An Application of Number Theory to the Splicing of
Telephone Cables *

By H. P. LAWTHER, JR.

The consideration of a simple and practical splicing scheme for mini-
mizing the recurrence of same-layer adjacencies among telephone circuits
in long cables leads to a problem in Number Theory whose solution calls
for some extension of the previous work in this field. The solutions for
numbers not greater than 139 have been computed, and a table of these
is included.

OME time ago in connection with the placing of a long telephone
cable the writer had occasion to attempt the specification of a
splicing scheme designed to minimize the recurrence of same-layer
adjacencies among the telephone circuits as they threaded their way
through successive lengths of the completed cable. The task, super-
ficially so simple, proved to be one of most intriguing difficulty, and
the pursuit of the solution led a confused investigator stumbling into
the province of number theory. That speculation upon an art so
mundane as that of telephone cable splicing should have led to a propo-
sition in the oldest and most neglected branch of mathematics seemed
to be especially worthy of note, for few applications so practical have
been found. In the course of the investigation certain small ground
apparently was covered for the first time. It was felt, therefore, that
the story would be of passing interest alike to the mathematician and
to the engineer.

The present standard cables for long distance telephone service are
manufactured as a series of concentric layers of conductor units con-
tained within a cylindrical sheath. The conductor units are either
pairs of quads of wires. The layers are one unit in thickness, and suc-
cessive layers either spiral in opposite directions of rotation, or in the
same direction but with different pitches. The feature of importance
to this discussion is that in an unbroken length of cable any one con-
ductor unit will experience shoulder-to-shoulder adjacency throughout
this distance with the two conductor units lying on either side in the
same layer, and its experience with these two conductor units will be
unique. Cables usually are manufactured in uniform lengths of from
750 to 1000 feet, and a longer cable is made up from a succession of such

* Published in Amer. Math. Monthly, February, 1935.
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lengths spliced end-to-end. At each splice point a large number of
different splices is possible among conductor units. In general, wire-
to-wire splices are not made, and considerable mixing up is achieved.
For reasons which need not be given here it is considered desirable
from the standpoint of crosstalk control that each telephone circuit
experience the minimum amount of same-layer adjacency with every
other telephone circuit.

For the purposes of this discussion it will suffice at present to con-
sider the cross-section of a cable as a simple closed sequence of N con-
secutively adjacent units. As an example, the array presented by a
circular picket fence would be of this character. Each conductor unit
in a cable is identifiable, and it will be assumed that each has been
“tagged’ with one of the numbers 1, 2, 3, 4, ---, N in such sequence
that units bearing consecutive numbers lie adjacent—remembering
that unit No. 1 and unit No. N also lie'adjacent. While this simple
picture of the cable cross-section is representative truly of only a single
layer structure, still the results of a study of it may be fitted to apply
to practical cases. Schemes for accomplishing this will suggest them-
selved to the practical worker, and their discussion here would burden
this presentation unduly.

Consider now two consecutive lengths in a completed cable and focus
attention upon a conductor unit in one of these. At the splice point
this conductor unit may connect to any one of the conductor units in
the second length, and the two conductor units which lie alongside the
latter in the same layer in the second length may connect to any two of
the N — 1 remaining conductor units in the first length. As an ex-
tended conductor unit traverses the completed cable, then, it may ex-
perience same-layer adjacency successively with any possible combina-
tions two at a time of the other extended conductor units, and in any
order, sequence, or repetition of these as determined by the splicing
scheme that is used. Since there can be but [(N — 1)/2]* totally
different combinations two at a time of N — 1 different objects it is
evident that [(N — 1)/27] successive cable lengths is the maximum
possible number for an extended conductor unit to traverse without
incurring repetition of at least one of the same-layer adjacencies that
occurred in the first of these lengths.

Any splicing scheme that is devised for practical use must embody
the utmost in simplicity. For this reason it is considered highly
desirable (1) that the required results be achieved through repetition
of the same splicing instruction at consecutive splice points, and (2)

* The symbol [x/y] means the greatest integer not greater than x/y.
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that this instruction follow the simplest possible system—e.g., any two
adjacent conductor units in one length of cable shall connect to two
conductor units having a constant separation in count in the next
length. The exposition which follows makes no attempt to solve the
general problem, and seeks only to establish the results which can be
realized when the above two simplifying restrictions are imposed. At
the conclusion is added a description of a minor and acceptable devia-
tion from the second restriction which will enable the practical worker
to supplement these results and achieve the maximum possibilities in a
number of cases sufficient for his needs. The problem now will be
formulated.

