in meshes 1 and 2
respectively, the average amount of energy dissipated in heat per
second can be regarded as made up of three parts, two of which are
proportional to the squares of these amplitudes, while the third is
proportional to their product. The first two of these parts being
dependent on the magnitude of the current flowing in one mesh only
are attributed to the self-resistance of the conductor to the corre-
sponding current; the third part is attributed to the mutual resistance
of the conductor. Designating the self-resistances by Ry, and Rse and
the mutual resistance by Ry, we represent the energy dissipated in
heat in the fOl'.lTl. 1/2(R11I]_2 + 2R12I1I2 + Rzzfzz). Slmllarly, the
average amount of energy stored in the conductor can be represented
in the form 1/4(Li:I:® 4+ 2L1I1Is + Leals?), where Lu and Lo are
called respectively self-inductances and Ly mutual inductance. In this
case, equation (79) can be written as follows:

f f [EH*1,dS = Zul? + 2Zulils + Zuls, 81)

where the quantities Zi1, Zs2 and Zi» are respectively the self-tm-
pedances and the mutual impedance of the conductor.

In general, if the conductor is part of a k-mesh circuit, we can
obtain all its self-and mutual impedances by evaluating the integral
S S[EH*).dS over its surface, and picking out the coefficients of
various combinations of I's.

We shall have an occasion to apply these results in computing the
effect of eccentricity upon the resistance of parallel cylindrical con-
ductors.
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APPROXIMATE FORMULZE FOR THE SURFACE IMPEDANCE OF
TuBULAR CONDUCTORS

The exact formulae (75) for the internal impedances of a tubular
conductor are hard to use for numerical computations, but simple
approximations can be easily obtained if the modified Bessel functions
are replaced by their asymptotic expansions and the necessary division
performed as far as the second term. Thus, we have

3.1
Zw = 2blcotho:rt+ <a+5)]’

_ " _m(341
Zaa"mllicothﬂ't 20(b+a)]' (82)

Ly = csch at,

w\f&“

where ¢ is the thickness of the tube. Separating the real and imaginary
parts, we have

R _i 'Lfsinh #+sinx , a4 3b
% = 925 Nrgcoshu —cosu ' 16wgab®’

R _l Esinhu—l—sinu“b—i-.h
“ "~ 2a Nrgcoshu —cosu  16wgha®’
smh cos -|— cosh = sm;
® = \ab cosh % — COS U !
. = L ,uf Sinh % — sin $3)
wlw = 2b rgcosh u — cos u’ (
_ uf sinh u — sin u
wLaa = 2a N 7gcosh u — cos u’
L U U w . u
o _1: o smh§ cos 3 — coshismi
@~ Nab\ ng cosh u — cos u
Izubl — "/;f

\rgab(cosh « — cos u)

where # = t\2gwpu.

It is obvious that in the equations for the self-resistances, the second
terms represent the first corrections for curvature and vanish altogether
if the conductors are plane. Although these formule were derived by
using asymptotic expansions which are valid only when the argument
is large, i.e., at high frequencies, the results are good even at low
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frequencies, provided the tubular conductor is not too thick. Thus,
if the frequency is 0, the first term in the above expression for Ry
becomes 1/2xgbt which is the d.-c. resistance of the tube if its curvature
is neglected. The second term only partially corrects for curvature,
the error being of the order of #/8b%. Hence, if the thickness of the
tube is not more than 25 per cent of its kigh-frequency radius, that is,
the radius of the surface nearest the return path, the error is less than
1 per cent. The formula for the mutual impedance is exceedingly
good down to zero frequency for all ordinary thicknesses.

If the frequency is very high, further approximations can be made
and the formulae simplified as follows:

_1 |uf L at3b
Ru = 206 N g + 16wgan?’

“ " 2aNrwg 16wgha®’

V2 fuf ™
=2 B , T
Ra vai Nz e cos (u 4),
1
wLu, = % ‘:—z N (84)
wlae = LN '
@ 2aNwg
N2 \/E T
=2 | a—u r
wl ai 1rge cos (u + 4),
2= T m
vab N g

If the ratio of the diameters of the tube is not greater than 4/3,
then we have the following formula for the surface transfer impedance:

|Zw| _ u
- —_—
Ry Ycosh # — cos u

(85)

which is correct to within 1 per cent at any frequency. This ratio is
illustrated in Fig. 3. The ratios of the mutual resistance and the
mutual reactance to the d.-c. resistance are shown in Fig. 4.

