Ideal Wave Filters *
By H. W. BODE and R. L. DIETZOLD

The increasing usefulness of wave filters in the telephone plant, together
with rising standards of quality, emphasizes the need of a systematic method
for approximating ideal characteristics as closely as we please. By an ideal
filter is meant a network having the properties of a distortionless transducer
over a given frequency range and suppressing all other frequencies. A design
method is presented whereby an arbitrarily close approximation to these
properties may be realized in a physical network. Examples of actual
designs illustrate the engineering features involved in the practical applica-
tion of the theory.

INTRODUCTION

N the phenomenal advance of telephone practice during the past
twenty years, almost every step has further restricted the distortion
which individual parts of a transmission system can be allowed to
introduce into the signal. The extension of circuits to great distances
made it necessary that each link pass on to the next a more faithful
copy of the signal so that the accumulated effects of many links might
not endanger the intelligibility. The extension of telephone circuits
to new uses, such as the transmission of pictures and the distribution
of broadcast programs, imposed new demands for accuracy. Each of
these has required rising standards of performance for wave filters.
More than anything else, however, it has been the introduction of
carrier methods, with their comparatively large utilization of selective
structures, which has given prominence to the problem of reducing
the distortion from wave filters. With the increase in length and com-
plexity of carrier systems, the problem of providing wave filters which
will have no harmful effect upon transmission has become one of in-
creasing importance.

What this requires of the filters quickly appears if we recall that a
structure which transmits all signals without distortion must (1)
possess a characteristic impedance which is a pure resistance inde-
pendent of frequency; (2) attenuate steady sinusoidal signals equally
at all values of frequency; and (3) introduce a rotation in phase pro-
portional to the frequency. In filter theory we need consider these
requirements over only a limited band, since the signals which filters

* The reader is referred to the preceding paper entitled "“ A General Theory of
Electric Wave Filters.”
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are meant to transmit, whether voice, telegraph, or television, are of
a specified type having energies concentrated in certain portions of the
frequency spectrum. We can therefore say that an ideal filter is one
which has the ideal phase, impedance and attenuation properties in
the frequency range of the desired signal and which totally suppresses
all other frequencies.

The conventional ladder type filter structures which have been so
extensively studied may be made to yield any desired suppression at
the unwanted frequencies. In the range of wanted frequencies,
however, they show wide departures from all three ideal properties.
The impedance characteristic can be greatly improved by suitable
elaboration of the filter structure itself, but to approximate uniformity
of loss or linearity of phase shift it has been necessary to make use of
supplementary networks of empirical design.!

The design of such corrective networks is by no means an easy task,
primarily because the filter characteristics for which they are supposed
to compensate change very rapidly with frequency in certain intervals.
Nevertheless, much has been achieved. Thus it has been found
possible to limit reflection coefficients to 2 per cent, in contrast with
coefficients of 50 per cent not uncommonly tolerated in the systems
of ten years ago. Improvements in the other characteristics have

- been comparable. In modern systems variations in attenuation of a
few hundredths of a decibel, or in phase slope of a few per cent, can
be attained if need be. These limits, however, demand the most
patient and skillful design, and can seldom be met unless control of a
single one of the characteristics is especially important. Since
amplitude equalizers introduce non-linear phase, phase correctors non-
uniform loss, and so on, the problem becomes increasingly difficult
when close requirements must be met in several characteristics
simultaneously.

By contrast, the method proposed in this paper gives the various
characteristics simultaneously in a single network without recourse to
auxiliary corrective structures. The method is a systematic one,
requiring comparatively little in the way of cut and try design work.
At the same time it preserves a measure of the flexibility of the existing
technique, so that when considerable deviation from the ideal is
tolerable in one or more characteristics, a corresponding economy of
materials may be effected.

1 The distortion problem has been discussed by several writers in this Journal.
See, for example, S. P. Mead, “ Phase Distortion and Phase Distortion Correction,”
April, 1928, p. 195; O. J. Zobel, ** Distortion Correction in Electrical Circuits . . .,"
July, 1928, p. 438; C. E. Lane, ‘‘ Phase Distortion in Telephone Apparatus,” July,
19.?7(.)],013. 493;: E. B. Payne, ‘‘Impedance Correction of Wave Filters,” October, 1930,
p- R
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The discussion which follows has a two-fold objective. The first is
purely theoretical: to demonstrate that no matter how close the limits
of deviation from the ideal may be set, there is a finite physical net-
work all of whose characteristics meet these limits, except within a
certain ‘‘transition interval’ about each cut-off, which transition
interval may also be taken as narrow as we please. This is by no
means trivial; for it is known that no network, finite or infinite, can
meet the ideal characteristics exactly.?

The second object is to guide the selection, from among the many
networks which would meet the requirements of a given practical
problem, of that one which meets them most economically. This
part of the paper contains a number of examples, among them some
which illustrate the use of slight empirical variations as a means of
obtaining the highest measure of economy when wide deviations from
the ideal are more tolerable in one respect than in others. The final
example, which is segregated as Part III, deals with a situation met
in picture transmission circuits, where the selectivity required is
frequently small, but the effects of phase distortion may be very
serious. Here a modification of the design technique leads to a filter
which has comparatively modest selectivity but which exhibits a
linear phase characteristic not only in the transmitting band but also
in the range of rising attenuation.

PArRT I—THEORETICAL ANALYSIS

Since linear phase shift is not available from ladder networks, the
analysis will be based upon the more flexible lattice configuration.
Although the lattice lends itself particularly well to the theoretical
design problem, it is not so satisfactory for purposes of physical con-
struction. After the paper design has been made, therefore, it will
usually be desirable to convert it to a more suitable practical con-
figuration. This can be done by methods described elsewhere.3

We may greatly simplify the theoretical discussion by ignoring the
effects of parasitic dissipation—a simplification warranted by Mayer's
Theorem,* which states that the attenuation resulting from dissipation

2 This proposition is due to Dr. T. C. Fry, who showed that in a transducer possess-
ing the steady-state characteristics of an ideal filter, a signal would arrive at the
receiving terminals before it began to be impressed on the sending terminals. As
this is absurd, we must conclude that no such system exists.

3H. W. Bode, ‘“A General Theory of Electric Wave Filters,” M.L.T. Journal of
Mathemalics and Physics, November, 1934. A summary of this article appears in this
issue of the Bell System Technical Journal.

4 H. F. Mayer, “ Uber die Dimpfung von Siebketten im Durchlissigkeitsbereich,”
E. N. T., October, 1925, p. 335. His results were later somewhat extended by Feige
and Holtzapfel, ** Dimpfung und Winkelmass von Vierpolen mit geringen Verlusten,"
T. F. T., July, 1932, p. 179. Even these latter results are capable of considerable
generalization, so as to include other characteristics of the network besides the trans-
fer constant.
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is proportional to the derivative of the phase characteristic. The
realization of a linear phase shift in the transmission band therefore
automatically carries with it the satisfaction of the requirement of
uniform loss -in this range.? It can also be shown that the other
characteristics of the network will not be appreciably affected by slight
uniform dissipation.

Moreover, it is well known that the image impedance and transfer
constant of a lattice structure are controlled by independent param-
eters.® We can, therefore, dissociate the problem of providing the
required constant image impedance in the transmission band from that
of providing the required loss and phase characteristics.” For the
moment we shall fix our attention on the transfer constant.