1—- 1 1— 1 1— 1
2— 2 2— 3 2— 4
3— 3 3— 5 3— 7
4 - 4 4— 7 4 —10
5— 35 5— 9 5— 2
6— 6 6—11 6— 5
7— 7T 77— 2 7— 8§
§— 8 8§— 4 8§ —11
9— 9 9— 6 9— 3
10 — 10 10— 8 10— 6
11 — 11 11— 10 11— 9
Fig. 1 Fig. 2 Fig. 3

The three tabulations exhibited in Figs. 1, 2, and 3 show possible
ways of splicing two pieces of eleven-unit cable together in systematic
fashion. The left-hand columns indicate the consecutively adjacent
conductor units in the first or reference piece of cable (remembering
that No. 1 and No. 11 are adjacent), and the numbers opposite in the
right hand columns indicate the conductor units in the second piece of
cable to which splice is made. No importance attaches to the splicing
of unit No. 1 to unit No. 1 in each instance. This is simply one of
eleven possible ‘‘starts,” and from the point of view of this discussion
there is no preference among these. Note that with Fig. 1 two con-
ductor units which lie adjacent in the first piece of cable connect to
conductor units separated by a count of one (adjacent) in the second
piece. With Fig. 2 conductor units which lie adjacent in the first piece
connect to conductor units separated by a count of two in the second
piece. With Fig. 3 conductor units which lie adjacent in the first piece
connect to conductor units separated by a count of three in the second
piece. Splices made in accordance with the schemes of Figs. 1, 2, or 3
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will be described as made with a “spread of one,” a “spread of two,”
of a “spread of three,” respectively. It is readily shown that for a
spread number s to be applicable to cable of N units it is necessary and
sufficient that s be prime relative to N.

Figure 4 shows the splicing of six pieces of eleven-unit cable through

1 1-1-1—- 1—-1
2—- 3— 55— 9 —-6—11
3— 5— 90— 6—-11—10
4—- 7— 2—- 3— 5— 9
5—- 9— 6—-11—-10—
6—211—-10— 88— 4—
7— 2— 3— 55— 9—
8> 45 75 25 33—
9— 6—>11—-10— 8 —
10> 89 4— 7T— 2—
11—-10— 8— 4— 7—

Fig. 4
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the successive application of five consecutive identical splices, each
with a spread of two. Following the “key" of the first and second
columns, the succeeding columns are written down immediately.
Scrutiny of the sequences of numbers appearing in the several columns
reveals at once the fundamental properties of the spread. For a
cable of N units these are:

1. Successive applications of a spread of s for n times result in a
spread of s

2. A spread of minus s is equivalent effectively to a spread of pluss.

3. A spread of KN + s (K is an integer: positive, negative, or zero)
is the same effectively as a spread of s.

The problem of achieving the minimum possible recurrence of same-
layer adjacencies among conductor units through the application of
successive similar splices in accordance with a simple spread now may
be stated formally in the terminology and symbols of number theory.
If NV, an integer, is the number of conductor units in the cable, and if s,
an integer prime to IV, is the spread number used, then it is required to
find a value for s for which the companion relations

s= 41 (modN),
st£ +1 (modN), b<d

determine the largest possible integer d.
From the foregoing introductory discussion it should be noted that
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values for N less than S are of no significance to this problem. In
the analysis which follows, therefore, no particular effort has been
made to render the general conclusions capable of extension to these
extreme and trivial cases.

It is necessary at this point to recall and introduce certain working
material. First, there is the established theorem that every positive
integer N greater than unity can be represented in one and only one
way in the form

N = D1%ipe® « - - P,

where py, 2, + -+, pe are different primes and ey, as, + + +, a, are positive
integers. Then there is the familiar number theory function ¢(N)
which indicates the number of positive integers not greater than N and
prime to N.* If p is a prime number and « is a positive integer, then

o(p~) = p ' (p — 1);
also

d(pr=pe -+ p) = (o) - d(pa™) - -+ - b(pi),

where py, ps, +++, p: are different primes.
Then there is the M-function defined in terms of the ¢-function as
follows:
A(22) = ¢(29) fora = 0, 1, 2,

A(29) = ¢(22;.) for a« > 2,

Ap*) = ¢(p™) for p an odd prime,
A(2a1pgarpiaa o plﬂt) = M,
where M is the least common multiple of

