Thermionic Electron Emission *

By J. A. BECKER

INTRODUCTION

HERE have appeared in the Reviews of Modern Physics two ex-
cellent summaries on thermionic emission, one by Compton and
Langmuir! and one by Dushman.? Compton and Langmuir, while
dealing primarily with discharge in gases, also discussed many phases of
thermionic emission. Dushman'’s article is a comprehensive review on
thermionics. He faithfully reflects whatever viewpoints and experi-
ments appear in the literature. Besides reviewing the work that has
been performed since 1930, the present article will be an attempt to
review in a critical manner some of the matters which in the preceding
reviews were left undecided. On the other hand, no attempt will be
made to give a complete presentation of all the views appearing in
the literature. As to the close connection between thermionic and
adsorption phenomena, this will be dealt with in an article now in
preparation.

Recently there have been published two comprehensive books on
thermionics. One is in English by A. L. Reimann.®? The other is
Vol. IV of Miiller-Pouillets Lehrbuch der Physik * edited by A. Eucken,
with contributions by A. Eucken, R. Suhrmann, L. Nordheim and
others. The topics which are fully covered in these two books and in
the book * by W. Schottky and H. Rothe, Physik der Gliihelekiroden
will not be covered in detail in the present article. Since photoelectric
phenomena are closely associated with thermionics, it is well to refer
also to Linford’s ® review on the external photoelectric effect and the
book by Hughes and DuBridge 7 on photoelectric phenomena.

EMPIRICAL AND THEORETICAL RICHARDSON FORMULE

One topic on which considerable confusion has existed goes to the very
root of thermionic emission. It is the interpretation that is to be put
on the slope and intercept of a Richardson line and how the slope and
intercept are related to certain quantities in theoretical formulze.
Empirically it is found that the thermionic emission current density,
1, is related to the temperature, T, by the Richardson formula

i= A, T"exp (— b.,/T), (1a)
* Published in Reviews of Modern Physics, April, 1935.
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or its equivalent
logioi = logiw An + n logw T — (b./2.37). (1b)

A, and b, are constants characteristic of the surface. Their value
depends on the value assigned to #. From such experiments it is
impossible to decide whether # should equal 0 or 4 or any value
between these. There are good theoretical reasons, which are given
below, why # = 2. In that case

i=AT?exp (— b/T), (2a)
logi — 2log T = log A — b/2.3T. (2b)

or

If log i — 2 log T is plotted versus 1/T, a straight line is usually ob-
tained. Call this line a Richardson line. Its slope is — 5/2.3, and
its v intercept is log A. Since we shall have numerous occasions to
refer to the slope and intercept of a Richardson line, we shall find it
convenient to refer to them by their equivalents — 5/2.3 and log 4,
respectively. On those rare occasions when the Richardson plot
yields a curved line, we can draw a tangent at any point on the curve.
Equation (2) will then represent the equation for this tangent;
— /2.3 and log A will depend on the particular point at which the
tangent is drawn, so that  and 4 will depend on T

The Thermodynamic Equation
The slope and intercept of experimental Richardson plots are to be
correlated with certain quantities in one or the other of two theoretical
equations. The first of these * is based on the first and second law
of thermodynamics and the assumption that the electron vapor acts
like a perfect gas.t The equation is:

log ir = log izr + log [(1 — 7r)/(1 — ¢ )]+ 3 log T"

T
— 3log T+ (1/2.3) | (Ly/RTHdT, (3)

oJ e
in which 7" is any fixed temperature in the experimental temperature
range; 7 and ¢ are the electron reflection coefficients at 7" and 17,
respectively; L, is the heat of vaporization per g. mole of electrons at

constant pressure; R is the gas constant per g. mole.

