Ferromagnetic Distortion of a Two-Frequency Wave
By ROBERT M. KALB and WILLIAM R. BENNETT

Frequency components are found for the ferromagnetic induction
produced by a small magnetizing force of two incommensurable frequencies.
Because of hysteresis the results depend intimately upon the ratios of these
frequencies and of their amplitudes. With these ratios as criteria, two solu-
tions are provided, adequate for most modulation problems of this character
occurring in the field of communications.

The development is based on Madelung's empirical propositions. From
these are deduced the forms of complex hysteresis loops occasioned by two-
frequency magnetomotive forces, and from the loops sinusoidal components
of the flux wave are derived by means of Fourier's series. The various
voltages generated in a coil by such a flux are then calculated and next
correlated with analyses for a single applied frequency. The resulting
changes in the impedances to the two fundamental frequencies are also
evaluated. The most important results are given in graphs and tables.

Experimental data on a number of specimens show close agreement with
curves computed by the theory.

The analysis discloses several interesting features. It is shown that
Madelung’s conclusions imply Rayleigh's law of loop similarity; as a
consequence the parameters of a Rayleigh loop suffice to describe a complex
loop to the extent that it conforms to Madelung's results. Hysteresis
suppression is found not to occur at low fields, although harmonic sup-
pression may. The generated side frequencies of the flux appear in unequal
pairs, the lower one being the stronger in each instance. Such inequality isa
general property ascribable to the multivaluedness of the loop.

FOR precisely evaluating the performance of communication
circuits containing ferromagnetic materials, methods for taking
into account the non-linear effects of these materials are needed. To
this end there have been devoted certain investigations of the behavior
of such materials at the low flux densities usual in communication.
These early disclosed that hysteresis is a governing factor for weak
fields and led to attempts to solve the problem of its bearing on speech.

The complexity of speech and of hysteretic phenomena has made
desirable the use of simple testing methods, which in turn require for
their interpretation a quantitative theory. Since tests of this sort
are usually made with one or more sinusoidal test waves,a theory of
single-frequency magnetic performance has already been evolved as a
first step toward fulfilling this need. For many purposes single-
frequency tests are inadequate, and two-frequency waves are often
used to obtain better information bearing on the design or performance
of communication systems. It is the purpose of the present paper to
take a further step by furnishing the theory of magnetic behavior
under a two-frequency force.
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The very simplicity which sometimes makes sinusoidal waves valu-
able for analyzing or testing the non-linear properties of channels of
communication makes such waves worthless when applied in other
instances, and more complex test waves must then be employed. The
harmonics produced by a sine wave furnish an index of the distorting
properties of a system, but the side frequencies produced by two such
waves are needed to indicate its modulating properties or to give a
measure of the interference between carrier channels. When two
waves are used, one may be thought of as the carrier, modulated by
the other, whose amplitude is chosen proportionate to the square root
of the energy in the more complex modulating wave it represents, or
both may be thought of as component waves in the same channel, or
as carriers in different channels, producing interference in certain other
channels. The amplitudes of the several product frequencies then
give a measure of the energy falling in their respective regions of the
spectrum under actual operation. The effect of the presence of one
fundamental upon the transmission of the other can also be ascertained.
Increasing the complexity of the test wave by the superposition of
additional frequencies can be seen to afford little added advantage at
the cost of much complication, unless the character of the waves
actually transmitted is simulated, in which case statistical methods of
study can perhaps be applied.

From the foregoing circumstances the utility of information per-
taining to the application of two-frequency inputs as well as single-
frequency inputs to non-linear circuit elements is apparent; many
investigations have been conducted in this field to provide such
information. When the current-voltage relation is not single-valued
a more intricate treatment is necessary in carrying out the analysis.
A general method of attack for double-valued characteristics has been
provided and applied to hysteresis loops by E. Peterson ! to determine
the flux in ferromagnetic materials under single-frequency magnet-
izing forces. The fundamental dependence of loop form upon wave
shape precludes immediate extension of Peterson’s results to the case
of a multi-frequency force except for certain harmonic combinations,
one of which he considers.? A study of flutter effect has been published
by Walter Deutschmann,® who analyzed a complex loop made up of
straight lines. Both instances serve to emphasize the desirability of
a broader investigation of the theoretical aspects of two-frequency
magnetization including hysteresis. While no general and rigorous

'B. 8. T.J., Vol. 7. pp. 762-796, Oct. 1928.

* Tbid., p. T73.

3 Wiss. Ver. a.d. Siemens-Konzern, Vol. 8, No. 2, pp. 2244, 1929; E. N. T., Vol. 6,
pp. 80-86, Feb. 1929.
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method has yet been developed for handling this problem in a manner
analogous to that applicable for a single frequency, practically im-
portant cases are solved here by means extensible to more complicated
ones.

CONSIDERATIONS OF WAVE SHAPE AND Loor ForMs
Scope of the Two-Frequency Analysis

The envelope of a wave affords a means for classification. Waves
whose envelopes change gradually during any oscillation form a class
apart from those waves which have envelopes subject to abrupt
changes. Members of each class can be segregated into those with
envelopes nearly symmetrical with respect to the average magnetizing
force, those with envelopes of almost uniform width, and so on. One
of the two last-mentioned properties in a wave with a gradually
changing envelope is essential to successful analysis by the methods
about to be detailed.

The cases of magnetization analyzed, which include all the two-
frequency wave shapes that can qualify under the foregoing criterion
of tractability to analysis, are the following:

Case 1. The ratio between the geometric and arithmetic means of the
amplitudes much smaller than the ratio between the sum and
difference of the frequencies.

Case 2. One fundamental frequency high relative to the other; the pro-
duct of the higher frequency with its amplitude large relative to
the product of the lower frequency with its amplitude.

Between the two cases there exist intermediate ratios of frequencies
and amplitudes over which the theory does not extend; however, the
most frequent problems are usually entirely within the domain of a
single case. The inequalities involved in the foregoing case definitions
are not susceptible to simple explicit statement as limiting numerical
ratios, in advance of the development of the theory. Much depends
upon the accuracy required in predicting performance. From data
supplied in the paper, following the theory, it is possible to determine
the practical limitations of the mathematical treatment.

Formation of Complex Loops

Considering the complex hysteresis loops arising from multi-fre-
quency magnetizing forces to be many-valued characteristics for
determining the flux density, it is pertinent to study their formation
and to correlate their parameters in so far as may be possible with
those of single-frequency loops. The latter at low fields are known
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to consist approximately of two parabolic branches, the exact shape
of each dependent upon its point of origin. For fields confined
somewhat below maximum permeability, the situation customarily
obtaining in communication circuits, this representation has proved
to be sufficiently exact to warrant the neglect of higher order terms in
analyses. In conformity, terms of higher than second order will not
be retained in equations used here; the development so presented can
be extended to include them without other change in procedure. The
induction at any point on a simple loop centered on the origin is
expressed as a function of the instantaneous magnetizing force & by
means of a formula developed by Peterson,

B = (@10 + anH)h £ aw(H? — h?). (1)

The upper sign of the double sign is used for the descending (upper)
branch of the loop, and the lower sign for the ascending (lower) branch.
H is the maximum magnetizing force and the coefficients are constants
of the ferromagnetic material, determinable by single-frequency meas-
urements. They have the following significance: a0 is the initial
permeability, &, the rate of change of permeability with magnetizing
force, and age a factor of proportionality between the hysteresis loss
and the cube of the maximum magnetizing force. The concepts in
terms of which these parameters are defined acquire extended meanings
for complex loops.