)\(Zn:)’ )"(P2a2)1 k(P:‘-‘“)l Tty }\(Pta‘),

2, ps, ps, * * +, pe being different primes.f Finally, it is established that
for two relatively prime integers s and N the value AV) is the largest
possible for the exponent m for which the relations

s =1 (mod N),

s"#1 (mod N), n <m,

* Euler, * Novi Comm. Ac. Petrop.,” 1760-61, p. 74. Carmichael, *' The Theory
of Numbers,” John Wiley & Sons, Inc., 1914, pp. 30-32. Dickson, “Introduction
to the Theory of Numbers,” Univ. of Chicago Press, 1929, Chap. I.

t Cauchy, Comptes Rendus, Paris, 1841, pp. 824-845. Carmichael, p. 53.
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will hold, and that a value for s belonging to this exponent does exist.*

Here it is convenient to consider separately numbers of the two
classes—those for which A(N) = ¢(IN) and those for which A(N)
< ¢(N). For numbers of the first class established theorems may be
drawn upon to furnish a complete analysis. For numbers of the
second class, however, it will be necessary to extend a bit beyond the
ground covered by previous workers, and the steps will be given in
considerable detail. This procedure coupled with the inherent com-
plexity will render the treatment for the latter class much less compact
and elegant than that for the former.

Case I. N(N) = ¢(N).

From the defined relation between the ¢-function and the MA-function
it follows that numbers of the class such that A(V) = ¢(N) are con-

fined to the values
1, 2,4, p~, and 2p°,

where p is an odd prime and « is a positive integer.f For a number N
of this class it is established that there exists a set of ¢(¢(V)) numbers
7, such that

(1) ™ =1 (mod N) and
(2) rm#£1 (mod N), n <AN), AMN)= ¢(N).

Such a number is known as a “ primitive root” of N.I From the
properties of the primitive root # of the number N as defined by rela-
tions (1), (2) it follows readily that '

(3) PMi2=—1 (mod N),

4  r#£4+l (modN), 0<n <"—(¥, 3‘@«;@‘(1\0_

First there will be considered the companion_relations
(5) st=—1 (modN),
(6) st# 4+ 1 (mod N), b <d,

and, from comparison with relations (3) and (4), these clearly are
satisfied for s a primitive root of N and for d = AMX)/2. That no

* Carmichael, p. 54 and pp. 61-63.

1 Carmichael, p. 71.

1 Gauss, “ Disquisitiones Arithmeticae,” Art. 52-55. Carmichael, pp. 65-71.
Dickson, Sec. 17.
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value for d greater than A(N)/2 is possible is evident immediately.
For let a be any integer prime to N. Then for some exponent %

r*=a¢ (mod N) and
A2 = W2 = 4 1 (mod N).
Next there will be considered the companion relatibns
(7) s*=1 (mod N),
(8) st#£ +1 (modN), b <d.

The reasoning just above shows that d cannot be greater than A(N)/2.
Suppose for the moment that 4 has this greatest possible value A(N) /2.
Relations (7), (8) then become

M2 =1 (mod N),
st# +1 (modN), 6=1,2,3 ---,MN)/2 — 1.
These relations may be written
(9) (st =1 (mod N),
(10) (st £ +1 (mod N), 2b=2,4,6, -+, MN) — 2.

Now relations (9), (10), will be compatible with relations (1), (2), (3),
(4) only if A(N)/2 is an odd number, for otherwise the restrictions of
relation (10) applying to the even numbered exponents from 2 to
A(N) — 2 inclusive would be in conflict with relation (3). For MN)/2
an odd number, then, relations (9), (10), are satisfield for s!/2 a primi-
tive root of N. Consequently, with relations (7), (8), A(NV)/2 is the
largest possible value for the exponent d, and a value for s equal to the
square of a primitive root of N permits this to be attained.

Case II. A(N) < ¢(N).

The inquiry for this case will be divided into four parts. In general
N = pyipepyes - -« pt where pi, ps, ps3, - -+, pi are different primes.

(a) First will be considered the case where py, ps, ps, -~ -, p¢ are all
odd primes. Then A(XN) is the least common multiple of X(p™),
A(pa=), A(ps?), -+, A(p®t). Suppose now that the highest power of 2
dividing any of the \'s divides M(p:*%). If this same power of 2 divides
more than one of the \'s, arbitrarily select A(:**) as one of them. Then
this power of 2 will be exactly that occurring in A\(&V). Now arbitrarily
select p; as any one of the odd primes other than p;. Then clearly
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AV) will also be the least common multiple of

A(p )
2

Npi®t), Np2), -+, Mpir™i), v Mpiit), e, Mpe).