With these simplifications our problem reduces to that of con-
structing a filter whose transfer constant on a non-dissipative basis
represelnts a linear phase shift in the transmission band and an infinite
loss in the attenuation bands, these being separated by narrow *‘ transi-
tion intervals’ in the neighborhood of the cut-offs. These transition
intervals may be taken small at pleasure, but must be assigned in
advance to insure the physical realizability of the network.

Formulation of Reguirements—Low-Pass Filters®

If the impedances of the arms of a lattice are Z, and Z,, Fig. 1, it is
well known that the image transfer constant and the image impedance
are given by the expressions ® '

6 JZZ
tanhi = Z: (1)

5 Strictly speaking, a slight qualification should be placed upon this statement.
Our process of approximating the ideal characteristics will lead to a phase shift which
ripples about the desired linear characteristic, the number of ripples depending upon
the number of elements used. As the number of elements is increased indefinitely,
the linear characteristic is approximated more and more closely, but it is evidently
not a necessary consequence of this that the slope of the ripples should approach
constancy. We shall be able to show, however, that with the actual process used, the
amplitude of the ripples decreases so rapidly that dB/dw approaches constancy as B
approaches linearity.

6 This follows at once from equations (4) and (5), p. 220.

7 A method of choosing the lattice parameters to give a substantially constant
impedance in the transmission band has in fact already been obtained by W. Cauer,
“'Siebschaltungen,” V. D. I. Verlag, Berlin, 1931; or “Ein Interpolationsproblem
mit Funktionen mit Positivem Realteil,"” Math. Zeit., November, 1933, p. 1. An
alternative method will eventually be developed as a by-product of the present
analysis.

8 The extension to filters of other types is given on p. 225,

9 G. A. Campbell, *‘Physical Theory of the Electric Wave Filter,” this Journal,
Vol. I, No. 2, November, 1922, p. 1.
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Fig. 1— The symmetrical lattice.

The relation (1) requires for transmission, i.e., for § imaginary, that
Z. and Z, differ in sign; for attenuation, i.e., for 8 real, that Z, and Z,
be alike in sign. In the case of the low-pass filter, this amounts to
requiring correspondence of zeros (resonances) in one arm to poles
(anti-resonances) in the other for f < f., and of zeros to zeros and
poles to poles for f > f., where f,, the cut-off, is a critical frequency
which appears in one arm only.® If we denote these critical fre-
quencies by fi, f, ++ -, f in the range below f., and by fi, fa', ==+, fi
in the range above f,, and if we make use of a well-known theorem ™
we readily find that Z, and Z, have forms similar to ?

’ ’
. Aofly =+ Ar_1@cly *** @5
Z; = ZK:f 7 7 !
g * " A1 - Qg
. , ) (3)
1K, aas - aas -+ a'sq
ZU = - T r l”
f Aoy *** Ar_1dy" *** Qg

10 [y the basic theory given by Dr. Campbell, in the paper just referred to, it is
shown that in general a lattice having many natural frequencies is a milti-band-pass
filter. The extension of the theory in the manner shown above, in which separate
parameters for the control of the transfer constant and image impedance are obtained
by imposing special conditions on the natural frequencies, thus rendering many bands
confluent, was discovered and exploited independently by W. Cauer and one of the
present writers (see Cauer, ‘' Siebschaltungen” and later papers; or H. W. Bode, U. S.
Patent No. 1828454, also ‘* A General Theory of Electric Wave Filters,"” loc. cit.).
The published work by Dr. Cauer gives a particularly complete discussion. It ap-
pears from a recent informal communication from Dr. Campbell to the authors, how-
ever, that this extension was also considered by him and was described briefly in the
Yale-Harvard Lectures on Wave Filtersdelivered in 1923. The lectures have unfortu-
nately not been published. Their content, however, is similar to that given in the
discussion above.

1t R, M. Foster, ‘' A Reactance Theorem,” this Journal, Vol. 111, No. 2, April, 1924,
p. 259,

12 The cut-off factor a. may appear in either the numerator or denominator of
either form, and the line- and cross-arms may be interchanged. Otherwise the ex-
pression is general,
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and hence that B

0 _ . [K:,a004--- a0
tanhz—z K,,f F—— Va., (4)

. L ’
Zr = ﬁKzKyJGCH?, (5)
where the a's are shorthand notation for
B o T
a,—=1—ﬁ, Gj=1~P' (())

We shall have frequent occasion to distinguish between those critical
frequencies of (4) which lie in the practical transmission band and
those which lie in the transition interval. To this end we shall denote
that interval by (fa4, f8), where obviously f4 < f. < fa, and shall write
P for the group of factors

P = i\/ixfﬂth A (7)

" s Ay

which lie in the wanted band, and Q for the remainder

Q=Mﬁ (8)

Qaq2 " Gy

which lie in the transition band. Then, obviously, (4) becomes
[/}
tanhi = PQ. (9)

Requirements on Transition Factors
With these formulz before us, we are now prepared to attack the
problem of meeting the double requirement of linear phase shift in
the practical transmission band and infinite loss in the practical
attenuation band. Expressed analytically, these requirements are
simply

o f <t (10)

a . .
tanh = = tanh zﬁ = i tan

2 2a 2o’
]
tanhi =1, I >fs (1)
13 It should be noted that, except for the cut-off factor a., (4) and (5) are entirely
independent. That is, the frequencies fi, . . . f, may be chosen as we desire, in
order to control the transfer constant, without in any way affecting the image im-
pedance; and f,’, . . ., fs’ can be chosen at will without affecting 6. Similarly the

constants VK, /K, and VK,K, may be chosen at will.
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where « is a constant which determines the slope of the phase curve.
But it is well known that

_r _PNy
J( -ZZQ>)<(5—§‘Z3>- -

If, then, in (4) we choose

VK./K, = 7/2a,
f1=06, f2=2ot, ey fA=Ar1,

so that P becomes identical with the first 4 terms of (12), and if in
addition we choose our unit of frequency so that!* (4 4+ 1)a =1,
we readily see that in the transmitted range () must equal

(“u%x?)(“u%ay)'“

while by (9) and (11) in the attenuated range it must be given by

f<fa, (13)

T )

() () ()
(e
)R )

T (e (5)

\

! p_m‘(l_%>m<1_<’4f1)’“z) £> fo (14)

Q= f < fa; (15)

and

f>fs (16)

14 This means that we express all frequencies in terms of the first critical frequency
of (12) which falls in the transition interval.

15 The necessary transformations may be found in Whittaker & Watson, ** Modern
Analysis,” 12,13, 12.15, and 12.33.
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Asymptotic Series for P and Q

If we now take the logarithm of (15), and apply Stirling’s formula,
we obtain the asymptotic series

441e04(1/2a)

log Q = Iogm/—) g (1 — 7%
o0 (_ 1):’(2?:‘ — 1)B,‘a2r—1 1 1
+ E] 2r(2r — 1) l:(] + f)rrt + a—7 2r71:|! (17)

where the B's are Bernoulli numbers. Since Stirling’s formula holds
only for z > 0, this expansion is valid, as inspection of equation (15)
will show, only for f < 1, but as the unit of frequency was so chosen
that f1 < 1 < fp, this includes the entire wanted band, and none of
the attenuating range.