In the absence of an adequate theory of ferromagnetism the question
of whether branches of complex loops and of simple loops have similar
forms must be answered by experiment. The steady state of retracing
alternately the two branches of a simple loop may eventuate in a dif-
ferent relation of B versus % than results from the first cycle; such a
condition would mean that transient branches compose the complex
loop, inasmuch as it is not retraced. It is also possible that the biasing
effect of one sinusoidal component of the magnetizing force upon the
other might cause the branches of the two types of loops to be dis-
similar, The coefficients which specify the branches of the simple
loop are evaluated with it centered at the origin of the B—# plane, using
single-frequency methods, and cannot be assumed a priori to apply to
to other situations, or to an unrepeated branch.

According to experiments by R. Goldschmidt ¢ the superposed field
necessary to cause much change of either the shapes or axial slopes of
loops exceeds the weak fields to which this development is limited.
Likewise, Lord Rayleigh ®in his original investigation found small super-

4 Zeits, f. Techn. Physik, Vol. 11, pp. 8-12, 1930.
4 Phil. Mag., Vol. 23, 1887.
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posed fields to have no measurable effect upon the form of the loops for
the specimens he investigated. Based upon these results, the branches
of simple loops can be taken to be independent of their location in the
B—h plane, and in so far as the complex magnetizing force gives rise to
branches of simple loops, they have the same shape they would have
in such a loop centered at the origin.

The formation of complex loops has been determined experimentally
by E. Madelung.® He found that after reversing the magnetizing
force at any point along the branch of a hysteresis loop a new curve
is traced which, if continued, passes through the tip of the loop. A
second reversal before the tip is reached causes another new curve to
be traced back to the point of reversal on the original branch, which
is followed thenceforth as if the two reversals have not occurred. The
return to a reversal point makes all subsequent traces of the loop the
same as if no changes of magnetizing force intervened between the
two transits through that point. Any branch of the complex loop is
then, in accordance with Madelung’s determinations, completely
specified by two points of reversal—the one from which it starts and
the one through which it must pass if continued far enough; after
passing the latter point it becomes the continuation of another branch
similarly specified by different points of reversal.

The foregoing principles furnish sufficient information for deducing
the form of the branches of complex loops. If such a branch be
extended to one of the reversal points defining it and a trace then be
carried back to the other, the loop so formed will be retraced by
repeating the cycle. As these repetitions can be carried on indefinitely,
the path must comprise a simple loop, the branch of the complex loop
forming a portion of it. Every complex loop can therefore be con-
sidered as composed of adjoined sections of simple loops. Each
branch of the complex loop is representable on suitably transformed
axes by formula (1) with H taken as half the change in magnetizing
force between the reversal points which specify the branch. In
general, a different pair of axes will be required for each branch; they
can subsequently be referred to a common origin.

The application of this analysis to the complex loop discloses the
requirement that the relation a1 = 2ag2 must be true if Madelung’s
propositions are to hold, because the values of H differ for the two
branches of a subsidiary loop. If this equality is not satisfied, the
return to the original branch does not take place at the point of
departure. Madelung’s observations do not include this possibility,

8 Annalen der Physik, Vol. 17, pp. 861-890, 1905. See also Handbuch der Physik,
Vol. 15, pp. 106-107, Berlin, 1927.
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and sufficient evidence of behavior for extending them in such circum-
stances is not available at present. Some experiments by Lehde?’
and others indicate that subsidiary loops do not quite close at their
junctions with the major loop and often show departures both ways
on different parts of the same complex loop. This sort of behavior is
not explainable by inequality between a;; and 2ao: for the subsidiary
loops, as it would cause the departure of one specimen to be always the
same way depending upon which quantity was the larger. In all
cases, even near saturation, Lehde's results show this departure to be
small and the connecting branches between successive subsidiary
loops to form approximately a simple loop. On this basis Madelung's
results can be considered confirmed to a sufficient degree of approx-
imation.

The ratio a;1/aez, which has been taken as a measure of the validity
of Rayleigh's relation in single-frequency theory, becomes a criterion
of the usefulness of Madelung’s propositions concerning loop form in
multi-frequency theory. Those substances which most closely accord
with Rayleigh's analysis can also be expected to be in best agreement
with Madelung’s results. The relation between coefficients required
on the basis of Madelung's and Rayleigh's experiments will be used
hereafter to simplify the analysis. The simplification will be evidenced
by the customary nomenclature, in which

— — 1
Mo = A1y YV = Qo2 = 3Q11.

Any attempt to distinguish here between the two latter constants
would be meaningless because beyond the scope of Madelung's em-
pirical rules. Fortunately the constants of most commercial materials
conform closely to the above equality.

Types of Two-Frequency Loops

The aspect of a hysteresis loop formed by a two-frequency wave
changes greatly with the frequencies and their amplitudes. Different
pairs of frequencies having equal ratios give rise to families of loops
which are identical except as affected by eddy currents. These, for
the purpose of this study, are supposed to be so small that the flux is
substantially uniform over a cross-section of the magnetic circuit. If
the two frequencies have a common source or are synchronized, the
hysteretic phenomena are singly periodic and subject to simpler
treatment than developed here for independent sources.

For detailed analysis of the effects of hysteresis with two applied
frequencies from independent sources, the phase angles of both may

7 Rev. of Sci. Instr., Vol. 2, pp. 16-43, Jan. 1931.
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be taken as zero, equivalent to measuring the time from a point where
the two components of the magnetizing force become maximum simul-
taneously. Then

h = P cos pt + Q cos gt (2)

is the instantaneous magnetizing force. Phase angles can be made
arbitrary by replacing pt and gt by pt + 6, and gt + @,, respectively,
in this equation and the subsequent results.

The configurations of complex loops can be followed by altering
single-frequency loops to accord with the results of investigations of
loop formation. If to a single-frequency magnetizing force a relatively
small one of slightly lower frequency is added, the resultant is an
oscillatory force whose peaks undulate around the value reached by
those of the original wave. Their maximum will be the sum of the
amplitudes of the two components and their minimum the difference.
On a hysteresis loop (Fig. 1¢) this means that portions between suc-
cessive reversal points will differ slightly from one another, being
formed approximately as if belonging to successively smaller loops
until a minimum peak is passed, thenceforth as if belonging to suc-
cessively larger loops, and so on cyclically. Such behavior is sketched
in the figure.