In the case of self-resistances, we let

1

Ro = 2rgrt’

(86)
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where 7 is the high frequency radius of the tube. Thus R, is the d.-c.
resistance of the tube if the curvature is neglected. Then we have
approximately
R
Ry

_ 5_213 . sinh % + sin # ﬂ:i (87)

coshu —cosu ~— 2r’

if the tube is fairly thin. The curvature correction is positive if the
1.0
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Fig. 3—The transfer impedance from one surface of a cylindrical shell to the other.
The curve represents its ratio to the d-c. resistance.

return path is external, and negative if it is internal. The graph of
the first term is shown in Fig. 5.

An interesting observation can be made at once {rom the formula
(83) for the self-resistances of a tubular conductor. If the frequency
is kept fixed and the thickness of the conductor is increased from 0,
its resistance (with either return) passes through a sequence of maxima
and minima.”® The first minimum occurs when % = =, i.e., when

% The general fluctuating character of this function was noted by Mrs. S, P.
Mead [12].
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t = Vx/(2Vguf); the first maximum occurs when u = 2, etc. This
_ fluctuation in resistance is due to the phase shift in the current density
as we proceed from the surface of the conductor to deeper layers.
The “optimum’ resistance is Ry((m/2) tanh 7/2) = 1.44R,, plus or
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Fig. 4—The ratios of the transfer resistance and transfer reactance of [a cylindrical
shell to its d-c. resistance,

minus the curvature correction ¢/2r. If curvature is disregarded,
the ratio of the optimum resistance to the resistance of the infinitely
thick conductor with the same internal diameter as the hollow con-
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ductor is tanh 7/2 = 0.92. When z = 2, the ratio reaches its
first maximum coth = = 1.004. At 1 megacycle the optimum thick-
ness of a copper conductor is about 0.1038 mm.

By a method of successive approximations, H. B. Dwight has ob-
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Fig. 5—The skin effect in cylindrical shells. The curve represents the ratio of the
a-c. resistance of a typical shell to its.d-c. resistance.

tained the impedance of a tubular conductor with an external coaxial
return.2® His final results appear as the ratio of two infinite power
series, which converge for all values of the variables involved, though
they can be used advantageously in numerical computations only
when the frequencies are fairly low and the convergence is rapid.
We shall merely indicate how Dwight's formula and other similar
formulae can be obtained directly from the exact equations (75).

Let us replace the outer radius b of (75) by @ + ¢, where ¢ is the
thickness of the wall, and replace the various Bessel functions by their
Taylor series in #:

Io(ob) = Io(oa + of) = iﬂ%fum(m),

Ko(ob) = Ko(oa + o) = iﬂ L*;Q_ Ko™ (ca),
o (o (88)
Ii(ob) = I'(cb) = ¥ (o) I, (ga),

n= n!

— Ki(ob) = Ko'(ob) = i (‘;3"1(.,<»+1>(m).

<

26 “'Skin Effect in Tubular and Flat Conductors,” A. I. E. E. Journal, Vol. 37
(1918), p. 1379.
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We thus obtain !1
%
[

0 (O't)”
29 ,,Z:o An n!
Zw = 7 = O (89)
né:oAﬂH ——‘n! :
where A4, is defined as \I
_ | Io'(ea) Iy (ga)
A = o (oa) Ko™ (ca) (90)

In spite of the complicated appearance of (90) the A's are in reality
very simple functions of ¢a, as the accompanying list (Qi) will show.?”

1 1 1
do=cpr A=0 A=, Aa:ﬂrzw
1 3 2 12
Adi=tasm AT T EE T ﬁ 1)
1 9 60 |
o=t o5 T ogs |

|

The formula (90) can be made more rapidly convergen}tt by partially
summing the numerator and the denominator by means of hyperbolic
functions. Thus, the numerator becomes

a sinh ¢ 3t 312
\/%coshat—l— Yod [1_Ea+”']_§ ver,

and the denominator

a . 3(ot cosh ot — sinh ot)
\/% sinh of + 8(0a)? +

The reader will readily see that there would be no difficulty in using
this method to obtain other expansions somewhat similar to (89).
For example, we might write ¢ = b — ¢ in (75) and express our
results in terms of the outer radius. In this respect the method that
we have used has greater flexibility than Dwight's; but there seems to
be little advantage gained from it, since the simple formule (82) are
sufficient for most practical purposes.