Thermodynamics cannot tell us how L, varies with T and until we
know this we cannot perform the integration indicated. By consider-

* For a recent critical derivation see Becker and Brattain.®
1 This assumption is subsequently justified by experiment.
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ing the mechanism by which the electrons evaporate from the metal,
we can arrive at some conclusions regarding the temperature depend-
ence of L,. Since in the derivation of equation (3) it was assumed
that the electron vapor acts like a perfect gas, it follows that when
1 g. mole of electrons is vaporized at constant pressure an amount
of work RT must be done against the external pressure and an amount
of heat (3/2)RT must be provided to furnish the known mean kinetic
energy of the vaporized electrons. It then becomes desirable to define
a new quantity % by the equation,

h= (L,/R) — (5/2)T. (4)

Since & plays an important role in the final formula, it will be con-
venient to give it the name ‘‘ heat function.” * The product kk,
where % is Boltzmann's constant, represents the average heat of
vaporization per electron less (5/2)k7. Substituting equation (4) in
equation (3),

logi = log igr + log [(1 — r)/(1 — )] — 2 log T’
+21log T+ (1/2.3)fT(h/T2)dT. (5)

Thermodynamics alone cannot tell us how the heat function % varies
with 7" and we cannot perform the indicated integration until this is
known. However, we can deduce an important theorem even without
performing the integration: If the experimental value of log 1 — 2log T
is plotted versus 1/ T, the slope of the tangent at any value of T is — h/2.3.1

Hence for those surfaces for which the Richardson lines are straight,
h is independent of 7" in the experimental range. For these surfaces,
equation (5) reduces to

log i = log ip: /(1 — #')(T")* + h/2.3T" + log (1 — 7)
+2log T — h/23T = log H1 —r) + 2log T — h/2.3T, (6)
where
log H = log i7'/(1 — " )(T")* + h/2.3T".

Log H(1 — r) is the intercept of the Richardson line on the y axis.

An alternative derivation of the thermodynamic emission equation
uses the absolute zero of temperature as the lower limit in the various
integrals. In this way Bridgman derives the equation,}

i = Ua(l — r)T?exp. [— Lo/kT + o(T)], (6a)

* This is of course not the heat function used in thermodynamics. The heat
function defined here has the dimensions of temperature. It is often given in volts
V = khje. Later I will also be used for Planck’s constant but we believe no con-
fusion will arise.

t For the proof see Becker and Brattain.® In the proof it is assumed that dr/dT
is zero or very small. This assumption is justifiable.

1 See Eq. 1V, 33 on page 99 of his book named in References.?
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in which U is a universal constant equal to 2vGk*me/h* = 120
amps./cm.? °K.?; k (Planck’s constant), m, e and & have the customary
significance ; G is the statistical weight which is equal to 2 for electrons;
a = exp (So,/k); So, is the entropy per atom of a metal whose surface
has a charge density p at 7 = 0; Lo is the heat of vaporization per
electron at constant pressure at 7' = 0;

¢(T) = f (C”"_ Com) 4 aT - 7 f (Cpp — Com)dT;

C,, is the specific heat per atom at constant pressure when the metal
surface has a charge density p while C,n is the specific heat for the
uncharged metal. In the derivation it is assumed that the entropy of
the uncharged metal at 7= 0 is zero in accordance with the third
law of thermodynamics; it is also assumed that the electron vapor
acts like a perfect gas. The value of U follows from the value of the
entropy constant of a perfect gas deduced from quantum statistics.
Up to the present time neither theory nor experiment has yielded
numerical values for a or (7). If, however, it is assumed that
a=1, o(T) = 0 and r = 0 then equation (6a) reduces to

i = UT?exp. (— Lo/kT), (6b)

which is the equation derived by Dushman !* in 1923. It predicts
that all Richardson lines should have the same intercept on the y axis,
namely, log U. Since this prediction is not fulfilled by experiment
it would appear that the assumptions made in obtaining equation
(6b) are not valid. It may be well to point out also that adsorbed
particles on the surface probably contribute additional terms to the
expression for the specific heats and entropy at absolute zero. These
have not been taken into account.