As the amplitude of the lower frequency component of the mag-
netizing force is increased the undulations become more pronounced
and the preceding picture more inexact. When both amplitudes are
equal the envelope of the resultant magnetizing force vanishes period-
ically and the portion of the hysteresis loop formed while this envelope
goes from its maximum to zero is in the nature of a spiral (Fig. 15), a
similar curve being developed outwardly as the envelope increases -
again to its maximum. Provided only that successive peaks of the
magnetizing force do not differ greatly in magnitude, each portion of
such a loop between adjacent reversal points may be assumed to
have the form of a branch of a single-frequency hysteresis loop having
its point of origin coincident with that of the portion of the complex
loop. Then the induction may be derived from the magnetizing force
by the use of single-frequency data in accordance with the known
manner of formation of complex loops.

If now the amplitude of the higher frequency component be decreased
to a relatively small value, the undulations in the envelope subside,
and a condition similar to the original one is seen to obtain. This
time, however, the amplitude of the lower frequency will be found to
be the one about which these undulations occur, and the characteristic
will again look like that in Fig. 1a.
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As long as one frequency is less than twice the other the undulations
in the peaks of the magnetizing force will be regular and gradual. If
the higher frequency be raised to more than twice the lower, the
undulations become more abrupt and complex, and increasingly so

(d)

Fig. 1—Types of hysteresis loops characteristic of a two-frequency magnetizing force.

as it is raised still more. The complexity attendant upon the forma-
tion of the hysteresis loops becomes greater and the simplifying artifices

heretofore suggested no longer apply.
When one frequency has become several times the other, the higher
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frequency component must have one of its maxima very near each
maximum of the lower one so that a maximum value practically equal
to the sum of the amplitudes of the two components is reached every
cycle of the lower one; likewise for the minima. Between these two
extremes other reversals in the magnetizing force would be expected
to cause the hysteresis loop to comprise additional small loops not
necessarily closed. Experiments confirm this conjecture and indicate
that not only for weak fields but even for fields near saturation the
small loops nearly close and the paths between them are traced nearly
the same as portions of a large loop.

If the amplitude of the higher frequency component is considerably
the larger, all the loops composing the characteristic are virtually the
same size and shifted slightly with respect to each other on account
of the lower frequency component. The characteristic will be that
depicted in Fig. 1c.

When the amplitudes of the two components are not grossly unequal,
the hysteresis loop is of the type represented by Fig. 1d. Small loops
formed when the magnetizing force is near an extreme value are
longer than those formed when it is near zero, aside from any effects
of superposition, because of its different rates of change in the two
positions. In general these loops will not occur in the same place for
different cycles and the distances between them will be lessened by
increasing the higher frequency. By considering the complex loop
to consist of a major loop, such as a single frequency would generate,
encompassing a number of minor loops, the induction may be derived
from the magnetizing force since the form of the minor loops is known.
When these are not too widely spaced, each may be assigned a mean
position in a loop fixed for all time and the induction calculated there-
from. It is evident that such an undertaking is vastly more com-
plicated than the ones suggested heretofore and that unlike them it
requires information in addition to that obtained from single-frequency
measurements performed with no superposed field.

By decreasing the amplitude of the higher frequency component of
the magnetizing force, the amplitudes of the minor loops may be
reduced until those in the neighborhood of zero magnetizing force
vanish entirely. Further decrease of the same component causes more
and more of the minor loops to disappear, so that finally only a few
small ones remain at each end of the major loop. This condition is
shown in Fig. 1e. As the wave form of the induction is only slightly
affected by the presence of these loops, they may safely be omitted
and the characteristic simply taken as the major loop, determined from
single-frequency results alone.
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The point where the minor loops first vanish and the requirement
that they vanish at all may be readily determined. Two adjacent
extremes of the magnetizing force approach a common value as the
amplitude of the higher frequency component is decreased. When
they attain this value, the slope is no longer reversed between them
and consequently no minor loop is formed. The instantaneous mag-
netizing force is expressed by equation (2), and in this instance p > ¢.

The minor loops first appear where dh/dt =0 when pt = _12".
Solved simultaneously, these equations yield
., Pp
t = sin7! ==, 3
q 0q (3)

where the minor loops vanish. They reappear at an equal negative
value of sin gt, and other intervals during which they vanish are
apparent from symmetry. If (Pp/Qq) > 1, no real solution of
equation (3) exists, so the minor loops do not vanish anywhere. The
appearance and non-appearance of minor loops is seen to be governed
by the ratio of amplitudes in the same way as by the ratio of frequen-
cies as long as the restriction on the latter is observed, and the product
of these ratios

determines the type of hysteresis loop (1d or le, or an intermediate
form) obtained.

InpucTiON WITH A Two-FREQUENCY MAGNETIZING FORCE
General Expression for the Induction

As a function of time, the induction for any type of loop described
will consist of intermodulation products of the two fundamental
frequencies. Because of the kind of symmetry the characteristic has
these products will include only the odd orders, but because it is a
loop, quadrature terms must be expected. The induction then will
ultimately be in the form

B= ZO Y [emn sin (mp + ng)t + dmn cos (mp + ng)t]  (4)

m= n—w
with all even order coefficients zero. The odd order coefficients
remain to be determined from the hysteresis loop. In doing this only
third order products in addition to the fundamentals will be evaluated
explicitly, as they are stronger than the higher orders and therefore
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of most importance in measurements of distortion. Any higher order
products would be less precisely evaluated, more numerous, and
probably of less interest; their computation is clearly evident as an
extension of the processes later carried out.

The Multi-Branched Hysteresis Loop

Under certain circumstances mentioned earlier, the portions of a
complex loop between adjacent reversal points are representable by

B = (uo+ 2vH)h &= v(H® — k). (5)

Referred to the origin of the B—i plane, the induction on such a portion
originating at the jth reversal point from ¢ = 0 is

B = G;+ po(h — H;) — (= 1)iv(h — Hj)™ (6)

Here H; is the magnetizing force and G; the induction at the jth

7
reversal point. The latter quantity satisfies the difference equation

Gi = Gy1 + w(H; — Him) + (= D)iv(H; — Hi),

arrived at by evaluating the induction on the (j — 1)st branch at
the jth reversal point. Subject to the initial condition

Gy = (.Uﬂ + ZVIIU)IIUy

this can be solved by the method of successive substitutions; the
solution is

)

G; = woHo + 20Hy® + po Y (Hi — Hiy)

=

i .
+ v Zl (— DiH; — Hi)® (7)
The foregoing expressions define the induction everywhere on the
complex loop. Equations (7) and (6) combined to eliminate G; give
Bi= woh + (— Di2oHh + (— VDiv(HZ — k). (8)

The problem remaining is to develop this equation into the equivalent
of equation (4).
The instantaneous magnetizing force is

h = P cos pt + Q cos gt. (2)

By a trigonometric transformation this may be put in the form
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= Jip + 2 - apo sint 4

XCOS[P+qt+tan*1('§+8 P;qt)], (9

which is sometimes more convenient. The envelope of the wave is
represented by the two branches of the radical. If its magnitude does
not change much between adjacent maxima and minima of the wave,
these extremes lie close to the points of tangency between the wave
and its envelope ; the latter condition is the one necessary in order that
the envelope may be used to evaluate the extreme magnetizing force ;.