Now take
r=g;* (mod p;*i), g;a primitive root of p;*/,
=g (mod p*¥), g a primitive root of p,*,
k=1,2,3,---,ij—1,7+4+1, - L

The r thus chosen must be prime to each of the prime factors of N,
and hence must be prime to N. Consequently it is known that

P =1 (mod N).
Suppose that m is the smallest exponent for which the congruence
=1 (mod N)

is true. Then it is noted that the chosen 7 is such that m must be a
multiple of

Apr), Npe), -+, Mpia®iy), Lﬁ‘;"ﬂ, Mpipaity), <o+, NP,

and the least multiple common to these is, of course, A(N). Therefore
it can be written that
" =1 (mod N),
" £ 1 (mod N), b < AN).
Now suppose that for some exponent # less than A(N)

m= —1 (modN).
Then
r?» =1 (mod N),

and if n is less than A(N), 2# is less than 2A(N) and can only be equal to
A(N). It would necessarily follow then that

A2 = — 1 (mod N),
and it would follow in turn that

A®IZ = — 1 (mod pi).
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However, r has been chosen such that
AN = (gPMI2 = gd®™ =1 (mod p;i).

This last relation is incompatible with the one immediately above, and
it must be concluded that the assumption

rm=—1 (mod N), n <N\UN)
is false, and that for the r that has been chosen
P®™ =1 (mod N),

r*#£ +1 (mod N), b <AN)
and no exponent greater than A(N) is possible.
(b) Next will be considered the case where p; = 2, oy = 1, and

pa, Pa, +++, pe are all odd primes. Select p; as above and take p;
different from 2. Then take

r=1 (mod2),

g? (mod p~i), g a primitive root of p;,

g2, (mod p**), g, a primitive root of p.o*,
k= 2:3r41 "')j_ 1|j+1""rlv
and the same line of reasoning may be repeated and the same con-
clusions reached as under part (a) above.
(c) Next will be considered the case where p1 = 2, ay = 2 and ps,

ps, -+, prare all odd primes. Since A(22) = 2 take p; different from 2,
and for simplicity take p; as 2. Then take

r=1 (mod4),
=g, (mod p=¥), g, a primitive root of p.**,
k=234, --,¢

and the same line of reasoning may be repeated and the same con-
clusions reached as under part (a) above.

(d) Finally will be considered the case where p; = 2, &y > 2, and
Po, P, -+, pe are all odd primes. Now 5 has the property that

5 =1 (mod 2v),
502 4+ 1 (mod 2), a > 2, b <N20).
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So by taking
r =35 (mod 2m),
=g, (mod ), g a primitive root of p,2k,
k=234 ---,t
it is concluded immediately that
P =1 (mod N),
£ 41 (modN), b<AD).

The preceding formal analysis for Case I and Case II may be
summed up as having established the following general theorem:

If N is a given positive inieger and if s is an integer prime to N, then the
largest possible exponent d for which the companion congruencial relations

s=+1 (modN),
s'# +£1 (modN), b<d

will be true is MIV) /2 for numbers such that A\(N) = ¢(N) and is A\(N)
SJor numbers such that N(N) < ¢(N), and a value for s belonging to this
exponent in each instance does exist.

In order to apply the foregoing results to-a practical case Table I
has been prepared. In the left-hand column appear the numbers 5 to
139, inclusive. In the next column is listed for each number the value
of AM(IN)/2 or of A(V), depending upon whether A(N) = ¢(N) or M(N)
< ¢(N). In the final column there is listed for each number a suitable
value for the spread. There appears to be no advantage of one spread
figure over another, and the listing of additional acceptable values is
omitted in the interest of economy of space. For the numbers for
which M) = ¢(N) and for which A(V)/2 is odd care has been taken
that the listed spread figures are primitive roots, and not the squares of
primitive roots which were shown to be equally acceptable. This fact
will be recalled later.

It was shown earlier that [(IN — 1)/2] successive cable lengths
would be the maximum possible number for an extended conductor
unit to traverse without incurring repetition of at least one of the same-
layer adjacencies which occurred in the first of these lengths. On
referring to Table I it is seen that only for the prime numbers is this
maximum attainable. The prime numbers are distinguished by the
fact that for them A(V)/2 = (N — 1)/2, and each has been indicated
by an asterisk. The composite numbers are seen to yield quite in-
ferior results in general.
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TABLE 1

For each N there is listed the value d and a value s for which the companion relations
st=+1(mod N) % 21 (mod N),b <d
determine the largest possible integer d.