27 The values given in (91) are exact, not approximate. One of them, namely,
I/(ea)  I(ea)] 1

J(ea) Ko(oa)| @'

is one of the fundamental identities found in all books on Bessel functions. The
rest are consequences of analogous, though ess familiar, identities. The general
expressions for the coefficients 4, were obtained by H. Pleijel [20].

A=
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INTERNAL IMPEDANCES OF LAMINATED CONDUCTORS

So far we have supposed that all conductors were homogeneous.
We shall now consider a somewhat more general conductor composed
of n coaxial layers of different substances. As before, we are interested
in finding expressions for the internal impedances; besides, we may
wish to know how the total current is distributed between the different
layers of the conductor.

To begin with, let us suppose that a coaxial return path is provided
outside the given conductor. We number our layers consecutively and
call the inner layer the first. Let Z,™ and Zu™ be the surface
impedances of the mth layer, the first when the return is internal, the
other when it is external; and let Z,™ be the transfer impedance
from one surface to the other. Formule for these impedances have
already been obtained in the section under ‘‘The Surface Impedances
of Hollow Cylindrical Shells,” page 552. Also, let z™ be the surface
impedance of the first m layers with external return; that is, the ratio
of the longitudinal electromotive intensity at the outer surface of the
mth layer to the total current I,, in all m layers.®

By hypothesis, there is no return path inside the laminated con-
ductor as a whole. Hence, when we fix our attention on any one
layer alone, say the mth, we may say that the current in this layer
returns partly through the m — 1 layers within it, and partly outside.
In the m — 1 inner layers, however, the current is assumed to be
I._1 in the outward direction—or what amounts to the same thing
— In_1 in the return direction. Hence we conclude that, of the
current I, — In—1 in the layer under discussion, I, returns ouiside
and — I,_; imside. Substituting these values in Theorem 2 on
page 555, we find that the electromotive intensity along the inner
surface of the layer is Z3"™ [, — Zuo"™ L1

" But the ¢nner surface of the mth layer is the ouler surface of the
composite conductor comprising the m — 1 inner layers, and by
Theorem 1, the electromotive intensity on this outer surface is
™ VI, ;. As the two must be equal, we obtain an equation from
which we can determine the ratio of the current flowing in the first
m — 1 layers to that flowing in m layers. This is

Imfl Zc:b(m)

Im - Zau.(m) + be(m—]). (92)

In this formula for the effect of an extra layer on the current dis-

28 In this notation, the current flowing in the mth layer is I,, — I._1. It should
also be noted that Zy,W = g0,
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tribution, it will be noted that the denominator is the impedance
(with internal return) of the added layer plus the original impedance.
We now consider the electromotive intensity on the outer surface
of the mth layer, which is 21, on the one hand, and (Zu™1,
— Za™I,_,) on the other. Thus, we have the following equation,
Iy

N v 7

Im Znu (m) + Zbb (m—1) ? (93)

zp™ = Zp™ — Zgp™

expressing the effect of an additional layer upon the impedance of the
conductor.

This equation is a convenient reduction formula. Starting with
the first layer (for which 2" = Zi ™), we add the remaining layers
one by one and thus obtain the impedance of the complete conductor
in the form of the following continued fraction:

n R [Zub(ﬂ) ]2 [Zab(n—l) :|2
W = I = T T T F Zoao0 o Zgon O
[Za®F

Zoa® + Zyy®

We can also get a reduction formula for the transfer impedance
between the inner and outer surfaces of the composite conductor
formed by the first m layers. To do so, it is only necessary to note
that, since the inner surface of the first m — 1 layers is also the inner
surface of the first m layers as well, the electromotive intensity on
that surface can be expressed either as zua™ DI, or as z,4™I,.
Thus, we have
Z m)g , (m—1)

Za™ + 2y (95)

- -1
zah(m) = zab(m D }n =

By noting that za® = Z,%, we can determine successively the
transfer impedances across the first two layers, the first three, and
so on. This formula is not quite as simple as (94), owing to the
presence of 2™ in its denominator, and it is therefore not expedient
to evaluate 2z, explicitly; but it is not prohibitively cumbersome
from the numerical standpoint when the computations are made step
by step.