If we apply a similar process to (16) we are again led to (17), except
that now the range of validity is f > 1. But this includes the entire
attenuating range, and none of the wanted band.

That is, the single formula (17) represents the lacunar '* function
Q in both ranges in which it is well defined.

We shall now determine the transition factors aay1, @ays, ***, @c by
comparison of (8) with (17). If we adopt the notation

fA+1 =14 e, f.4+2 =1+4¢c, -+, fc =14 cn, (18)

so that the ¢'s measure, not the critical frequencies themselves, but
their displacement from unit frequency, each factor of (8) has the
characteristic form
Ccj ) .
147/

1Wifc;)ﬁz(f;f)ﬂ(”lc—jf)(

whence (8) becomes

(1 +75)( + 1) LR
—
(172 (1 rg) (i) (4 7)

where K is a constant multiplier which depends on the ¢'s. We will
neglect it in this analysis since it may be readily determined later from
the condition that Q = 1 when f = 0.

16 A |acunar function is one which is well defined in several regions, but not capable
of analytic continuation from one to the other.

0=K

(19)
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The logarithm of Q is, of course, the sum of the logarithms of the
individual factors of this expression. Expanding these as series of
powers of 1/(1 — f) or 1/(1 + f), and collecting terms of like degree
in1/(1 — f) and 1/(1 + f), we obtain

log Q = Slog (1 — 3

1 1
+(C1—62+fs— ﬂ:éfm)lil—_— +m]
1 . . 1 1
—é(f{‘*—fzﬂ-i-“ — + 5 Cn a —f)'3+(1+f)2]

1
)
+1((13—(23+(‘33—--'j:%-(mﬁ)[ ! + ! J

3 =77 " T+
i, (20)
where the sign of ¢,, is plus or minus according as m is odd or even.V

As the terms of (20) are similar in form to those of (17),® we can make
the first m terms identical. This leads to the equations

1 3 ]
€1 — €2 +Ca_"':t§("*=_§Bla’
2 2 L
=4 — =+ 5 m =0,
1 15
Cl"—t”zn+(:ln"”'ii("':l:“}_*leaa'!-- (21)
I 1 |
(14—(24+(‘ﬂ4_"':*:§0m4=0’
B 5 5 1 21
c1® — b eyt — - :lzéc,,."': —?BS“E':

whose simultaneous solution gives the desired transition factors.
The number m of transition factors used will depend upon the desired
approximation to ideal characteristics in the practical transmitting and

'"When the ¢'s are evaluated it will appear that these series are all absolutely
convergent—so that their termwise sum correctly represents log Q—at all positive
frequencies outside the interval (1 — ¢, 1 + ¢w).  As the complexity of the network
is increased, in the approach toward ideal characteristics, the interval of non-con-
yergencle closes on the reference frequency 1, and is contained by the given transition
interval.

18 The first term of (17) does not contain f, and may therefore be neglected for the
same reason which led us to neglect K in (19).
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attenuating ranges and the allowable width of the transition interval.
It can best be determined by inspection of results given later.

The result of solving the equations (21) for the ratios ¢;/a for values
of m between 1 and 5 is given in the following table.

TABLE I
SPACING OF TRANSITION FACTORS
N#Eé?g:;’f cifa cafe cala cifa osfa
1 —0.50000
2 —0.14645 +0.20711
3 —0.05032 +0.67731 +0.95526
4 —0.01897 +0.86157 +1.49180 +1.72252
5 —0.00760 -+0.93809 +1.74806 +2.30277 +2.50080

The first of these solutions corresponds to a single frequency, the
cut-off, in the transition interval. It follows the uniformly spaced
critical frequencies of the practical transmission band at one-half the
uniform spacing, @. The other solutions represent networks having,
in addition to the cut-off, rational factors which vanish in the transi-
tion interval.

When these values of the ¢'s are used in equation (8), with due regard
for (6) and (18), the form of Q is completely determined. For example,
the frequency pattern corresponding to the case m = 3, is illustrated
by Fig. 2.
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AB<0.0025 RAD. (A >5) INTERVAL ATTENUATION > 50DB(A25)

Fig. 2—Location of transition factors with m = 3.

Nature of the Approximation

How closely we approach ideal characteristics by this method
depends on how nearly log Q is represented by the first m terms of (17)
and (20). In both cases the series of omitted terms can be written
in the form

1 t 1
et | o + g e |

1 1
= T

+ Apyrant? [ ] b, (22)
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where the A’s are constants. In (20) this series is convergent. In
(17) it is merely asymptotic. It is known, however, that the error
due to ending (17) at any term is numerically less than the first
omitted term. Since we are at present interested in small values of «,
therefore, we can estimate the error in the approximation from the
first term alone.

Inspection of this term shows that the error is greatest in the vicinity
of the transition interval, where the factor 1/(1 — f) is large. It de-
pends upon all three of the quantities f, @ and m; but by choosing
them in the proper order there is no difficulty in showing that an
indefinitely close approximation can be obtained.

The transition interval must first be selected on the absolute fre-
quency scale. It may be as small as we choose. Next, a value of m
must be chosen. What value is used is immaterial for our present
purposes, although it is important for later applications. Finally,
a must be taken small enough so that all transition factors lie in the
prescribed transition interval. Otherwise it may be varied at will.
But by choosing it small enough, the error of approximation (22) can
obviously be reduced without limit for any value of f outside the
interval (f4, fz). We may thus conclude that only considerations of
expense and of manufacturing precision restrict the accuracy of
approach to the ideal filter.

For purposes of future reference approximate formula for the
attenuation and phase in the limiting condition are given below:

. 1 1 1
et = = g Anpaant [ =t +f)'"+'] ’ 23

1 .
BTy g, am [ Tt +1f mﬂ] sin ™. (29)
It will be seen that the attenuation rises monotonically as we recede
from the transmission band while the phase curve ripples about the
ideal straight line in a sinusoid of varying envelope. The ripples, of
course, increase in frequency as « is diminished but since the exponent
m 4+ 1 is always at least 2 they flatten out so rapidly that dB/dw
approaches constancy nevertheless. We may also observe that,
although the absolute time of delay increases indefinitely as o de-
creases, it varies only as 1/«, whereas the precision of approximation
can be made indefinitely great by choosing m large.

Filters of Other Types

While the preceding analysis has been restricted formally to low-
pass filters, its application to filters of other transmission types is a
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simple matter. We need merely repeat, in each transmission or
transition interval, the rules for frequency spacing we have already
developed. .

The method can be understood from the study of a linear phase
shift high-pass filter. Since linear phase shift demands arithmetic
spacing of critical frequencies in the transmission band, it is clear that
the desired characteristic cannot be obtained over the complete
transmission band of the high-pass filter with a finite network. This
difficulty will, however, be ignored for the moment. A method of
modifying the analysis to give a finite filter having a linear phase
characteristic in a finite interval above the cut-off will be described
later.