N d K] N d 5 N d 5
5* 2 2 50 10 3 95 36 2
6 1 5 51 16 5 96 8 5
T* 3 3 52 12 7 97* 48 5
8 2 3 53* 26 2 98 Al 3
9 3 2 54 9 5 99 30 5

10 2 3 55 20 2 100 20 3

11* 5 2 56 6 3 101* 50 2

12 2 5 57 18 5 102 16 5

13* 6 2 58 14 3 103* 51 5

14 3 3 59* 29 2 104 12 7

15 4 2 60 4 7 105 12 2

16 4 3 61* 30 2 106 26 3

17* 8 3 62 15 3 107* 53 2

18 3 5 63 6 2 108 18 5

19+ 9 2 64 16 3 109* 54 6

20 4 3 65 12 3 110 20 3

21 6 2 66 10 5 111 36 2

22 5 7 67* 33 2 112 12 3

23* 11 5 68 16 3 113* 56 3

24 2 5 69 22 2 114 18 5

25 10 2 70 12 3 115 44 2

26 6 7 71* 35 7 116 28 3

27 9 2 72 6 5 117 12 2

28 6 5 73* 36 11 118 29 11

29* 14 2 74 18 5 119 48 3

30 4 7 75 20 2 120 4 7

31* 15 3 76 18 21 121 55 2

32 8 3 77 30 2 122 30 7

33 10 5 78 12 7 123 40 7

34 8 3 T9* 39 3 124 30 7

35 12 2 80 4 3 125 50 2

36 6 . 5 81 27 2 126 6 11

37* 18 2 82 20 7 127* 63 3

38 9 3 83* 41 2 128 32 3

39 12 2 84 6 5 129 42 14

40 4 3 85 16 3 130 12 3

41* 20 6 86 21 3 131* 65 2

42 6 11 87 28 2 132 10 5

43* 21 3 88 10 3 133 18 2

44 10 3 80* 44 3 134 33 7

45 12 2 90 12 7 135 36 2

46 11 5 91 12 2 136 16 3

47* 23 6 92 22 3 137* 68 3

48 4 5 93 30 13 138 22 7

49 21 5 94 23 5 139* 69 2

* The asterisk indicates a prime number.

For the benefit of the practical worker there must be described a
slight deviation from the second simplifying restriction imposed at the
beginning which will permit the maximum possibility to be realized if
N is one plus a prime number. This artifice is based upon the fact
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that for » a primitive root of a number N for which AM(N) = ¢(N) and
in particular for a prime number N

P2 = — 1 (mod N).

This means that A(N)/2 consecutive splices with a spread 7 result in a
spread of minus one. It is readily shown that this in turn means that
there will be two conductor units No. # and No. & + 1 in the first length
of cable which ultimately will be extended to connect respectively to
units No. b + 1 and No. b. In Fig. 4 two units No. 6 and No. 7 meet
this requirement. To illustrate the use of this artifice it will be sup-
posed that a cable of 12 units is to be spliced. Referring to Fig. 4. for
guidance, the arrangement shown in Fig. 5 is set up readily. The
first two columns indicate the splicing assignment, and the succeeding
columns are then derived from these. The eleven units 1,2, ---, 5, 6,
8,9, ---,11, 12 are assigned exactly in conformity with the scheme of
Fig. 4, ignoring the break in sequence between No. 6 and No. 8.
Unit No. 7 is then simply spliced to itself throughout.

1l 1-1—- 1—- 1—- 1
2> 35 5—-10— 6—12
3— 5—-10— 6 —-12—>11
4— 8— 2— 3— 5—10
5—210— 6—12—11— 9
6—-12-511— 9— 4—
T— 17— 71— 1> 7T—
§— 2— 33— 5—-10—
9—» 4—> 8— 22— 33—
10—- 6512511 — 9—
11— 9—- 4—- 8— 2—
12-511—> 9— 4— 8§—

Fig. 5
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Undoubtedly there are other equally acceptable artifices for extend-
ing further the practical scope of the simple results. The prime num-
bers and the prime numbers plus one constitute nearly fifty percent of
all numbers in the range in which the practical worker is likely to be
interested, however, and when it is borne in mind that normally he has
latitude in his choice of N it is seen that the material here presented is
adequate for his needs.

The writer is indebted to Dr. D. H. Lehmer for pertinent suggestions.
The entire treatment for the case of numbers for which A(V) < ¢(N)
follows a line of attack suggested by Mr. Marshall Hall, and but for his
helpful interest this presentation would have been lacking in formal
completeness.