Although in deducing equations (93) and (95) we supposed that the
added layer was homogeneous, the equations are correct even if this
layer consists of several coaxial layers, provided Z,."*" and Zg ™tV
are interpreted as the impedances of the added non-homogeneous
layer in the absence of the original core of m layers. These latter
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impedances themselves have to be computed by means of equations
(94) and (95).

If the return path is inside the laminated conductor, instead of
outside, formulae (92) and (93) still hold, provided we interchange
a and b, and count layers from the outside instead of the inside, so
that m = 1 is the outermost, rather than the innermost, layer.

The basic rule for determining the surface impedances of laminated
conductors can be put into the following verbal form:

Theorem 3: Let two conductors, both of which may be made up of coaxial
layers, fit tightly one inside the other. Amy surface self-impedance
of the compound conductor equals the individual impedance of the
conductor mearest to the return path diminished by the fraction
whose numerator is the square of the transfer impedance across this
conductor and whose denominator is the sum of the surface impedances
of the two component conductors if each is regarded as the return
path for the other. The transfer impedance of the compound con-
ductor is the fraction whose numerator is the product of the transfer
impedances of the individual conductors and whose denominator is
that of the self-impedance.

If two coaxial conductors are short-circuited at intervals, short
compared to the wave-length, the above theorem holds even if the
conductors do not fit tightly one over the other, provided we add in
the denominators a third term representing the inductive reactance of
the space between the conductors.

Disks AS TERMINAL IMPEDANCES FOR CoAXIAL PAIrs

So far we have been concerned only with infinitely long pairs. We
now take up a problem of a different sort; namely, the design of a
disk which, when clapped on the end of such a pair, will not give rise
to a reflected wave.

The line of argument will be as follows: To begin with, we shall
assume a disk of arbitrary thickness k, compute the field which will
be set up in it, and then adjust the thickness so as to make this field
match that which would exist in the dielectric of an infinite line.

The field in the disk has to satisfy equation (2) where iwe can be
disregarded by comparison with g. Thus, we have

OH, _ _p o LGH) _ g
dz dp (96)
dE. OE, = iwudl,.
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In the dielectric between the coaxial conductors, the longitudinal
displacement current density is very small; in fact, it would be zero
if the conductors were perfect. This current density is continuous
across the surface of the disk and, therefore, gE, is exceedingly small.
Hence, the second of the above equations becomes approximately

a(PHao) —
oy = 0; 97)
so that
m, =L, (98)

where P is independent of p but may be a function of z.  Under these
conditions, the remaining two equations are

dE,
0z

= —depll, S f= - gE,. (99)

From the form of these equations and from (98), we conclude that
the general expressions for the intensities in the disk are

= Aecs + Be°* B o= a[Be": — Ae*] (100)
['J p r P gp L

where o = gwpi.
On the outside flat surface of the disk (given by z = i where £ is
the thickness of the plate), the magnetomotive intensity is very nearly

zero; 2° therefore,
Ae" + Be7h = 0, (101)

From this we obtain
A= — Ce} B = Ceh, (102)

where C is some constant. Thus equations (100) can be written as

follows:
_ Csinh o(k — 2)

o, P
E, = aC COSth(k — 2) : (103)

and at the boundary between the disk and the dielectric of the trans-
mission line (z = 0), we have

E, o
—2 =~ coth ah. (104)
H, g

% On account of the negligibly small longitudinal current in the disk.
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On the other hand, if there is to be no reflection this must equal
vu/e by equation (24). Hence

2 coth ok = \/E . (105)
g €
If ok is small, coth ¢k equals approximately 1/ch, and
1 [e
h == \/— . 106
1 2z cm (106)

Under these conditions, the generalized flux of energy across the
inner surface of the disk is, in accordance with the text under “The
Complex Poynting Vector,” page 555, and equation (14),

fh'fa”EpH* dod _iﬁl {’I? (107)
L) o*pdpde = 5— |- log 57 I

Thus, the impedance of this disk is a pure resistance equal to the
characteristic impedance of the coaxial pair.

CvYLINDRICAL WAVES AND THE PROBLEM OF CYLINDRICAL SHIELDS %

It is well known that when two transmission lines are side by side,
to a greater or lesser extent they interfere with each other. This
interference is usually analyzed into “electromagnetic crosstalk” and
‘‘electrostatic crosstalk.”