We begin, then, by assigning to the transmission band of the
structure an infinite, evenly spaced chain of critical frequencies, as in
(13). The group of transition factors must evidently simulate the
reciprocal of this value in the attenuation range, if the condition of
high loss is to be realized; while in the transmission band, they must
simulate the P of our earlier analysis if we are to obtain a linear phase
characteristic. These conditions would be met by using for our
transition function the reciprocal of (19), using for the ¢'s the same
values as before. Such a group, however, is not physically realizable
as part of a high-pass transfer constant, since the rational factors
would occur outside the theoretical transmission band. If, however,
we transfer the factor (1 — f2) from (13) to (14), and seek a new Q
whose values will take the reciprocals of the old, thus altered, we
obtain a series identical with (17) except for a change of sign in every
term but 4 log (1 — #2). This change, however, reverses the sign of
the right-hand members of (21), and therefore changes the sign of
each ¢. The new solution then is the same as the original solution
except that the factors occur in reverse order on the frequency scale.
They can thus appropriately be combined with the remaining portion
of the high-pass transfer constant expression.

A linear phase shift band-pass filter can be constructed similarly.
The groups of transition factors associated with the upper and lower
cut-offs should follow the arrangements prescribed, respectively, for
low-pass and high-pass filters. An illustration will be found in

Part II.
The Impedance Property

It will be recalled that the problem of approximating the ideal
transmission characteristics for each type of filter was solved only on
the assumption that the image impedance could be adjusted to a
nearly uniform value in the practical transmitting band. We can
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now quickly show how the desired impedance is to be obtained. It is
merely necessary to observe that for any filter there exists a comple-
mentary structure with the same arrangement of critical frequencies,
but having the transmitting and attenuating bands interchanged.
The complementary structure is found by replacing the Z, branch of
the original lattice by the inverse impedance Z,) = R?/Z,. When
these are substituted in (1) and (2), the new transfer constant, &', is
found to be

N G
tanhi— Zy,—ﬁ ZzZy—RZ[,

and the new image impedance, Z;,

t 7 éi . E
Z)/ = \szZy =R Z,,_thuhZ'

Thus, for any filter, the problem of adjusting the image impedance to
the constant R in its transmitting band is the same as the problem of
adjusting tanh #/2 to 1 in the attenuating band of the complementary
filter. The latter problem, however, is merely a restatement of our
original requirement of high loss in attenuating bands and has already
been studied for various types of filters.

It follows from this relation that the transfer constant expressions
which are appropriate for low-pass and band-pass filters furnish
suitable solutions for the impedance problem in high-pass and band-
elimination structures. We might also use our high-pass transfer
constant expression as a low-pass impedance characteristic except for
the difficulty previously mentioned that it requires an infinite number
of elements. This difficulty can be avoided, however, by observing
that by interchanging coils and condensers we can convert any low-
pass filter into a high-pass structure having the same characteristics
on a reciprocal frequency scale. We can thus use the finite low-pass
solutions to obtain the required finite high-pass filter having high
attenuation. For example, if we begin with a low-pass filter having
three evenly spaced critical frequencies and a half spaced cut-off the
resulting critical frequencies (including the cut-off) are in the ratio
1:7/6:7/4:7)2.

The device of inverting the frequency scale is, of course, not avail-
able to produce a finite high-pass filter having linear phase shift
throughout its transmission band since the linear phase property is
thereby destroyed. It can be used, however, to produce a finite
filter having linear phase shift for a limited region above its cut-off.
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To see this, it is merely necessary to observe that the set of rational
factors appearing in the low-pass image impedance expression de-
scribed in the preceding paragraph must approximate the reciprocal
of the cut-off factor at lower frequencies. We can therefore use such
a set of factors to replace the upper cut-off factor of a band-pass filter,
obtaining thereby a high-pass structure which approximates the ideal
characteristics over a portion of the transmitting band.

If the cut-off factor of the low-pass filter transfer constant be
similarly replaced by rational factors, there results an all-pass “‘delay
network” having a constant impedance and a phase characteristic
linear below the original cut-off frequency. This network is of par-
ticular interest for its relation to the classic problem of the simulation
of a smooth line. As it stands, the network evidently simulates an
ideal dissipationless line. To include the effects of dissipation we
need merely add resistance and leakance to the coils and condensers in
the proportions in which they occur in the actual line.

ParT II—DEsiGN oF PracticAL FILTERS

Thus far we have been interested primarily in demonstrating that
an indefinitely close approximation to the ideal characteristics could be
obtained when all restrictions with respect to economy of elements
were removed. In practical designs, on the other hand, we wish to
approximate the ideal characteristics only within moderate limits, and
our interest centers upon the choice of the most economical network
which will prove satisfactory. We must now reappraise the theory
from this point of view.

One question which must be examined is that of determining values
for m and a which will result in the most economical network meeting
a prescribed standard of performance. A second is concerned with
the possibility of changing the nature of the approximation with
respect either to the frequency, or to the relative emphasis laid upon
the phase and attenuation characteristics. In many practical designs
such changes can be obtained by slight modifications of the theoretical
design parameters and lead to corresponding economies in the use of
elements. In investigating both questions we must remember that
since « is no longer necessarily small, as it was in the theoretical
analysis, the frequency interval actually occupied by the transition
factors may be appreciable. Consequently it becomes important to
investigate the behavior of the network in this part of the frequency
range with more care than was hitherto necessary.

The variety of possible design requirements precludes the possibility
of a thorough analytic treatment of these questions. The choice of
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the most economical network meeting given requirements consequently
cannot always be made without trial. The procedure may, however,
be considerably facilitated by a study of the curves and illustrative
material given in the sections which follow. The first two sections
show the quantitative relations to be expected when the theoretical
design parameters are adhered to strictly. The remaining sections
indicate modifications obtainable by making slight changes in the
theoretical parameters.

Approximate Computation of Network Characteristics
When the frequency in which we are interested is not too close to
the transition interval, an approximate determination of the phase and
attenuation characteristic is most easily made from (23) and (24).
The A's appearing in these expressions are shown in the accompanying
table.’ In addition to Am,1 the table also supplies values of A2

TABLE II

COEFFICIENTS IN SERIES EXPANSIONS FOR APPROXIMATION ERRORS IN PHASE AND
ATTENUATION CHARACTERISTICS

m 1 2 3 4 5
Amproooooon —0.063 —0.044 —0.051 —0.084 —0.17
MR —0.063 -+0.00011 +0.10 +0.41 +1.52
Amps. oo —0.0078 +0.050 —0.047 —1.07 —7.60

and A, for use if additional terms in the general expression (22)
are desired.

A study of equations (23) and (24) shows that, aside from the
constant factor 4,1, each expression can be resolved into two factors
by means of which the contributions of the various design parameters
can be somewhat segregated. The first factor, o™, is chiefly im-
portant in determining the effect of various choices of « and m on

. . . 1 1
the approximation error, while the factor [(1 — e + a¥ f)”‘“]

expresses the variation of the network characteristics with frequency.
In order to facilitate design work the quantity

'5“[ Tt T m+1]

_ U In preparing the table, coefficients of corresponding terms in the series expan-
sions for (17) and (20) have been combined, so that the coefficients as given represent
the accumulated errors of both approximations.

— 20 IogmA
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Fig. 3—Chart for loss computations.

has been computed for values of f > 1 and is shown plotted for various
m’s in Fig. 3. The approximate attenuation, in db, for any given
values of @ and m can be obtained from the chart by adding
20(m + 1) logis 1/a to the appropriate curve.

A similar chart for the phase characteristic is furnished by Fig. 4,

1804 st [ 1 n 1

(=g +f)’”“]
The values given are arithmetic, although the scale is logarithmic.
The approximate envelope of the ripple in the phase characteristic
about the ideal straight line can therefore be found, in degrees, by
multiplying the chart values by a™*.