We are now in a position to show why the exponent of T in equation
(1a) should be 2. To do this we consider % in equation (§) or L, in
equation (3). The heat of vaporization L, is defined as the heat
energy that must be added to the system in order to evaporate one
g. mole of electrons at constant pressure. We have seen that (5/2)RT
ergs must be added to account for the specific heat of the vaporized
electrons and work done against the external pressure. The remainder,
Rh, which includes all other energies can be put equal to P-K
— T(dP/dT) where P is the increase in potential energy of the elec-
trons, and K is the mean kinetic energy which the electrons had in
the metal. P includes work done against the image force or any
other electrical forces. So little is known about the exact nature of P
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that there is little point in examining the temperature dependence of
the quantity P — TdP/dT more closely. On the other hand, the
quantity K and its variation with temperature does depend on the
particular assumption that is made with regard to the energy dis-
tribution of the free electrons in the metal. In particular K is very
nearly independent of T if the electrons in the metal have kinetic
energies given by the Fermi-Dirac function.* That this is the correct
distribution function is quite well established by the numerous suc-
cesses which this theory has had in explaining experimental facts in
connection with metals.!’" For the Fermi-Dirac distribution K is
practically a constant term in the expression for the heat function A.
There is then no reason for changing the form of equation (6) which
contains the term 2 log 7. This is equivalent to an exponent of 2 in
equation (1a).

The case was somewhat different before the advent of the quantum
theory. The electrons in the metal were then assumed to act like a
perfect gas. Hence the energy K was taken to be (3/2)RT. It was
thus natural to subtract this from the (5/2)RT for the electron vapor.
In this way one is led to an expression for log ¢ similar to equation
(6), but instead of 2 log T there now appears % log T. So that the
exponent of 7" in equation (1a) was taken to be 1.

It 1s well to note that on the basis of this thermodynamic argument,
there is no good reason why the heat function should be independent
of T" and why the Richardson lines should be straight. Experiment
shows, however, that for nearly all surfaces which are not close to
their melting point, the heat function is independent of T to within
experimental error. In the neighborhood of the melting point, the
heat function varies with 7. It should also be noted that thermo-
dynamics does not predict that all Richardson lines should have a
common intercept on the y axis. This prediction which is true only
for special classes of surfaces has been made on the basis of a statistical
theory which we will now discuss.

The Statistical Equations

a. Classical treatment. 1f we knew the velocity distribution and
density of the electrons inside a metal at various temperatures and the
difference in potential energy between an electron at rest inside and
outside the metal, it would be a comparatively easy task to determine
statistically how many electrons could escape from a square centimeter
of surface in one second. It was at first assumed that the electrons
inside the metal acted like a perfect gas; the velocity distribution is

* This function will be discussed later in this paper.
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given by Maxwell’s law

_ nm} — m(u® + v* + w?)
n(u, v, w)dudvdw = mexp. [ T ] dudvdw, (7)

where , v, w are the velocities in the x, y, z directions respectively;
n(u, v, w) is the number of electrons per cm.® having # values in the
range (u, du), i.e., between u and u + du, v values in the range (v, dv),
and w values in the range (w, dw); n is the total number of electrons
per cm.?; m is the electron mass; and k is Boltzmann’s constant. The
number of electrons having # components of velocities in the range
(u, du) is obtained by integrating equation (7) with respect to v and
w from — « to + «.

n(w)du = n(m/27kT)} exp. (— mu®/2kT)du. (8)

The total number of particles striking a cm.? of surface per second is
given by
N, = f un(u)du = n(kT/2zm)h. (9)
0
But only those electrons whose values of # exceeds uo = (2p/m)}
will escape from the surface. The quantity p, called the work func-
tion, represents the potential energy of the electron outside the metal;
it is the work that must be done to take an electron at rest in the metal
and transport it across the surface to a distance at which the surface
forces are negligible. The total number, N, of electrons which can
escape from one cm.? of surface in one second is then

N = f un(u)dn

= [ n(m/2nkT ) u exp. (—mu*/2kT)du

Uy

= n(kT/27m)} exp. (— p/kT). (10)
The emission current in amperes per cm.? is
i= Ne= A'Thexp. (— p/kT) (11a)
or
logi — 3log T = log A" — p/2.3kT, (11b)
where
A" = ne(k/2mm)}, (12)

e = charge on the electrons in coulombs = 1.59 X 107",
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If p is independent of 7" and if log ¢ — % log T is plotted versus 1/T,
the slope = — p/2.3k and the y intercept = log A’ or log ne(k/2mm)k.
For clean tungsten it is found by experiment that the current density
can be represented by

1= 2.06 X 10'T" exp. (— 55,300/7).