This force acquires its values at the reversal points, which are situ-
ated at the zeros of dh/dt. Put into a form like equation (9) by the
same transformations as were used above, this derivative is

— = — \(Pp + Qq)% — 4Pp(Qq sin? st

X sin [rt -+ tan™! (%ﬁ;—ggtan st) ], (10)

where 2r = p + q, 2s = p — ¢g. Except when « = 1, this vanishes
only at

rt 4+ tan—! |: i T “tan st] = jm, (11)

j integral or null. Substituting equation (11) into equation (9) yields
the magnetizing force at the jth reversal from ¢ = 0:

= V(P + Q)* — 4PQ sin® st

. 11—k 1-—
- —1 — —1
X cos [Jw—l—tan (1 ktan st) tan <1 tan st)}

letting £ = Q/P. Upon combining the arc tangents this becomes

H;= Pl + k)? — 4k sin® st

. _ 2(k — &) tan st
X [COS” TR T A T 0 A = B — 5 tan? sx]' (12)

According to equation (12) the magnetizing force and its envelope
are tangent at reversal points provided the arc tangent is always zero.
This it is if 2 = «, a trivial solution. By certain choices of these two
.parameters, however, it is possible to keep the angle between any
reversal point and the nearest extreme of the magnetizing force from
exceeding any prescribed limit. The maximum value of the angle in
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o [A—kRl+r =

2N A rnd —x 2’
which can be made small by making % and x each small compared to
unity, or each large compared to unity, or both approximately equal.
For the previously excluded instance x = 1, this angle can be limited
and the last condition fulfilled by keeping k nearly equal to one, as is
obvious from the equations. So for each of these three conditions on
the parameters, to a definite degree of approximation the envelope at
each point of tangency becomes the magnetizing force for the nearest
reversal point, a feature useful for the transformation of equation (8)
into a function of time.

equation (12) is

Calculation of the Induction—Case 1

The three conditions are confluent and will be seen to set the
limiting bounds for case 1. When the fundamental frequencies lie
close together the ratio of their amplitudes is practically unrestricted ;
as more widely spaced frequencies are chosen it becomes necessary to
require an increased (or diminished) amplitude ratio in order that the
phase angle in equation (12) does not exceed the chosen limit. This
limit must be such that the cosine of that phase angle is substantially
unity.

The maximum magnetizing force is thereupon

H; = (— 1)iP ({1 + k)? — 4k sin? st . (13)

As a periodic even function of s¢, II; may be expanded in a Fourier's
series

) A ®
H;=(— 1P+ Q) [To-i- ZﬁA,,cos nst}, (14)
o
where
4 w2
A4, = - f V1 — k2 sin® X cos nhdh (15)
0

in terms of the parameter

2VPO 2k 2V1/k

TP¥Q U+kR AT+1/R)

which never exceeds unity and which diminishes as & is either increased
or decreased from unity. The integral (15) reduces immediately to
elliptic form by the substitution z = sin A. All odd order coefficients
are zero. For the first three significant values of 7:

ky
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\
An = EEI
m™
4
Ay =55 [2 — BDE = 2(1 = ki)Ki] (16
4
Ay = 5= [8(2 — B)(1 — kK, — (16 — 16k° + ki)E]

J

Here K, and E, are complete elliptic integrals of the first and second
kind, respectively, with modulus ;.

The series (14) may be used to evaluate the variable permeability
anywhere on the loop, for upon substitution in equation (8) reference
to a particular branch is eliminated by the disappearance of the double
sign on the second term.

The square of the maximum magnetizing force needed in the final
term of equation (8) comes directly from equation (13); to determine
the sign of this term at any instant remains the only problem. Inter-
pretation of (— 1)7 seems simple when it is remembered to be positive
for decreasing h and negative for increasing , and therefore an odd
function of time. The rate of change of the magnetizing force is

g? = — Pp sin pt — Qg sin gl,
so it follows that

(—1)i= 41, sinpt+ ksingt >0
= — 1, sinpt+ xsingt <0 ‘

(17)

The solution may be completed by expanding this quantity in a
Fourier's series: 8

(- 1)i= i iw Ay sin (mp + nq)t. (18)

m=0 n=—

When m = 0 the summation is to be extended over only positive
values of #. With this convention the coefficients are

A, = 2_;_2 f f (— 1) sin (mx + ny)dx dy (19)

—7r v =T

or, with the use of equation (17),

m4-n—1 4 T cos 1(—«~cos¥)
Apn=(—1) 2 7;—2.]; dyj; cos mx cos ny dx, (20)

8 W. R. Bennett, “New Results in the Calculation of Modulation Products,”
B.S. T. I., Vol. 12, pp. 228-243, April, 1933.
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where p and g are to be so assigned that x = 1. Then the coefficients
are all expressible in terms of complete elliptic integrals with modulus
«; these will be designated as K» and E,. Coefficients of even order

vanish, while those of the first three odd orders are found to be

8
A== Es
™

p
8 2
An = - [Ea = (1 — ) K]
Azl = — Ay = %{[(1 — 2)E; — (1 — k) K2 ]
8
AlE = A= m[(z — ) E, — 2(1 — x)Ka]

Ao = g‘i‘e [(7 — 8)Ez — 4(1 — x)Ka]

Ao = iﬁ [(8 — 3)(1 — &Kz — (8 — 7x7)Ex]

A‘,]; = - Anil 15 E [(1 — 164 + 16K4)E2
— (1 — 831 — kK]
Ali =Au= 5.2 4[8(2 — (1 — K,
— (16 — 16x% + xYHE, ]
Asg = Aza = 15 P 2|:2(1 + 2&2)(1 — K )Kg
— (2 4 3«2 — 8k E;]
Ay = — Ay = 5 55 (B + )1 — kDK — (8 — 3¢* — 26" Ex]
Ag = 75 3 ——[(43 — 168«* + 128« E,
: — 4(7 — 1665 (1 — ) K2 ]
Ay = [(128 — 168«* + 43«*)E,

7525

— (128 — 1044* + 15x9)(1 — «) K],

-

r(21)

Negative digits of the subscripts are underscored in the coefficients

for lower side frequencies.