In using these charts it should be remembered that they are based
upon the approximate formule (23) and (24) which fail in the vicinity
of the transition interval. The results, therefore, should always be
checked by an exact computation.?® It should also be observed that
in complicated filters the numerical departure of tanh 8/2 from its
ideal value in most frequency ranges is very small. The effects of
slight errors in calculations or of small deliberate variations in the

which represents the quantity

20 See, for example, the comparisons in Figs. 11 and 12,
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RELATIVE ENVELOPES OF PHASE DEPARTURES FROM LINEARITY IN DEGREES

design parameters, may therefore be correspondingly important.?
Since slight adjustments in the design parameters will normally occur,
these charts are chiefly of value in making preliminary estimates.

It is apparent that the approximation error at a given frequency
can be diminished either by increasing m or reducing «. Element for
element, an increase in m is much the more powerful method. Since
the total number of elements in the network is nearly proportional to

2 A simple example is furnished by the choice of the numerical constant multiply-
ing tanh 6/2 as a whole. It will be remembered that the constant was left undeter-
mined in the solution for the ¢'s. In the original equation (14) it was chosen to give
the best characteristics in the neighborhood of f = 0. In preparing Figs. 3 and 4,
on the other hand, it was chosen with reference to the characteristics near f = =,
since the error expression used in these figures vanishes at that point. The two condi-
tions are very nearly equivalent; as we can see, for the half-spaced cut-off solution at
least, by means of Wallis' theorem. Since they are not identical, however, a change
from one to the other may produce a relatively large, though practically unimportant,
effect at extreme frequencies.
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m + (1/a) it would therefore appear that the most economical
structure meeting given requirements will be obtained by using a large
m in combination with a large a. This procedure is, however, re-
stricted by two considerations. The first is chiefly theoretical. Since
the series we have been using is merely asymptotic, the successive
terms obtained by choosing progressively higher m’s eventually grow
larger. For ordinary values of «, however, the value of m at which
the series begins to diverge lies beyond the range of practical interest.
A more important limitation is the fact that as we increase the number
of transition factors, the width of the transition interval, as measured
in terms of «a, also increases. Thus, the spread between the last uni-
formly spaced critical frequency and the cut-off, which is «/2 for m = 1
and about 2« for m = 3, has risen to more than 3.5« for m = 5. In
each case a certain additional allowance is of course required for the
region of rising attenuation beyond the cut-off. When the transition
interval is fixed on an absolute frequency scale, therefore, the per-
missible values of m will depend upon the choice of a. Unless the
transition interval is unusually broad only low values of m will be of
practical interest.
Illustrative Characteristics

The curves shown in Figs. 3 and 4 are not of use in the neighborhood
of the transition interval. To supplement them, therefore, exact
computations on a number of typical structures have been made.
One set was obtained by choosing « = 1/12 and computing the
characteristics corresponding to various m's. The resulting phase
characteristics are shown by Fig. 5. Since the departures from
linearity are too small to be noticeable when the characteristics as a
whole are drawn, the figure shows only the departures themselves in
terms of an envelope similar to that used for Fig. 4. The curves are
drawn approximately as far as the last evenly spaced critical frequency
which marks the practical limit of the range within which a high degree
of phase linearity is to be expected. Since the curves vary rapidly
in this vicinity, however, the fact that they are merely envelopes is
important in determining the exact performance of the structure.
Curves of the phase characteristics in the transition interval will be
given later.

The attenuation characteristics are shown by Fig. 6. As m is
increased, the cut-off moves to successively higher frequencies because
of the progressively broader intervals consumed by the transition
factors. Once past the cut-off, however, the curves for large values of
m rise more rapidly and quickly cross the others.
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ATTENUATION IN DECIBELS
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A second set of characteristics was obtained by choosing o = 1/6
and adding various groups of transition factors in a similar fashion.
The results are shown by Figs. 7 and 8. The characteristics are drawn
only for m's between 1 and 3 in this case, since with larger m's the
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Fig. 9—Low pass filter with & = 1/4. Envelope of phase departures.

transition interval becomes disproportionately wide in comparison
with the practical transmission range. Still a third set, corresponding
toa = 1/4 and m = 1 is shown by Figs. 9 and 10.
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Fig. 10—Low pass filter with @« = 1/4. Attenuation.

As an illustration of the accuracy to be expected from the approxi-
mate method, a comparison between the results obtained by this
method and the exact characteristics is shown in Figs. 11 and 12 for
the cases m =1 and m = 2 of Figs. 5 and 6. On the logarithmic
scales used for the figures, the curves appear to be in good agreement
almost up to the transition interval. The actual numerical de-
partures in the vicinity of that interval, however, are quite large.
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Image Impedance Characteristics

In virtue of the relationship previously developed between the
image impedance of a given filter and the transfer constant of its
complement, the curves just given might also be used to determine
the impedance characteristic. However, the precision required in the
approximation of Z to R in practical filter design is much less than
that required in the approximation of tanh 6#/2 to unity. A satis-
factory characteristic can therefore be obtained with a much smaller
number of critical frequencies. In a low-pass filter, for example, one
or two impedance controlling frequencies is usually sufficient. With
such a small number of critical frequencies the analytical machinery
we have set up is unnecessarily cumbersome. The problem can be
solved more effectively by simple cut and try methods, or by the
methods advanced by Cauer 7 and Zobel.?? For the sake of complete-
ness, however, several illustrative characteristics are given in Fig. 13.
They correspond to the choice of impedance controlling frequencies
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Fig. 13—Typical low pass filter image impedance characteristics.

7 Siebschaltungen,” loc. cit.

22 This Journal, Apr. 1931, p. 284. Zobel's work is not stated in terms of the
lattice parameters. A simple m-type termination (of low-pass or high-pass type)
can be identified with a lattice image impedance having one impedance controlling
frequency while an mm’-type termination can be identified with a lattice impedance
having two such frequencies. The numerical values he gives can therefore readily be
adapted to the lattice design problem.
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shown in Table ITI. An illustration of the results obtainable with the
present method using a large number of critical frequencies, is furnished
by Fig. 14, since the curve can evidently be interpreted as a representa-
tion of Z;/R for a certain high-pass filter.

TABLE III
IMPEDANCE CONTROLLING FREQUENCIES CORRESPONDING TO CHARACTERISTICS
oF FiG. 13
1 11 11
1.250 f. 1.048 f. 1.013 f.
1.448 f, 1.096 f.
1.584 f,
1.000
0.999 /
0998 /
]
}'TANH 2
0.997
o006 }—f+—-11H—H+—
0995
100 125 1.50 175 200 225 250 275 300 325 350
FREQUENCY

Fig. 14—Tanh 0/2 for low pass filter with m = 2, a = 1/12.

Weighting the Approximation

In the limiting case in which « is very small while m is fixed, the
methods we have followed give the best obtainable results with respect
to both attenuation and phase, for the errors in both characteristics
depend upon higher order terms and become negligible as « approaches
zero. In a practical design, for which « is finite, on the other hand,
it will frequently be desirable to make slight adjustments in such
parameters as the transition factors or the constant multiplier of the
tanh 6/2 expression in order to take some account of the higher order
terms. The effect may be either to improve both the phase and
attenuation characteristics or, more usually, to improve one at the
expense of the other.