From this it follows that ne(k/27xm)* = 2.06 X 107 and that » = 8.4
X 10?° electrons/cm.? This is to be compared with 635X 1020
atoms/cm.? So that if we postulate one ‘‘ free electron ' for every
75 atoms, we can account for the observed thermionic emission
classically.

Such a concentration of free electrons may be considered to be in
quite good accord with the first of two possible deductions from
experiments on specific heats. From these it follows that: (1) Either
the number of free electrons must be small compared to the number of
atoms and the mean kinetic energy per electron is (3/2)kT; or else,
(2) the number of free electrons is of the order of the number of atoms
but the kinetic energy increase per degree rise in temperature is much
smaller for electrons than it is for atoms. The correlation of experi-
ment and classical theory in the case of the optical properties, electrical
conductivity, thermoelectricity, Thomson and Peltier effects lead to
certain inconsistencies. These disappear when theories based on the
Fermi-Dirac distribution are used for these effects and it is postulated
that the number of free electrons in metals is of the same order as the
number of atoms. The classical theory for Richardson’s equation
thus leads to values of # which are incompatible with values deduced
from these effects. The newer theory has also made progress in
explaining ferromagnetism. It is thus a better basis for a statistical
theory of electron emission. Such a theory was developed by Som-
merfeld ' and Nordheim.!®

b. Quantum-mechanical treatment. The Fermi-Dirac theory gives
the velocity distribution as

3
w(u, v, w)dudvdw = Gl:’;

1
X exp. [m(u® + v* + w?)/2kT] + 1

dudvdw, (13)

G is the statistical weight; for electrons its value is 2. % is Planck’s
constant. The quantity M is so adjusted that the integral of n(u, v, w)
gives the total number of electrons/cm.? This integration is so difficult
that no relatively simple and exact expression for M can be found.
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However, in two limiting cases good approximations have been ob-
tained.
In the first case M is so small a quantity that

M-'exp. [m(u? + v* + w?)/2kT] > 1.

1t then follows that
M = nh®mt/G(2xkT)} (14)

and that equation (13) is the same as equation (7) for the classical
treatment.

In the second case M is a large quantity and the 1 in the denom-
inator of equation (13) cannot be neglected. Sommerfeld '* has shown
that in this case '

M = exp. (K/kT), (15)

where

_ h*(3n/4xG)} _(ZFMkT)E 3n RN
K=-—— — [1 12 (41rG) + ] (16)

The second term in the brackets is usually a very small numerical
quantity and can nearly always be neglected.

If we assume that 7, the number of electrons/cm.?, is equal to the
number of atoms/cm.? in a metal or a small factor times this number,
we can compute M for case 1 by equation (14) or for case 2 by equation
(15). In either case M turns out to be a large quantity. Hence for
metals the second case is applicable while the first case is not. Hence

3
1n(u, v, w)dudvdw = %?:
1
X T o F o)) — K dudvdw, (17)
exp. T +1

since
M-t = exp. (— K/kT).

Integrating this from — « to 4+ « with respect tovand w Nordheim
has shown that the number of electrons per cm.® having velocities in
the range (u, du), i.e., between % and u + du, is

2 — 1 2
n(u)du = 2-”%2’3—”1:1 [ 1 + exp. (EJM%—’"“)] du.  (18)

The number of electrons striking a surface normal to the u direction
per cm.? per sec. and having velocities in the range (u, du) is given by
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N(u)du = un(u)du; hence

N T
N(u)du %ﬂ ln[l—l—exp.(Kk—;,m)]du. (19)

Now only those having velocities greater than #. will be able to cross
the surface and escape where #u, is given by imu.2 = P,. P, is the
difference in potential energy between an electron at rest inside and
outside the metal. Now P, is about 3/2 times as large as K and
therefore }mu,.? > 1.5K. Also for the values of T encountered in
thermionic experiments k7T is small compared with (3mu. — K).
Therefore, for values of u > wu., exp. [(K — ¥mu?)/kT] is a very
small quantity and

In [1 4+ exp. (K — $mu?)/kT)] = exp. [(K — mu®)/kT]
to a good approximation. This follows, since
In (1 +4) = (A — 3A% + JA® — JA* + --)

provided A%* < 1. Hence, for # > u, and the temperatures encoun-
tered in thermionic emission

20Gm*kT (K - %muﬂ)
———uexp. | ——— | du.