Thus, electric currents in a pair of parallel wires produce a magnetic
field with lines of force perpendicular to the wires. These lines cut
the other pair of wires and induce in them electromotive forces, thereby
producing what is usually called the “electromagnetic crosstalk';
this crosstalk is seen to be proportional to the current flowing in the
first pair. The “electrostatic crosstalk,” on the other hand, is caused
by electric charges induced on the wires of the second system; these
charges are proportional to the potential difference existing between
the wires of the ‘““disturbing’’ transmission line.

The distinction between two types of crosstalk is valid, although
the terminology is somewhat unfortunate; the word “ electromagnetic”
is used in too narrow a sense and the word ‘““electrostatic’ is a con-
tradiction in terms since electric currents and charges in a transmission
line are variable. The terms ‘‘impedance crosstalk’ and ‘‘admittance
crosstalk” would be preferable because the former is due to a dis-
tributed mutual series impedance between two lines and the latter is
produced by a distributed mutual shunt admittance.

30 Since this paper was written, a related paper has been published by Louis V.
King [18]. However, the physical picture here developed appears to be new.
The earliest writer who treated the problem of electromagnetic shielding is H.
Pleijel [21]. ‘
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The crosstalk between two parallel pairs (this applies to twisted
pairs as well) can be reduced by enclosing each pair in a cylindrical
metallic shield. It is the object of this and the following two sections
to develop a theory for the design of such shields.

This theory is based upon an assumption that in so far as the radial
movement of energy toward and away from the wires is concerned we
can disregard the non-uniform distribution of currents and charges
along the length of the wires. No serious error is introduced thereby
as long as the radius of the shield is small by comparison with the wave-
length. The field around the wires is considered, therefore, as due to
superposition of two two-dimensional fields of the types given by
equations (4) and (35).

The actual computation of the effectiveness of a given shield will
be reduced to an analogous problem in Transmission Line Theory.

Equations (4) and (5) are too general as they stand. Strictly
speaking the effect of a shield upon an arbitrary two-dimensional
field cannot be expressed by a single number. The field at various
points outside the shield will be reduced by it in different ratios.
However, any such field can be resolved into ‘“‘cylindrical waves,"
each of which is reduced by the shield everywhere in the same ratio.
Moreover, to all practical purposes the field produced by electric
currents (or electric charges) in a pair of wires is just such a pure
cylindrical wave.

Since both E and H are periodic functions of the coordinate ¢,
they can be resolved into Fourier series. The name ‘cylindrical
waves” will be applied to the fields represented by the separate terms
of the series. As the name indicates the wave fronts of these waves
are cylindrical surfaces, although owing to relatively low frequencies
and long wave-lengths used in practice the progressive motion of
these waves is not clearly manifested except at great distances from
the wires.

Turning our attention specifically to magnetic cylindrical waves
of the nth order, and writing the field components tangential to the wave
fronts in the form E cos n¢ and H cos np, we have from equations (5):

dE . d(pH) _
o - twuld, i

| ¢ +iwan+ ] E. (108)

From these we obtain

#E - dE _ _. :
o+ r gy = Lien(g + iwae’ + w7lE. (109)
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This equation, being of the second order, possesses two independent
solutions: one for diverging cylindrical waves and the other for reflected
waves. The ratio of E to H in the first case and its negative in the
second will be called the radial impedance offered by the medium to
cylindrical waves. :

In the next section we shall determine radial impedances in di-
electrics and metals and show that for all practical purposes the
attenuation of cylindrical waves in metals is exponential. The sig-
nificance of the radial impedance is the same as that of the charac-
teristic impedance of a transmission line. When a cylindrical wave
passes from one medium into another, a refleciion takes place unless
the radial impedances are the same in the two media. Thus if E,
and H) are the impressed intensities (at the boundary between the two
media), E, and H, the reflected and E, and H,, the transmitted
intensities, we have

Ey+ E,=FE, and I+ H, =1H, (110)

since both intensities must be continuous. On the other hand, if % is
the ratio of the impedance in the first medium to that in the second,
then equations (110) become

kHa—kH,- =H¢ and H0+H,-=Hg. (111)
Solving we obtain
2k 2
I’I; ='k—+—1H0 and E: =k'—_|_1Eu. (112)

The reflection loss will be defined as

R =120 logm@ decibels. (113)
| H.|

When a wave passes through a shield, it encounters two boundaries
and if the shield is electrically thick, that is, if the attenuation of the
wave in the shield is so great that secondary reflections can be dis-
regarded without introducing a serious error, the total reflection loss
is the sum of the losses at each boundary. The first loss can be com-
puted directly from (112) and the second from the same equation if
we replace k by its reciprocal. Thus, the total reflection loss for

electrically thick shields is

|

2
R =20 logm% decibels. (114)
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When the ratio of the impedances is very large by comparison with
unity, the formula becomes