Upon putting the various quantities into equation (8) from equations

(2), (13), (14), and (18) it thus becomes
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B = uyP cos pt + weQ cos gt

+ wP(P + Q) "go (Agm + kAomis) cos [(m + 1)p — mglt
+ vP(P + Q) )ZD (kAzm + Azmia) cos [mp — (m + gt

- %VPE i i (Am+2, n 2A-mn + Amfﬂ, n)

M=—uw N=—00 ) F(22}
X sin [mp + ng],

—_ %l»'(?2 g _Z: (Am‘ n—2 — 2Amn + Am. n+2)
X sin [mp + ngJt

+ "}?VPQ E Z (Am+1. n—1 — Am+1, ntl

M=—o N=—uw

+ Am-1, nt1 — Amey, nei) sin [mp + ngt)

with the understanding that 4,, = 0 for » < 0 and for r = 0, s < 0.
The first line is the linear portion of the induction, given by a perme-
ability constant at its initial value; the first two summations arise
from the variation of the permeability with the maximum magnetizing
force; the remaining terms comprise the results of distortion attrib-
utable to hysteresis per se. The coefficients of the induction, ¢, and
dmn of equation (4), may now be evaluated by selecting the necessary
quantities from equation (22).

General expressions for the coefficients can be evolved in series
known as hypergeometric functions. These are all of the type

' e — afz | ale+ BB+ 1)2* |
F(%B;'er)— 1+71 'Y('Y'i_l) §!+ ' (23)

a particular one is chosen by specifying the parameters. The coef-
ficients needed here are

F(m+n)xn
Apn =2 o (m;"”,”;m;nﬂ;xz) (24)
”r(n+1)r( : +1)
for m and » both positive and m + » odd, and
P(ng_1>k‘" 1 1
4,= o F(IF 2 in+ ike) @9)
o+ T (1504 1)
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for 7 even. When # is negative, the coefficient may be found by using
the relation
Amg = (_ 1)"Amn; (26)

for all other values of the subscripts excluded the coefficients are zero.
A recurrence formula for computing products of higher order is

1 n—1
Amn - m _|_ 7 [2( P + (??’5 - 1)“) Amul, n—1

—m+n—®m%m4 (27

with m — 2 positive. Comparison of equation (24) with equation (25)
reveals that if in the former « is replaced by k4,

Ay =341, (28)
so the equations (21) and the recurrence formula (27) suffice for com-

puting all the coefficients in the series for the induction.

Calculation of the Induction—Case 2

For case 2 the two branches of a minor loop and an adjoined portion
of the major loop are combined into a Fourier's series whose coefficients
are functions of position in the major loop. By developing these
coefficients into Fourier's series, a double series in time is obtained.
For this case, as for the other just considered, the induction thus is
developed in the form of equation (4) and the coefficients are deter-
mined through the third order.

When minor loops are formed throughout the lower frequency cycle,
an expression for each minor loop and the portion of the major loop
joining it to the next one is found relative to an origin at the junction
of the major and minor loops. A succession of such loops is then
referred to the origin of the major loop by transforming the coor-
dinates of a typical minor loop, the transformation being a function
of the position of the minor loop.

Attention first will be devoted to a single high-frequency cycle
occurring while the lower-frequency component of the magnetizing
force is decreasing. Let the time of occurrence of the maximum in
the higher frequency component of the magnetizing force during this
cycle be designated by 7. By restricting application to characteristics
with sizeable minor loops, i.e. k < 1 when p > g, consistent with the
stipulation that the minor loops do not vanish anywhere, this maximum
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can be made practically coincident with the corresponding maximum
in the magnetizing force,
Writing
t= 14\ (29)

the lower-frequency component in the vicinity is expressible by the
Taylor's series

2)\2 4}4
Q cos gt = Q[l—qz—!—l—%!—— ---}cosqr
3):] 5)\5 .
_Q[Q *gs-r-}-qu— ---Jsmqr. (30)

Over one cycle of the higher frequency this component is very nearly
linear, so its variation in this range is

— 4A = — 27kP sin g7 (31)

Since r has been so chosen as to be an integral multiple of 2x/p, when
equations (29) and (30) are substituted in the magnetizing force given
by equation (2) it becomes

h = P cos p\ + Q cos gr — NQg sin gr. (32)

Its value referred to a new set of coordinates, B’, I/, with their origin
at the junction of the major and minor loops is

h’=P(1+cosp7\)ﬁ2A<1+%>- (33)

According to Madelung's findings previous minor loops will not
influence the one under consideration, so its lower branch will proceed
toward the upper tip of the major loop as indicated in Fig. 2. A
transformation of equation (1), simplified by the use of Rayleigh’s
relation, then gives for this branch

By = poh' + vh'’. (34)
The upper branch is

By = [+ (P — )W — o', (35)

The small portion of the major loop traversed during the last of the
cycle may be expanded in a Taylor’s series

B=p o +wB| B

ah h=h, 21 9h? h=h,, + - " (36)
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Fig. 2—Tracing of a subsidiary loop according to Madelung.

denoting by #, the value of % at &' = 0, which is

by = 2A — P 4 Q cos gr. (37)
The upper branch of the major loop as a function of % (not ") is
By = (po + 2vH)h + v(H* — h?) (38)
with
H=P+ Q.

The expansion (36) is now found to be
B' = {uo+ 20[2(P — A) 4+ Q(1 — cos gr)}h' — vk, (39)

Equations (34), (35), and (39) define the induction in terms of %’ over
an entire high-frequency cycle; the first is valid for — = < pX < 0,
the second for 0 < pA < 7 — pA, and the last for 7 — pA < PN < 7.
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For combining these three expressions a Fourier’'s series may be
developed applicable over the entire interval — = < pA < m, and
the induction expressed by this series can be referred to the central
axes, B, h, of the major loop by including in its constant term the
value of the induction at the junction of the major and minor loops.
The series is

B, = by’ 4 b/ cos pN + by’ cos 2pN + bs' cos 3pA
+ a,’ sin pA + ao’ sin 2pN + a3’ sin 3ph.  (40)

The coefficients are determined by the integrals

a' = [ Bsinnpraen, b = 2 [ Beosnpraen, @)

where
B = B' + B..

B, is the induction at the junction of the major and minor loops,
found by inserting equation (37) in equation (38). The resulting
quantity together with expressions previously found for B” over various
parts of the cycle are substituted in the integrands of equation (41),
and the integrations are performed, using %’ given by equation (33).
All terms of order higher than the third and those containing the
square of the frequency ratio as a factor are rejected as they occur.
The resulting coefficients are functions of gr both explicitly and also
through A and pA.

To determine pA as a function of gr, the vanishing of %’ at the tip
of the minor loop on the major loop gives an equation for use along
the descending branch of the major loop. By equation (33)

P(1 — cos pA) = 4A( -—-g—:).
(1 — cos pA) = (27 — pA)«ksin gr. (42)

An approximation to the general solution can be got by transforming
equation (42) into a quadratic algebraic equation and solving. This
is done by means of the first two terms of the power series expansion
for cos pA. The approximation will be best for small values of the
angle, but very good over all its admissible range. This reduction
gives

(pA)? + 2« sin g7 (pA) — 47k sin gr = 0, (43)

the roots of which are

pA = — ksin gr &= Vk? sin? g7 + 4w« sin g,
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the positive one being that sought. By expanding the quantity under
the radical according to the binomial theorem this root reduces to

pA= 27 Yk sin gr — x sin gr (44)

when higher powers of « are dropped.
The coefficients of the series then become, using the value of A
from equation (31) and the value of pA from equation (44),

%—bn’ — 10 cos g + 2v(2P + Q)Q cos gr + (71' — g) vPQgsin -

+ 21TVQ22—§Si11 gr (1 — cos ¢7) + »Q* sin® g7,
r— _ 9 _ L 8 . p
a Zqupsm qr SVPstm gr + 3. vP?,
by = wP + 2vP?,

14 (45)
ay = ,r.:ﬂQz%lsin qr + 3 vPQgsin qr,

40 q .
’ g —— i
by = O vPQPsm qr,
2 q . 8
.’ — —— —_ —_——
as 3 ,quPsm 97 ~ 134 vP,

ba’ = 0.