N(u)du = (20)

h?* kT
The number that cross the surface per cm.? per second is given by

2 — 1 2
N f N(‘ll)d 21er ka 1 exp. (Kk—jw_ ) du
U

_ 2aGmk*T* (K — gmu,ﬂ)
I N 73

_ 2nGmk? (_ P — K)_ (21)

o Lex KT
Finally

i= Ne = (2rGmek®/h*)T* exp. [ — (Pn — K)/kT]
= Ul exp. (— W/kT) = UT* exp. (— w/T)
= UT?exp. (— ¢e/kT). (22)
where
U = 27Gmek*/h? (23)
and

Pm —K=W=}lw= @we. (24)
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If 7 is expressed in amperes per cm.?, the value of U is 120 amperes/cm.?
°K.2 The quantities W, w, or ¢ are called the work function; the
difference between them is merely one of units. ¢ is expressed in
volts, w in degrees Kelvin, and P,,, K and W in ergs. P, is called the
outer work function and K, the inner work function. Oftentimes it is
convenient to refer to P,, K-and W as if they were expressed in volts.

c. Treatment in terms of emergies. For many purposes it is con-
venient to have expressions for the distribution in energies instead of
in velocities. We can then express these energies in equivalent volts
and obtain numerical values which are more familiar. Let

E= (m/2)(u* + v* + w?); E. = (m/2)u?,

“ the normal component of the energy '; V. = E./e; n(E)dE = the
number of electrons per cm.? having energies in the range (E, dE);
similarly for n(E.)dE.; N(V,)dV, is the number striking a cm.? of
surface per second having normal component of energies in the range
(Vo dVy).
Then
2xG N FoL

W(E)E = =5 Qm) i = xR

(25)

 2aGmT 1 (K - EJ)

n(E)dE, = — E,ﬂln [1 + exp. TGT) ] dE,, (26)
2nCGmkT K —E,

N(E,)E, = TS 1 [1 + exp. (T)] dE, (27)

N(V)aV, = 21T, [1 + exp. (é;_]‘_")] av.  (28)

Equations (25) and (26) are readily derived from equation (18);
while equations (27) and (28) follow from equation (19). It is also
instructive to compare equation (28) with the corresponding equation
which is based on classical statistics, namely,

N(V.)AV, = n(e2/2xmkT) exp. (— V,e/kT)dV,. (29)

This is readily derived from equation (8).

d. Comparison between classical and quantum-mechanical ireatment.
Comparison between equations (28) and (29) is best brought out by a
graph such as Fig. 1 which shows log N(V.) versus V. for the two
cases. It is to be remembered that N(V,)dV, is the number of elec-
trons in the metal which strike 1 cm.? of surface per second whose
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energy components normal to the surface are in the range (V., dV.)
volts. It has been customary to plot N(V,) versus 1, for equation
(28). At T" = 0, N(V,) decreases linearly with V, from a value of
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Fig. 1—Classical and Fermi-Dirac distributions.

20Gemk/h® when V, = 0, to zero when V, = K/e; for V, > K/e,
N(V,) = 0. For T > 0, the function is much the same except in the
neighborhood of V, = K/e and for 1, > K/e; the curve is here
everywhere higher than the curve for ' = 0 and decreases exponen-
tially. Since only those electrons can escape for which V., = Pu
> (3/2)K, we are primarily interested in the exponential portion of
the curve. It is therefore more advantageous to plot log N(V,)
rather than N(V/,).

In Fig. 1 curves 1 and 2 are for equation (28) at T'= 0 and
T = 1800° K., respectively; while curve 3 is for the classical case or
equation (29). For curves 1 and 2, the value of K/e has been taken
as 5.75 volts which is the value appropriate for tungsten assuming one
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free electron per atom. For curve 3 the value of # has been so chosen
that this curve is shifted with respect to curve 2 by K/e — 3kT/2e
or 5.52 volts. The value of # which does this is 16.6 X 102/cm.?
To account for the observed emission from tungsten we have previously
deduced a value % as great or 8.4 X 102/cm.® The factor of 2 is due
to the fact that the intercept of the observed Richardson plot for
tungsten corresponds to 60 amp./cm.? °K? while the theoretical
intercept corresponds to 120 amp./cm.? ° K.’