R =20 IOg'u)IL;T| y (115)
and when % is very small, then

1
R =20 lOglcmT' (116)

In the next section we shall see that to all practical purposes, the
wave in the shield is attenuated exponentially. If « is the attenuation
constant in nepers and if ¢ is the thickness of the shield, then the

attenuation loss is
A = 8.686af decibels (117)

and the total reduction in the magnetomotive intensity due to the

presence of the shield is
S =R+ A. (118)

The electromotive intensity is reduced in the same ratio.

But if the shield is not electrically thick, a correction term has to
be added to the reflection loss. This correction term can be shown
to be®
(k — 1)

- m e 2t deCibE‘lS, (119)

C = 20 logm 1

and if % is very large or very small by comparison with unity then
C = 3 — 8.686at + 10 logy (cosh 2at — cos 2B1). (120)

Equation (120) does not hold down to ¢ = 0; when I'f is nearly zero,
then

(b — 1)
BCESHE

So far we supposed that the shields were coaxial with the source.
If this is not so, it is always possible to replace any given line source
within the shield by an equivalent system of line sources coaxial with
the shield and emitting cylindrical waves of proper orders. Mathe-
matically this amounts to a change of the origin of the coordinate
system. In the next section we shall see that the shielding effective-
ness is not the same for all cylindrical waves. This means, of course,
that if the shield is not coaxial with the source, the total reduction in

C = 20 logw |1 (121)

i Here, I' = « + 18 is the propagation constant in the shield,
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the field depends upon the position of the measuring apparatus. The
variation is very small, however, unless the source is almost touching
the shield and it can be stated that approximately the shielding
cffectiveness is independent of the position of the source.

It is interesting to observe from the accompanying tables that
while the attenuation loss is greater in iron than in copper, the reflection
loss is greater at a copper surface. In fact, at some frequencies the
impedances of iron and air nearly match and practically no reflection
takes place. Hence, a thin copper shield may be more effective than
an equally thin iron shield. And if a composite shield is made of
copper and iron, the shield will be more effective if copper layers are
placed on the outside to take advantage of the added reflection.

TABLE I

THE ABSOLUTE VALUE OF THE RADIAL IMPEDANCE OFFERED BY AIR TO CYLINDRICAL
MAGNETIC WAVES OF THE FIrst ORDER (IN MICROHMS)

f Radius = 0.5 cm. 1 cm. 2 cm.
leyce............. 0.0395 0.07896 0.1579
10cycles............ 0.395 0.790 1.58
100 cycles. ........... 3.95 7.90 158
1 kilocycle.......... 39.5 79.0 158,
10 kilocycles. . ....... 395. 790. 1,580,
100 kilocycles. . ....... 3,950. 7,900. 15,800.
1 megacycle........ 39,500. 79,000. 158,000.
10 megacycles. . ...... 395,500, 790,000. 1.58 ohms
100 megacycles. . ... ... 3.95 ohms 7.9 ohms 15.8 ohms
TABLE II
TaE INTRINSIC IMPEDANCE OF CERTAIN METALS (n)/(Vi) 1N MICROHMS
Copper Lead Aluminum Iron
g =5.8005 X 105 | g = 4.8077 X 10* | g = }10° = g = 105 mhos/cm.
I mhosfcm. mhos/cm. mhos/cm. @ = 1.257 phjcm.
u = 0.01257 ghjem.| p = 0.01257 ghjem.| p = 0.01257 whjcm.| = = (100 relative
to copper)
leycle....... 0.369 1.28 0.487 8.88
10 cycles. ..... 1.17 4.05 1.54 28.1
100 cycles. .. ... 3.69 12,8 4.87 88.8
1 kilocycle.. .. 11.7 40.5 15.4 281,
10 kilocycles. . . 36.9 128. 48.7 388,
100 kilocycles. . . 117. 405. 154. 2,810,
1 megacycle .. 369. 1,280. 487. 8,880.
10 megacycles . 1,170. 4,050. 1,540. 28,100.
100 megacycles . 3,690. 12,800. 4,870, 88,800.
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CYLINDRICAL WAVES IN DIELECTRICS AND METALS