The general nature of the problem is illustrated by Fig. 14, which
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represents a sketch of tanh 8/2 corresponding to the m = 2 curve of
Fig. 6. 1t will be seen that the curve rises monotonically toward the
line unity, at which § = «. What we should evidently like to obtain
by slight alterations in the design parameters is a curve which rises
more rapidly, or perhaps one which ripples about unity. It is also
evident that the curve approximates unity so closely that even slight
adjustments may produce a radical effect. To take the simplest
possibility, if the constant multiplier of tanh 8/2 is slightly increased,
so that the curve crosses unity at a finite frequency, the appearance of
the resulting attenuation characteristic will be greatly altered. The
net gain in the general level of attenuation secured, however, will be
not more than 6 db. Similar remarks mlght be made with respect to
the phase characteristic.

The relation between the phase and attenuation characteristics
where such adjustments are made can be illustrated most easily by
reference to the elementary half-spaced cut-off solution for the transi-
- tion factors. It will be recalled that this solution was obtained by
equating the coefficients of the first powers of 1/(1 — f) and 1/(1 4+ f)
in (17) and (20). The approximation error thus depends chiefly upon
the succeeding term involving 1/(1 — f) and 1/(1 + f) to the second
power. A study of the expression shows that the error makes Q too
small in both the transmitting and attenuating ranges. If the phase
characteristic is the more important this error can be partly com-
pensated by slightly increasing the normal half-space between the
cut-off and the preceding critical frequency. On the other hand, the
attenuation will be improved if the interval between the cut-off and
the preceding critical frequency is decreased. To a more limited
extent, both characteristics can be improved by increasing the constant
factor which multiplies tanh 6/2 as a whole.

A similar study might be made of the other groups of transition
factors, although the discussion would naturally become more com-
plicated. In general it appears, as with the half-spaced cut-off
solution, that the attenuation characteristic will be improved by a
slight decrease in the spacings of the transition factors, while the phase
characteristic will be improved if they are slightly increased. It
should be remarked, however, that as the network becomes more
complicated, either by a reduction in « or an increase in m, the de-
sirable modifications in the theoretical spacings are reduced. This
becomes evident if it is recalled that the transition factor spacings are
proportional to « while the error is roughly proportional to a™t.
It is therefore to be expected that the appropriate modifications in the
spacings between transition frequencies will be of the order of magni-
tude of a™ times their original values.
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The relationship between the phase and attenuation characteristics
can be seen in another light if we observe that the improvement in
attenuation which comes from the use of several transition factors is
due essentially to a progressive decrease in the interval between
critical frequencies as the cut-off is approached. In the final solution,
for example, the intervals between critical frequencies are initially
almost equal to the constant interval . Thus in this solution, the
interval between fs and fa,: is 0.992a and that between fiy and
fase is 0.945a. As the cut-off is approached, however, the interval
gradually decreases to about 0.2e. In the transition interval, con-
sequently, the phase characteristic is originally almost linear and
curves upward sharply near the cut-off. Thus if the phase requirement
is not severe we can consider that the first part of the transition region
falls within the practical transmitting band, thereby securing a better
attenuation characteristic than would be possible if the spacing of
critical frequencies in the transmitting band were strictly uniform.
A sketch of the phase characteristics through the transition interval
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Fig. 15—Transfer constant phase shift in the transition interval; & = 1/12.

for the networks corresponding to Figs. 5 and 6 is shown by Fig. 15.
The last evenly spaced critical frequency falls at 11a.

In the extreme case when no phase requirement is imposed, it is
reasonable to expect that the best attenuation characteristic will be
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obtained if the progressive reduction in the spacing between critical
frequencies extends over the complete transmission band, so that the
phase characteristic should resemble that of familiar ladder type filter
structures by becoming continually steeper as the cut-off is approached.
The exact arrangement will, however, depend upon the desired type
of best approximation to perfect suppression. If the approximation is
to be best at frequencies most remote from the cut-off, the critical
frequencies must be evenly spaced along an ordinary arc sine curve.
In the Tschebycheffian type of approximations studied by Cauer, on
the other hand, the spacing must be uniform along the arc of a certain
sn function.
Design of a Band-Pass Filter

To illustrate the manner in which small modifications of the theo-
retical frequency spacings may be employéd to control the relative
emphasis placed on the phase and attenuation characteristics, we may
consider the design of a practical band-pass filter. Suppose that the
practical transmitting band is the 2,250-cycle interval between 11,375
and 13,625 c.p.s., in which the approximation of the phase charac-
teristic to linearity is specified by the requirement that B /dw, the so-
called ‘‘delay,” deviate from its average value by less than 0.1 milli-
second. The transition intervals are 500 c.p.s. each, beyond which
the loss is to be not less than 50 db.

The comparatively liberal tolerances suggest that the approximation
furnished by m = 1 will be adequate. We notice that we can fit 10
uniform intervals of 250 c.p.s. between 11,250 and 13,750 c.p.s., which
locates the half-spaced cut-offs at 11,125 and 13,875 c.p.s. respectively.
When the characteristics corresponding to this design are checked, it is
found that the phase characteristic is rather better than required,
while the loss characteristic is weak.

We then turn to the solution with m = 2, making a compensating
reduction in the number of uniform intervals. The critical frequency
allocation for this case is shown in Table IV. This arrangement meets

TABLE IV
CriTICAL FREQUENCY ALLOCATION FOR LINEAR PHASE SHIFT BaNnD-PAss FILTER

m =1 m =2 Modified Lt ol Reauired
11,125 11,198 11,174

11250 11,289 11265 11375
11,500 11.500 11500 '

13,500 13,500 13,500 .

13750 13711 13735 13,625

13,875 13,802 13,826
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the loss requirement with a large margin of safety, but the phase
shift curve departs seriously from linearity near the last useful fre-
quencies, which fall in the shortened intervals of the transition factors.

With these two attempts as guides, a compromise frequency pattern
which exactly suits the conditions of the problem is readily arrived at.
In contrast to the transition factor spacings of 0.853a and 0.353e,
as shown by the solution for m = 2, those actually adopted are 0.94«
and 0.375« so as to make the first transition spacing more nearly
uniform with those in the pass-band. The indicated frequency
pattern is shown in the third column of the table.

As the values of these transition factors near the band edges are
somewhat too large they lead to larger undulations of the phase
characteristic in those regions than near the band center. The
approximations can be rendered more uniform throughout the band
without serious consequence to the loss characteristic by multiplying
the tangent expression by a constant slightly smaller than unity. In
this case the value chosen was K, = 0.9975.

The final “delay” and loss characteristics, corrected for the effects
of dissipation, are exhibited by Figs. 16 and 17. A noteworthy result
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Fig. 17—Attenuation characteristic of a band pass filter.

of modifying the theoretical spacings for the transition factors has
been to introduce peaks of loss near the band edges. The shortened
intervals adjoining the cut-offs produce tanh 6/2 curves which rise
rapidly beyond these points to maxima slightly greater than unity,
instead of approaching unity monotonically.

Having thus located the critical frequencies, we may readily com-
plete the design of the filter in lattice form.

The formulation of the transfer-constant expression results in

R (=) (1 f) R
A AR AT

where f, and f; represent the cut-offs, and the other f's intervening
critical frequencies in order of magnitude, as shown by Table IV.