The relation (29) can be used to return equations (45) to the general
time-coordinate. Replacing = by £ — X gives
cos gr = cos g\ cos gi + sin g\ sin gf,

sin gr = cos gA sin gf — sin g\ cos gt.

As |\| never exceeds 7/p these equations can be simplified to

cos gt = CO0s qi —|-g (2 sin pA — sin 2pN) sin gi,
(46)

sin g7 = sin gt — 1—% (2 sin pX — sin 2pX) cos ¢t,

using the first terms of the Fourier’s series for sin g\ in multiples of
ph.  Upon substitution of equation (29) trigonometric functions of
N become the same functions of (p¢ — 2jr), j an integer, since r is
defined as an even integral multiple of 27/p. The phase angle is
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therefore immaterial, so p\ can be replaced by p¢ in equations (40)
and (46). Combination of equations (45) and (46) with equation (40)
results in an expression of the induction on the upper half of the
complex loop in terms of time.

For the lower half of the loop a mean position must be found.
Having started with incommensurable frequencies at zero phase
angles, the reversals at the lower tip of the major loop will occur at

pt = 2mmr + R,

where 0 < R < 27 and all values of R within these limits are equally
probable. The lower frequency component at the instant of reversal
will have a time angle

gt = 2n+ )7+ S,

where —(g/p)m < S < (g/p)7 and all values of S within the limits
are equally probable. The expected medians of the time angles are
therefore (2m + 1)7 and (2n + 1) = for the higher and lower frequency
components respectively. These values and the point symmetry of
the characteristic specify that the induction during the ascendency of
the lower-frequency component of the magnetizing force will be equal
in magnitude and opposite in sign to the induction for the descent
with the phase of each component increased by its expected median.
The induction for an increasing lower-frequency component is therefore

given by
Bz[?h qt] = - Bll:fbt + ™, gt + W]r (4-'7)

where the right-hand member is evaluated for a decreasing lower-
frequency component.

The coefficients of equation (40) may be altered accordingly to
furnish a set for use when the lower-frequency component is increasing
by replacing gt by (¢t + =) and pt by (pt + w). Inseries form, then,
the induction on the lower half of the loop is

By = by + by cos pt + by’ cos 2pt + by’ cos 3pt
+ a," sin pt + a2’ sin 2p¢ + a3’ sin 3pt.  (48)

One pair of coefficients is necessary to specify completely the
amplitude of each component of the induction when it is split into
in-phase and quadrature terms harmonic in pf. Coefficients of cor-
responding terms in equations (40) and (48) are all functions of g¢t,
each series applying over one half of a lower-frequency cycle. Each
pair of coefficients can therefore be developed into a Fourier's series
in gt. so that the single expression
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B = by + by cos pt + bs cos 2pt + bs cos 3pt
+ ay sin pt + as sin 2pt + a; sin 3p¢ (49)

defines the induction everywhere.
The coefficients of equation (49) are given by the expressions

2 2 1

2 sin (2m + 1)g7

— 1 ’ R )
=jla +a ]+ [a —a, jg, 2m + 1

(50)

After putting the values of the primed coefficients into the respective
terms, changing the arguments of functions of ¢r to g¢ by using equa-
tions (46), and expanding the result into multiple angles, there remains
when terms beyond the third order are dropped

B = [ + 2vP]P cos pt + 38} J[P + 3xQ]P sin pt

+[#u+2v(2+k—éx)P]Qcosgt

tar [k e (T 1)) | Pesing
_gy[l—ﬁk]Kchos (2p + @)t

40 3] .
-—aﬂ-_v 1+Ekd kP?sin (2p + ¢)¢

+ 3 y|:1 — 6k JkP? cos (2p — q)t

40 [ 3 7 .
-—l—-'g;V_].—‘kaKPZSlH(ZP—Q)f = (51)

+ 53—22 v&PQ cos (p + 2q)¢t
™
— o= [ + 202 + 3H)PIP sin (p + 20)¢

2
“ 3 vePQ cos (p — 2q)t

- E[Fo + 2»(2 + 3k)PJ«kP sin (p — 29)t

4 2
“T[ﬂox—gvP]Psin 3pt

. T 5 vxPQ cos 3¢gt — l_?n—r »(Q? sin 3gt.
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Recapitulation of Principal Results

General formule have now been made available for calculating the
flux density over a wide range of conditions of two-frequency mag-
netization. For many ordinary purposes a table or graph of some of
the results is convenient; useful ones are therefore included.

The hypergeometric expansions in the coefficients of case 1 can be
put to further use to examine the behavior of the induction for special
ratios of fundamental amplitudes and frequencies. When & < 1 and
k < 1 the coefficients of the several frequencies in the induction reduce
to simple, rational, algebraic expressions of the amplitudes. These
coefficients likewise reduce when £ =1 and « =1, since

F(VIy =B — a)
I'(y — a)l'(y — B)

Third order coefficients for case 1 with restricted parameters, and
also those for case 2 are tabulated in the accompanying table through
terms in the lowest power of the smaller amplitude. Underlined sub-
scripts distinguish lower side frequencies; a bar under a digit indicates
it is to be taken with a negative sign.

When the ratio of amplitudes is unrestricted, graphs of the coef-
ficients which specify the induction enable their magnitudes to be
determined most readily. The strongest products are found to be the
third order lower side frequencies; Fig. 3, calculated by A. G. Tynan,
may be used to get both components of either of these. The corre-
sponding upper side frequencies are almost as strong; their amplitudes
can be found from the figure by virtue of the relations c¢i12 = ¢12 and
€s1 = €91, since their other components are zero. -

By interchanging P and Q and likewise p and ¢ in either the table or
the graphs, the subscripts are also reversed. In the table the inequal-
ities restricting the columns are reversed thereby, since the inter-
changed quantities are arbitrarily assignable. This procedure’ does
not extend the applicability of either case, but does permit the appli-
cation of case 1 directly to both extremes of the amplitude ratio and
the use of the curves to evaluate the amplitudes of both lower side
frequencies. The scope of the table and curves given has been
extended in this manner. A field of usefulness sufficiently extensive
for most purposes of present-day communication is thereby achieved.