In good dielectrics g is small by comparison with we and the first
term on the right in (109) very nearly equals (27p/\)? where X is the
wave-length. But we are interested in wave-lengths measured in
miles and shields with diameters measured in inches; thus we shall
write (109) in the following approximate form: '

d*E dE

porteg, —mE=0. (122)

When n # 0 there are two independent solutions

E,=p and Es = p™; (123)
and when n = 0,
Ey=logp and E, = 1. (124)

The corresponding expressions for H are, by (108),

—n—L n—1
o =" and Hy= — 22, (125)
TW 1w
in the first case, and
H=—— and H,=0, (126)
Twup

in the second.

The second case in which E; and I, are the electromotive and mag-
netomotive intensities in the neighborhood of an isolated wire carrying
electric current is of interest to us only in so far as it helps to interpret
(123) and (125). If we were to consider 2n infinitesimally thin wires
equidistributed upon the surface of an infinitely narrow cylinder, the
adjacent wires carrying equal but oppositely directed currents of
strength sufficient to make the field different from zero, and calculate
the field, we should obtain expressions proportional to E; and H;.
An actual cluster of 2n wires close together would generate principally
a cylindrical wave of order #; the strengths of other component waves
of order 3n, 5n, etc. rapidly diminish as the distance from the cluster
becomes large by comparison with the distance between the adjacent
wires of the cluster. For the purposes of shielding design we can
regard a pair of wires as generating a cylindrical wave of the first
order (n = 1). The radial impedance of an nth order wave is
_ Ei_dwpp

H, n '

z, (127)
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and that of the corresponding reflected wave has the same wvalue.
It should be noted that by the ‘‘reflected’ cylindrical wave in the
space enclosed by a shield, we mean the sum total of an infinite number
of successive reflections. Each of the latter waves condenses on the
axis and diverges again only to be re-reflected back; in a steady state
all these reflected waves interfere with each other and form what
might be called a ‘‘stationary reflected wave.”” Not being interested
in any other kind of reflected waves we took the liberty of omitting
the qualification.

In conductors the attenuation of a wave due to energy dissipation
is much greater (except at extremely low frequencies) than that due
to the cylindrical divergence of the wave. Hence, in the shield we
can regard the wave as plane and write (108) in the following approxi-

mate form:

dE . dH _
g, = —iewH, = —gb. (128)

In form, these are exactly like ordinary transmission line equations.
Hence, in a shield the radial impedance is simply the intrinsic im-

pedance of the metal,
Zy =1 = 4 ﬁmfohms, (129)

and the propagation constant,
o = Viwpg = Vafug (1 + i) nepers/cm. (130)

The exact value of the radial impedance in metals can be found by
solving (108). Thus, we can obtain

_ Kﬂ(dp)
ZP - nKnl(a'P) (131)
for diverging waves, and
_ _ Ia(op)
Z, = "I,.’(ap) (132)

for the reflected waves.

Cylindrical waves of the electric type can be treated in the same
manner. It turns out that the transmission laws in metals are identical
with those for magnetic waves. The radial impedance in perfect
dielectrics, on the other hand is given by
LA,

Z, = -

uep (133)
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This is enormous by comparison with the impedance in metals,
thereby explaining an almost perfect ‘‘electrostatic’ shielding offered
by metallic substances. Even when the frequency is as high as 100 ke.
the radial impedance of air 1 cm. from the source is about 36 X 10°
ohms while the impedance of a copper shield is only 117 X 10~° ohms.
The reflection loss is approximately 220 db.

PowER LOSSEs IN SHIELDS

As we have shown in the text under “The Complex Poynting
Vector,”" page 555, the average power dissipated in a conductor is the
real part of the integral ® = 1/2/° S'TEH*],dS taken over the surface
of the conductor. If the source of energy is inside a shield, the
integration need be extended only over its inner surface, because
the average energy flowing outward through this surface is almost
entirely dissipated in the shield, the radiation loss being altogether
negligible. If a cylindrical wave whose intensities at the inner
surface of the shield of radius “a’' are

I, = Hjcos ne, H, = Hysin no, E, =q4H,, (134)

7 = iwpa/n being the radial impedance in the dielectric, is impressed
upon the inner surface of the shield, a reflected wave is set up. The
resultant of the magnetomotive intensities in the two is readily found
to be (2k/k + 1)H,, where k is the ratio of the radial impedance of
the dielectric column inside the shield to the impedance Z looking
into the shield. If the shield is electrically thick, the impedance Z is
obviously the radial impedance of the shield; otherwise it is modified
somewhat by reflection from the outside of the shield. The average
power loss in the shield per centimeter of length is, then, the real
part of
2rakk*Z

= FFDE D

HyHy*. (135)

This becomes simply
& = 2maZH Hy*, (136)

if the frequency is so high that £ is large as compared with unity.