A suitable form for the image impedance must next be obtained and
since it is normally determined by requirements with which we are
not now concerned, we will adopt the simplest possible expression,
namely

[/}
tanhi =K,

ZI —_ Kz-\{l _f)-/fﬂzl\’rl _f2/f52’
if

where K is determined from the condition that Z; = 600 ochms when
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f = Vfafs- The impedance functions Z. and Z, are now readily
found by means of (1) and (2), and with the help of Foster’s formula
the element values can be obtained. These are shown in Fig. 18.

Ly Lz L3 Lg Ls Le

Ly = 0.0675 mh. C, = 3.035 mf.
Ly = 0.6529 mh. C, = 0.2810 mf.
Lz = 0.1958 mh. Cy = 0.8622 mf.
Ly = 0.1770 mh. C; = 0.8801 mf.
L = 0.1330 mh. C; = 1.085 mf.
Ls = 0.0404 mh. Cy = 3.325 mf.
L; = 35.66 mh, Cr = 0.0046 mf.
Ly = 0.1620 mh, Cs = 1.182 mf.
Ly = 0.2021 mh. Cy = 0.8703 mf.
Lijp = 1.335 mh. Cro = 0.1214 mf.
Ly = 0.1097 mh, Cy = 0.9112 mf.
Lu = 0.1089 l'l‘ll'l. Cﬂ = 1.276 mf
Ly = 35.86 mh. Cll = 0.0046 mf.

Fig. 18—Band pass filter.

This example illustrates the way in which the analysis may be
applied to a typical problem in network design. The practical design
would not ordinarily be complete at this point, however, since, as was
mentioned previously, it is seldom desirable actually to construct the
network as a single symmetrical lattice. Improved stability with
respect to variations of the elements from their design values is
obtained if the lattice is resolved into its components, that is, the
elementary lattice sections which when operated in tandem have the
same transmission properties. This question is discussed in a recent
paper.* Furthermore, unbalanced structures equivalent to the sym-
metrical lattice but employing fewer elements are known,* and expense
can usually be reduced by resorting to one of these.

*H. W. Bode, loc. cit. It may be interesting to observe that in the terminology
of that paper the elementary constituents of linear phase shift filters are usually
complex m sections.

33 A linear phase shift lattice filter cannot, of course, be constructed as a sequence
of II or T sections, but equivalences in generalized bridged-T configurations exist.
General equivalences in configurations employing ideal transformers are familiar in
the literature. See, for example, Cauer, loc. cit., or Jaumann, E. N. T., July, 1932,
p. 243.
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PArRT III—FILTERS WITH LINEAR PHASE SHIFT
THROUGH THE CUT-OFF

It was the conclusion of the theoretical discussion that any desired
approximation to ideal filter characteristics may be obtained from a
finite network, so long as a finite transition interval separates trans-
mitting from attenuating bands. The transition interval can be
taken small at pleasure, but very small transition intervals are associ-
ated with networks of many natural frequencies and numerous
elements. We have already seen how considerable economies in
meeting a given attenuation requirement could be obtained if the phase
requirement were subordinated or removed entirely. We now con-
sider the contrary case, in which major emphasis is placed upon the
phase characteristic of the filter. Filters of this type are of practical
interest in picture transmission systems since instruments used in the
reproduction of images seem to be much more sensitive to the effects
of phase distortion than the ear. The selectivity required from filters
used in such systems is comparatively modest, but phase linearity is
required not only in the practical transmission band but also through
the transition interval into the region of rising attenuation.

In one important particular the present problem differs from those
previously considered. In the present analysis we can no longer
regard the adjustment of Z; and the adjustment of # as independent
problems. On the contrary, in the attenuating region the contribution
of 6 to the phase shift is constant and we must therefore rely upon
reflection effects to maintain the desired linear characteristic. More-
over, near the cut-off § must be very carefully adjusted with respect
to Z 1 in order that the contributions to the phase shift from reflection
and interaction effects may preserve the linearity through the transition
band also. The added restrictions imposed by the extension of the
phase requirement require a revision of the frequency spacings already
found, and set limits upon the approximation to ideal characteristics
obtainable from reactive networks of reasonable complexity.

Use of Reflection Effects to Produce Linear Phase

In the practical transmission band, Z; can be adjusted to approxi-
mate R sufficiently closely to make reflection and interaction effects
negligible. Therefore, in this range the total insertion phase is the
same as the transfer constant phase, and, as before, is to be obtained
from a chain of uniformly spaced critical frequencies in tanh 6/2. In
the practical attenuating band, on the other hand, we find that the
imaginary part of 6 is either 0 or x, while interaction effects can be
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ignored if we assume the loss to be reasonably high. The variation of
the phase shift with frequency must therefore be attributed to re-
flection effects, which we can write as

Zr
‘R

efr = 1

where 6, is the sum of the reflection effects at the two ends of the
structure.

Since Z; is reactive in the attenuating band, the angle of the
denominator in this equation is &= /2, while that of the numerator is
2 arctan Z;f/iR. Thus

B,=F —g + 2 arctan ;ZT; (25)
Except for the constant term, which we will consider presently, this is
a function of precisely the type we have been considering. Hence if
the impedance controlling factors are spaced at the same uniform
interval that was used in the pass-band, the phase slope will be constant
and equal in both bands.

Phase Characteristics in Transition Intervals

The transition factors—or rather, factor, since clearly we have to
rule out the solutions for m > 1—must be determined so that these
linear parts of the phase characteristic are joined by a chord of the
same slope. If we suppose the transition interval to be bounded by
the last uniformly spaced frequencies of the transfer constant and
image impedance chains, and to contain only the cut-off factor, it is
easily shown that it must include a net change in phase of 3/2 radians.
The interval must therefore contain 3/2 uniform spaces if the average
slope is to be correct. Considerations of symmetry to be described
later require that the cut-off be the center of the interval, which thus
comprises two three-quarter spaces. The behavior of the several
components of the total insertion phase is exhibited by Fig. 19, in
which B, B,, and B; refer respectively to the phase shifts contributed
by the transfer constant, by reflection effects, and by the interaction
factor. The mutually annulling discontinuities of /2 radians in B;
and B, at the cut-off are noteworthy.

The fact that this choice of parameters is sufficient as well as
necessary to obtain the desired linearity of phase shift is not easily
shown analytically. It can, however, be verified by direct computa-
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PHASE SHIFT IN RADIANS

FREQUENCY IN TERMS OF

Fig. 19—Transfer, reflection, and interaction phase in the transition interval.

tion. For this purpose the customary resolution of the total insertion
loss into transfer constant, reflections, and interaction is not very useful
because of the indeterminacies found at the cut-off. This difficulty
is avoided by expressing Z; and 6 in terms of the lattice impedances,
in which event
1+ Zily + Zs + Zy
or=— K R R (26)
Z, Z, ’

R R

where v is the total insertion loss.
If X . and X, be written for Z, and Z,, the insertion loss and phase
shift are given by
_ XX, - R .
tan By = RX. T Xy 27
and

v AR TXHRE T XD
RX.—X,)

e (28)

Equation (27) can be used to confirm our previous choice of the
location of the cut-off. At this frequency one of the two reactances,
X. and X,, will be either resonant or anti-resonant. It is evident
from (27) that if the phase shift is to have the desired value,
(n + 3/4)m, at the assumed cut-off the non-resonant impedance must
have the magnitude R. That this value is approximated follows from
the symmetrical spacing of transfer constant and image impedance
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controlling frequencies with respect to the cut-off. On both sides of
the transition interval, in the regions of uniform spacing of poles and
zeros, the non-resonant reactance approximates R tan =f/2a or
R cot «f/2a and at the middle of each space, where =f/2a is an odd
multiple of /4, is numerically equal to R. Hence, by symmetry,
this must also be the value approximated at the middle of the non-
uniform interval between the two chains, i.e., at the cut-off frequency.