Fla,B;v;1) =
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TABLE 1
Case 1a Case 1b Case 1c Case 2
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INTERMODULATION PRODUCTS
Generated Modulation Vollages
From the foregoing results the voltage generated in a coil of N turns

on a closed ferromagnetic core of cross-sectional area 4 can be found

by the use of
e(t) = NA 10‘“@ . (52)
dt
Components of this voltage segregated according to frequency are of
the type

emn(t) = (mp + ng) NA 1073 [¢,nn cos (mp + ng)t
— dpnsin (mp + ng)t], (53)

each proportional to its frequency and in general having two com-
ponents in quadrature. The amplitudes of these will be designated by

Ema = (mp + ng)NA 1072 ¢, (54)
End' = (mp + ng) NA 10-%d,,,.. (55)

The amplitude of their resultant is
Epw = (mp + nq) NA 107V n? + dun’. (56)

One component, if it greatly exceeds the other, may be taken as the
generated distortion voltage. The various coefficients to which the
components of the voltage are proportional have already been cal-
culated, and also given in tabular or graphical form for specific
instances. The relations

047N/ 0.47NJ

P l ) Q = l ’

where [ is the mean length of magnetic path, may be used to convert
these results into terms of the current amplitudes I and J. Where
r-m-s quantities are used, they will be distinguished by bars over them.

Several features of the distortion are particularly outstanding.
Perhaps chief among these is the dissimilarity of corresponding upper
and lower side-frequency voltages. Inasmuch as these are products
of a reactance modulator, they might be expected to be in the ratio of
their frequencies, as they are found to be for one component. Often,
however, a predominating component appears at each lower side
frequency with no counterpart at the upper side frequency. This
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component can be traced to the different axial slopes of the several
branches of the loop, caused by their different points of origination.
The slopes are fixed by the envelope of the magnetizing force; since
this envelope is periodic in the difference of the fundamental fre-
quencies, difference products will appear without corresponding sum
products in the induction. Such a phenomenon is a fundamental
property of the multivalued characteristic, and will occur wherever
the envelope of a complex wave is instrumental in selecting the branch
to be traversed.

No simple yet general rule seems to embrace the behavior of the
various products in an iron core coil as governed by the amplitudes of
the fundamental currents. Each voltage component is proportional
to its frequency and to the product of two amplitudes, but these often
enter in a complicated way. For fundamental frequencies close to-
gether all the higher order voltages vary directly with the hysteretic
coefficient »; for widely separated frequencies the distortion may
depend also on the permeability through its effect on the axial slope
of the minor loops. At the extremes of the amplitude ratio certain
products or their components are found to be independent of one of
the fundamental currents, the stronger one in some instances. When
case 1 is applicable the third harmonic of the weaker fundamental
current is suppressed below the value it would have without the
stronger current superposed, while the third harmonic of the stronger
fundamental is affected only slightly by the presence of a second
frequency. Perusal of the table will disclose more detailed relations.

Distortion Measured in Coils

Voltages calculated by the theory have been compared with meas-
ured values for several coils using two common core materials. The
agreement found provides a check of the theoretical predictions.

The two third order lower side frequencies of fundamental frequen-
cies p/27 = 760 cycles per second and ¢/27 = 600 cycles per second
are plotted in Fig. 4 for a higher frequency current of ten milliamperes
in an iron dust coil of special design. The frequencies of the products
are 920 and 440 cycles per second. These data were taken by I. E.
Wood and the calculations were made by A. G. Tynan. These curves
show the product as a function of the amplitude ratio more directly
than the curves of Fig. 3.

Both upper and lower third order side frequencies have been meas-
ured by A. G. Landeen. The results are given in Figs. 5 and 6 for an
annular core of iron dust. It is so wound that the magnetizing force
is 0.04 times the current in milliamperes. The figures show two third
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Fig. 4—Lower side-frequency voltages in an iron dust coil.

order products plotted against the fundamental current of higher
frequency in each instance. For these measurements the current of
one frequency was maintained at some fixed value and the amplitude
of the other one varied. Both sum and difference products, but with
different fundamental frequencies, are exhibited. The upper side
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Fig. 5—Twenty-five kc. third order product of 9and 7 ke., iron dust core.
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Ho =

24.5,» = 0.18, Ly =

frequency is the 25-kilocycle product of 9 and 7 kilbcycles; the lower
side frequency is the 17-kilocycle product of 13 and 9 kilocycles.
Some measurements to which subcase 15 is applicable are given in

Figs. 7 and 8.
dust core.
and 7 kilocycle fundamental frequencies.

Each curve gives a third order product for a permalloy

The upper side frequency is 25 kilocycles generated by 9

The lower side frequency
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dust core.
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is 13 kilocycles from fundamental frequencies at 21 and 17 kilocycles.
In these measurements both fundamental currents were changed simul-
taneously so as to be kept equal throughout. The approach to
saturation at currents above ten milliamperes is apparent on these
curves; below, the distortion voltage is proportional to the square of
the current.

The measured curves are seen to agree well with the calculated ones
in every instance, confirming theoretical values of the products within
close limits. Eddy currents were negligible in all these coils because
of the dust cores. The use of the formulae to determine important
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Fig. 8—Thirteen-kc. third order product of equal currents at 21 and 17 kc., permalloy
dust core. pg = 75,» = 0.41, Ly = 5.45 mh.,, H = 36.0 I.

intermodulation products from the constants of the coils therefore
seems to be justified.

Correlation with Single-Frequency Results
In the single-frequency case Peterson found the resistance and
reactance at a fundamental frequency w/27 to be increased by
8

AR(w, H) = 3

wlo 2 H,
Mo

AX(w, H) = 20Lo—H,
Ho
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respectively, on account of hysteresis and variable permeability, H
being the maximum of the applied magnetizing force. The total non-
linear reactance is then

X(w, H) = Xo + AX (w0, H) -
with
XO = G)Ln,

the constant part, representing the reactance the coil would have if
the permeability remained constant at its initial value.

The distortion voltages for a two-frequency input may be written
in terms of these non-linear impedances. With some simplication
this is done in Table II for special cases, using equation (56) and the
relations

4 .
p = 04NI 5 _ 04xNT.
! )
TABLE II

Case 1a Case 1b

k<1 k=1

k << 1 E=1
Bigooooiiii.. 0.960 AR(p — 2q, O)J 0.870 AR(p — 2q, Q)J
Eauuuriiiiiii. 0.375 AR(p + 2¢, O)J 0.340 AR(p + 2g, 0)J
By, 1.28 AR@2p — g, O)I 0.870 AR(2p — ¢, P)I
Eneoinnnnii... 0.500 AR(2p + g, Q)I 0.340 AR(2p + q, P)I
Buevvninnnnnn, 0.200 AR(3p, P)I 0.068 AR(3p, P)I
Bose o, — 0.068 AR(3g, 0)J