At first sight it might appear that the shift between curves 2 and 3
should be K/e rather than K/e — 3kT/2e. The additional term is
accounted for by comparing the classical or T* equation (11a) with
the quantum-mechanical or 72 equation (22). It is well known that
the experimental results can be made to fit either the T or the T2
equation and that the constants in the two equations are related by

Wor P, — K) = p — (3/2)kT, (30)
and
A= A'/eT3, (31)

From equation (30) it follows that the classical work function p is
larger than the quantum-mechanical work function W or P, — K
by (3/2)kT and that to obtain the same emission from the two dis-
tributions the curves must te shifted by K/e — 327 /2e.

The Temperature Dependence of the Work Function

Thus far little has been said about the temperature dependence of
the work function. While there is no good theoretical reason for
expecting a large temperature dependence, there is also no good reason
to expect that the work function is accurately independent of 1.
Experiments on contact potential and photoelectric effect indicate
that there is indeed a small temperature eftect.* In investigating the
effect of the temperature dependence we shall limit ourselves to the
quantum-mechanical equations. However, a similar treatment would
be applicable to the classical or T% equation.

If in equation {22), w or its equivalents W or ¢ are independent of
T, then the slope of a Richardson line is — w/2.3 or — W/2.3k or
— ¢e/2.3k; the intercept is log U. So that

b=w= W/k= ¢e/k and log 4 = log U. (32)
If the work function varies linearly with temperature,

w=wa+ al or W= Wy+ akTl

* For a detailed discussion see reference 8.
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or
o= oo+ alk/e)T; (33)

where a = dw/dt is a constant independent of T'; its units are degrees
per degree. The slope of a Richardson line is now — /2.3 so that

b= wy= Wy/k = poe/k
while
log A =log U — «/2.3. (34)

Since the slope is constant, the Richardson line is straight. This line
is determined either by the empirical constants 4 and b or by the
values of w and dw/dT in theoretical equations.

If w is a general function of T, the Richardson line will be curved.
If a tangent is drawn at a point corresponding to any temperature,
the slope of the tangent is — (1/2.3)(w — Tdw/dT) and its intercept
is log U — (1/2.3)dw/dT; w and dw/dT are to be taken at the point
of tangency. Hence

b=w— Tdw/dT
and

log A = log U — (1/2.3)dw/dT. (35)

In a previous section it was shown that the slope of the Richardson
line is always equal to — %/2.3. Hence

— 1/2.3 = — (1/2.3)(w — Tdw/dT)
or
h=w — T(dw/dT). (36)

This important equation gives the relation between the heat function
and the work function. It is similar in form to the relation between
the total energy E and the free energy F, viz.,

E = F — T(dF/dT). (37)

The distinction between the heat function & and the work function
w is strikingly brought out in Fig. 2. The slope of the Richardson
line is — /2.3, while the slope of a straight line connecting any point
on the Richardson line with the intercept log U(1 — 7) is — w/2.3.

The theory that the work function is indeed a function of tempera-
ture has been championed in recent times by R. Suhrmann and his
collaborators. A good account of this work can be found in Volume 4
of Miiller-Pouillets Lekrbuch der Physik. One method by which Suhr-
mann has shown the temperature dependence of the work function is
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that of the complete photoelectric emission. The surface to be inves-
tigated is illuminated by light from a source whose temperature is
varied. It is found that the resulting photo-current obeys a Richard-
son law and the slope of the Richardson line is taken as the work
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Fig. 2—Typical Richardson plot.

function. The temperature of the cathode is now altered and a new
Richardson line is obtained. It is found that the slope has changed.
It may be worth while to analyze critically the theory of this experi-
ment to ascertain whether the slope is related to the work function or
to the heat function.