If the source of the impressed field is a pair of wires along the axis
of the shield, the magnetomotive intensity on the surface of the shield
can be shown to be

H, = ZIrEZI cos @, (137)
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where [ is the separation between the axes of the wires. Therefore,

k22

T DR D (138)

REsisTANCE OF NEARLY CoaxiaL TuBuULAR CONDUCTORS

When two tubular conductors are not quite coaxial, a proximity
effect ¥ appears which disturbs the symmetry of current distribution
and therefore somewhat increases their resistance. This effect can
be estimated by the following method of successive approximations.
To begin with, we assume a symmetrical current distribution in the
inner conductor. The magnetic field outside this conductor is then
the same as that of a simple source along its axis and can be replaced
by an equivalent distribution of sources situated along the axis of the
outer conductor. The principal component of this distribution is a
simple source of the same strength as the actual source and does not
enter into the proximity effect. The next largest component is a

double source given by

toull
= cos 8,
27r

Hy = —“—T— os 0 (45
* = e © !

where [ is the interaxial separation, 7 is the distance of a typical point
of the field from the axis of the outer conductor, and 0 is the remaining

polar coordinate.
This field is impressed upon the inner surface of the outer conductor *

and the resulting power loss equals, by equation (136), the real part of

I\, I )
P = 2wan I = P 71?2, (140)

2wa?

where at high frequencies n = Viwu/g is simply the intrinsic impedance
of the outer conductor.®* This loss increases the resistance of the

outer tube by the amount,

_E
AR. = 5 vz’ (141)

32 For promixity effect in parallel wires external to each other, the reader is
referred to the following papers: John R. Carson [1], C. Manneback 91, S. P.
Mead [12].

3 The radius of this surface is designated by a. . o
4 At low frequencies n has to be replaced by the radial impedance looking into

the shield.
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in excess of the concentric resistance R, = (1/2a)Vuf/mg given by
(84). The relative increase is, therefore,

AR, _ 2/*

R @ (142)

The magnetic field (139) is partially reflected from the outer tube,
impressed upon the inner conductor, partially refracted into it and
dissipated there. Using (110) and (111) we can show that the reflected
field is

Hy = %_,cos f,
oull (143)
o _ dop .
E. Dwat P €08 6.

This field converges to the axis of the outer conductor. In order to
estimate its effect upon the inner conductor, it is convenient to replace
it by an equivalent field converging toward the axis of the inner
conductor. By properly changing the origin of the coordinate system
this equivalent field can be shown to be

Ez = - z;:if (l + p cos ‘P)v
(144)
i
H, = — 2rgh SO ¢

Applying once more (138) (replacing there a by the radius b of the
inner conductor), we find that the power loss due to this field is given
by the real part of

I2, (145)
so that the absolute increase in resistance of the inner conductor is

bi* ’
ARb:E % (146)

which must be added to the concentric resistance of the inner con-
ductor Ry = (1/2b)Vuf/wg. The relative increase is therefore

w=2(e) (@) a4

It is unnecessary to carry the process further.
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Considering the pair as a whole, the resistance when concentric is
R = R, + R, and the increase due to eccentricity is AR = AR; + AR,
thus giving a percentage increase,

()

It is obvious that, so long as b and / are small compared with a,
this percentage increase is very small.

From the well-known formulz for the inductance and the capacity
between parallel cylindrical conductors, we find that the characteristic
impedance of a nearly coaxial pair is given in terms of the characteristic
impedance of the coaxial pair by

z=z|1-— ¥ (149)
0 (B —1)logk|

where the ‘‘eccentricity” e is defined as the ratio of the interaxial
separation to the inner radius of the outer conductor and % as the ratio
of the inner radius of the outer conductor to the outer radius of the
inner conductor. Combining (149) and (148) we have for the attenua-
tion of the nearly coaxial pair:

2¢* ek
a=ao|:1+'-k—'+m—g'—k:|' (150)
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