Case 1¢ Case 2

B> 1 <Ll

x> 1 L3>
Eig.oooviiiiinn. 1.28 AR(p — 2q, P)T 0.212 kX (p — 2q, 2P + 30)I
B, 0.500 AR(p + 2q, P)J 0.212 xX(p + 2q, 2P + 30)I
Euooviiinnnnn. 0.960 AR(2p — g, P)I 1.06 xAR(2p — g, P — 0.9440)7
) 0.375 AR(2p + g, P)I 1.23 xARQ2p + q, P + 2.730)I
Esoevooonnnnnnnn — [0.425 kXo(3p) — 0.200 AR(3p, P)]I
Bogevvronninn., 0.200 AR(3p, Q)T 0.200 AR(3p, Q)J

The general formulx of case 1 can be similarly represented, but not
as concisely. Besides exhibiting the connection between intermodu-
lation products and impedance changes, this table provides a con-
venient means for computing voltage components directly from data
obtainable by single-frequency bridge measurements.
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Hysteretic I'mpedances

The fundamental voltages are not included in the table. For them
each component is separately significant. The singly primed E's are
in phase with the corresponding magnetizing current and the doubly
primed E's in quadrature. Hence, the former are resistance drops
and the latter reactance drops, defining incremental components of
impedance analogous to those mentioned for a single-frequency input.

For each of the fundamental frequencies the results developed previ-
ously may be used to determine these components. They represent the
hysteretic resistance and the hysteretic reactance to the fundamental
at hand, specified by a subscript ¢ or ¢. They are tabulated in Table
I1I for the special cases considered. The total resistance of the coil

TABLE III

Case la Case 1b Case 1¢ Case 2

k<1 k=1 E>>1 k<1

B 1 =1 > 1 B3>«
. 16N 286Ny, 8Ny SN

ARy ...t 57 . pLol 150 1 m LoJ 7 #“‘pLoJ 57 #DpLuI
TN 64N v 6 N » 4w N »

AXp.ooooa. 37 ;—0 pLol 13 T;; pLoI 57 .U—DPLUJ 3 T"TUPLQI
8Ny 256 N v 16 N » 16 N »

ARy ... .. ET;(;QLDI E'TTL—D' Lol I—T-.u—oqLuJ ETEL;QLDJ
. 6r N » 04 N » 47 N » 47 N v

AN, ... kS—T—qLDI G EQLDJ —S—T,H_UQLUJ ?T,{EQLQEZI + 7]

to either fundamental current can be calculated by adding to the value
of AR from the table the resistance of the windings, the eddy current
resistance, and the initial (viscosity) resistance, all evaluated for the
frequency of the fundamental. The eddy currents must be so small
that the flux density is substantially uniform across the cross section
of the core. The reactance X, of the coil can be diminished by the
eddy current reduction factor for the fundamental frequency and
added to the hysteretic reactance to give the net reactance of the coil
under these conditions.

The table is helpful in evaluating the effect of one fundamental
current upon the other. Within the limits of the analysis, which in
substance limits the permeability to linear variation with the field
intensity, the hysteresis loss at any frequency is either increased or
unchanged by the superposition of a second frequency. Nearly equal
input currents whose frequencies do not differ greatly share equally
the hysteresis loss. This amounts to about twice what it would if
either fundamental flowed alone. If the frequencies differ greatly, the
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Fig, 9—Hysteretic resistance to one current in the presence of another.

loss to either is not affected by the other; if the amplitudes differ
greatly, the loss to either is governed by the stronger current. In no
case, at these weak fields, does the increased loss at one frequency
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reduce the loss at another frequency, contrary to well established ex-
periments at considerably higher fields, for which the hysteresis loss
at one frequency may be reduced by superposing a magnetizing force
at a different frequency. The inductance is the same to both funda-
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Fig. 10a—Hysteretic inductance to one current in the presence of another.

mentals in all cases except the second, for which a small difference
exists. The effect of a superposed alternating current is always
apparent through an increased inductance, although sometimes the
increase may be slight; it is determined by the larger current.
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The influence of one fundamental current upon another has been
termed mutual crowding. Because of the increased attenuation, and
at times because of resulting unbalance or phase shift, crowding
becomes important when different frequencies or bands of frequencies
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Fig. 10b—Hysteretic inductance to one current in the presence of another.

are transmitted simultaneously through a circuit including ferro-
magnetic material.

Incremental impedances for a twenty-two millihenry permalloy dust
loading coil are given in Figs. 9 and 10. The current I had a frequency
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of 550 cycles per second, and J 475 cycles per second. Measured and
calculated values are plotted for comparison, with regions of appli-
cability of the special subcases indicated. Portions of calculated curves
falling in regions 4 or C were computed by the two sets of formula for
subcases 1a and 1¢, portions in the middle of region B by the formula
for subcase 1. The trend of the quantities measured is accurately
portrayed by the calculations and agreement of the values is good.

All the curves commence at those values of resistance or inductance
which would obtain in a single-frequency case with a current having
the magnitude of the one here superposed in fixed amount. Upon
increasing the variable current the measured quantities show an
increase as it begins to preponderate, and eventually they approach
asymptotically the values they would have if it lowed alone.

The measurements were made by L. R. Wrathall using a Maxwell
inductance bridge with two imputs and a tuned detector. Eddy
currents being of no consequence at the low frequencies employed, the
chief sources of possible error are calibrations of the standards used
and variation in the temperature of the coil during taking of the data.
Changes in winding resistance caused by the latter are of the same
order of magnitude as the changes in hysteretic resistance being
observed. Precautions against both possibilities were taken.

CONCLUSION

The multiplicity of forms of complex hysteresis loops makes their
analysis in general a complicated and difficult matter if indeed possible
atall. Extensive experiments with two frequencies must be completed
and the results classified according to the types of loops before an
acceptable method of taking their form into account can be formulated.
The parameters k and « seem to be effective quantities for denoting
concisely a particular form of loop in many instances.

A way of representing the behavior of complex loops more exactly
than do Madelung's propositions is needed, and might be the fruit of
precise experiments designed to clear up also the early closure and
lack of closure which Lehde apparently found in minor loops. The
tracing of complex loops is not simply cyclic, and only when a nearly
complete magnetic cycle is executed between successive maxima in
the magnetizing force can conditions approaching a cyclic state be
expected to exist. Some experimental evidence of performance in
other conditions is a present need which can perhaps be met by a
thorough investigation of spiral characteristics. These seem to have
been ignored entirely in the past, the literature dealing with sub-
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sidiary loops only along a magnetization curve or a branch of a major
loop.

Correlation of certain magnetic phenomena to a degree not heretofore
attainable is made possible by the preceding development. Among at
least some of these a qualitative connection has been well recognized.
Flutter and allied effects are known to be aspects of modulation, and
crowding is observed to accompany non-linear distortion quite gener-
ally. These features are related quantitatively by means of the
theory, and are linked with their single-frequency counterparts. It
thus becomes feasible to evaluate some of the more abstruse occurrences
in terms of readily understandable effects simpler in nature; ultimate
in this direction is the use of steady state results to forecast the behavior
of transmitted speech or music.