Nature of the A pproximation

The argument of Part I shows that the three-quarter spacing
between the cut-off and the chain of transfer constant controlling
factors results in poorer approximations to phase linearity in the trans-
mission band and to complete suppression in the attenuating band
than would the half-spaced cut-off solution. The three-quarter
spacing between the cut-off and the chain of impedance controlling
frequencies also leads to less perfect uniformity of the impedance
characteristic. This is the price we pay for the larger range of phase
linearity. Nevertheless, the error of approximation for both 8 and
Z . if we follow the sense of equation (22) can be shown to be

%a ( 1—1_—f - l—i—f), when « is small, and hence can be made as
small as we please by a suitable choice of a.** So far as the phase and
impedance characteristics are concerned, experience shows that satis-
factory precision can be obtained with a moderate value of «. The
situation with respect to the attenuation characteristic is more serious.
As we have already seen, the best approximation in the attenuating
band is obtained by a cut-off spacing which is, if anything, slightly
less than, rather than slightly greater than, a/2. Furthermore, it
appears from the above formula that with the three-quarter cut-off
spacing, the approximation error at a given frequency in the attenu-
ating band is proportional only to the first power of «. Hence cutting
« in two, which substantially doubles the number of elements in the
structure, adds but 6 db to the attenuation at this frequency. It is
clear that a practical limit is thus set upon the suppression which can
be provided.

Since the attenuation of the structure is relatively low, the con-
tribution of reflection effects to the total loss is correspondingly im-
portant. A peak of loss occurs at each impedance controlling fre-
quency, where the lattice impedances are zero or infinite together.

24 [t is not true that the error in 48/dw vanishes with . However, in the following

example, which may be taken as typical, the variation of 88/3w is still only about
1 per cent of its average value.
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At these frequencies the image impedance changes sign, and therefore
also the constant term of equation (25). Thus, although the phase
slope is uniform throughout the attenuating range, the phase charac-
teristic itself suffers discontinuities of = radians at each impedance
controlling frequency. Whether the discontinuity is an increase or a
decrease of = radians is not distinguishable for a non-dissipative net-
work. When parasitic dissipation is taken into account the peaks are
finite and the phase increases or decreases according as the line- or
cross-arm of the lattice has the smaller resistance component at the
peak frequency. The infinite peak at this frequency, and the associ-
ated abrupt change in phase, can evidently be restored by adding
additional resistance to the smaller impedance so as to bring the arms
into balance.

This observation is of importance in considering the effect of
dissipation on the phase shift. A counterpart of Mayer's theorem can
be found which relates the change in phase shift resulting from uniform
dissipation in the network elements to the slope of the loss curve.

The formula is

AB = — wd 24,
dw

where d is the dissipation constant, and where 4 and B are in népers
and radians respectively. In the transition interval, where the slope
of the loss curve is great, the effect of uniform parasitic dissipation may
reduce the phase appreciably. This effect can be compensated by
small modifications in the theoretical frequency spacings, or by the
introduction of a lumped resistance to balance the bridge at the first
impedance controlling frequency, according to the plan suggested
above. ’
Example

To illustrate the performance of this sort of network, we may con-
sider a low-pass filter containing four evenly spaced critical frequencies
in the practical transmission band. Subsequent natural frequencies
will then occur at 4.75a, 5.5a, 6.5a, etc., according to the rule for three-
quarter spacing adjacent to the cut-off. We may suppose that the
requirement for linearity of phase shift does not extend above 7.5¢,
so that the sequence of uniformly spaced impedance controlling fre-
quencies may be terminated after this point according to the scheme
proposed in the case of the high-pass filter. In the frequency range of
interest, we can replace the omitted chain of uniformly spaced fre-
quencies by a single natural frequency at double spacing. The trans-
fer constant and image impedance expressions can then be written as:
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Z:=R\/——f( (65a)2 (1—@.—1;)3).

(1~ e ) (1 - 5

These equations determine Z, and Z,, the values of which may be
used in equations (27) and (28) to calculate the performance. This is
shown by Fig. 20, after dissipative effects have been taken into account.
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Fig. 20—Performance of a low pass filter having linear phase through the cut-off.

The approximation of the phase characteristic to linearity has again
been indicated by exhibiting departures of the slope from the average.

It is observed that the approximation obtained by the three-quarter
spacing is as close in the transition interval from 4« to 5.5« as in the
practical transmitting band below 4. In practical design problems,
the phase shift is unlikely to be of interest beyond the first or second
reflection peak, so that the chain of impedance controlling frequencies
might be sooner terminated.
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The loss characteristic reveals that no very high degree of suppression
is attained. In fact, the loss falls to about 16 db in the trough beyond
the first reflection peak. So serious a prejudice in favor of the phase
characteristic would render the design unsuitable for certain engineer-
ing purposes. There are open, however, several possibilities for in-
creasing the attenuation. Small modifications in the theoretical
design parameters of the type which have been described, and in
particular, slight separations of the theoretically coincident impedance
controlling frequencies in the two arms of the lattice, enable the loss
to be somewhat improved without much degradation of the phase
characteristic. If very much higher attenuation is demanded, it can
be provided by two simple structures of this type, separated by a
resistance pad to preserve the reflection effects upon which the phase
characteristic depends.

Further possibilities are suggested by combination of two principles
already developed. It has been observed that a reduction in the
three-quarter spacing of the cut-off would improve the selectivity of
the structure but would also unduly increase the slope of the phase
characteristic in the transition interval. We have also seen, however,
that the result of uniform dissipation in the network elements is to
diminish the phase shift in this region. Hence our analysis suggests
that we may be able to obtain the desired phase characteristic in
conjunction with the shorter cut-off spacing necessary for high
selectivity if we deliberately increase the dissipation in the network.

A concomitant result of such procedure is seen to be an increase in
the uniform loss in the transmission band, which may not always be
desirable. Neither does the attempt to provide the phase property
without sacrifice of high loss through the introduction of uniform
dissipation represent the most effective attack on the problem. To
achieve this end, resistances must be associated with the reactive
elements of the lattice impedances in a precisely determined manner,
not to be deduced solely from the foregoing theory of reactive net-
works. The elaboration of the theory to include also resistive im-
pedance elements serves to determine a filter whose attenuation
changes continuously from a low, uniform value in the pass-band to an
arbitrary value in the attenuation bands with linearity of phase shift
and, in addition, the third ideal property of constant impedance.
The general theory, however, can more appropriately form the subject
of a subsequent paper.

The solution of this problem completes the application of the
methods for realizing ideal filter properties. We have seen that if all
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the properties are of importance and the desired approximations close,
we are led to networks which, while formally simple, involve corre-
spondingly numerous natural frequencies. On the other hand, if the
impedance, or the phase, or the loss property be subordinated in
respect to the others, suitable modification of the analysis allows the
remaining properties to be realized with simplification of the structure.