On True and Apparent Surface Areas

One other point in the correlation between experiment and theory
is to be noted. In the empirical equation, 7 is the current per cm.? of
apparent surface; while in the theoretical equation, 4 is the current
per cm.? of an ideal or true surface. The real surface in thermionic
experiments is not smooth; it usually consists of a large number of
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etch facets which are oriented at various angles with respect to a mean
surface plane. The appearance of the surface is to be compared with
an airplane view of a city whose gabled roofs have various designs and
various angles. The size and shape of the etch facets depend on the
material of the cathode, the crystal size, the orientation of the crystal
with respect to the mean surface, the degree of heat treatment and
presumably some unknown factors. Theoretically it is possible to
deduce values of S, the ratio of the true surface area to the apparent
surface area, for certain simple cases. Thus, Tonks ' has computed
the following average values of S: For cubic facets or 100 planes,
1.500; for dodecahedral facets or 110 planes, 1.225; for 100 and 110
planes, 1.129. Some of the assumptions on which these values are
based are: (1) The surface is covered with pyramids whose sides are
crystal planes; (2) the orientation of crystal axes with respect to the
surface is random; (3) for a given type of etch plane or planes, the
facets occur in such a way as to give a minimum surface area. No
one has made a thorough investigation to test these assumptions by
experiment. Some microscopic pictures of etched surfaces which I
have seen showed truncated pyramids in contrast with the first
assumption; they also showed sub-facets, thus violating the third
assumption.

Values of S have been obtained from experiments on adsorption of
gases on solid and liquid surfaces. Particularly significant experi-
ments are those of Bowden and Rideal *® on the adsorption of hydrogen
ions deposited on metal surfaces by electrolysis of a solution of sulphuric
acid. The potential of these surfaces was determined against a
calomel electrode. They found that when the electrolytic current
exceeded a minimum value, the surface potential increased linearly
with the quantity of electricity until it reached a new steady value.
For a mercury surface as well as for a thin film of platinum on mercury
the potential increased by one volt for 6 X 10~% coulomb/cm.? The
direction of the potential change and its amount are such as to be
expected if hydrogen ions are adsorbed on the surface. For surfaces
other than mercury the charge per cm.” required to change the po-
tential by one volt was S times 6 X 107%. They obtained the fol-
lowing values for S: smooth platinum, 2.0; platinum black, 2000;
sandpapered nickel, 10; oxidized and reduced nickel, 50. They inter-
pret this S as the ratio of the true area to apparent area. Their
values are considerably greater than those expected from Tonks’
theoretical calculations.

As a result of this it is my opinion that a considerable amount of
careful work must be done before reliable values of .S are obtained for
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thermionic cathodes. For the present it would seem best to consider
S as an unknown whose value lies somewhere between 1 and 10 for
rough surfaces such as those on oxide coated filaments, and between
1 and 2 for relatively smooth surfaces such as tungsten. The exact
value will no doubt depend on the exact treatment of each surface.

Fortunately the uncertainty of our knowledge of S does not seri-
ously affect our correlation made above. It is necessary to divide
values of 7 and 4 in the empirical equations by S to reduce to the basis
of true surface area before comparing them with theoretical equations.
The observed values of 7 and A should thus be reduced by 25 to 50
per cent for smooth surfaces and by larger values for rough surfaces.
Thus in the case of surfaces, such as tungsten, molybdenum and
tantalum, for which 4 has the value 60, the true 4 should be between
about 30 and 45 as compared with a theoretical value of 120. Since
the deviations from 120 are due to a temperature dependence of the
work function, it means that we must postulate a somewhat larger
value of « in equation (34) than otherwise.

On the Reflection Coefficient

There is still another topic that enters into the correlation of experi-
ment and theory, namely the reflection coefficient. Thus far we have
assumed that every electron whose normal component of velocity
exceeded a certain value escaped while those having less than this value
failed to escape. On the classical viewpoint this assumption is jus-
tified but on the quantum-mechanical viewpoint there is a finite prob-
ability that the electron considered as a wave will be reflected at the
surface even though its velocity is such that it could escape; also a
wave electron has a finite probability of passing through a potential
peak when classically its velocity is not large enough to permit it to
pass over the top of the peak. Consequently we should include an
average transmission coefficient D in the theoretical emission formula.
D =1 —7 where 7 is the average reflection coefficient. Equation
(22) then becomes

i= Ul —7)T?exp. (—w/T). (38)

A number of writers > * have attempted to explain the deviations
between A and U by postulating such values of 7 that A = U(1 — 7).
This explanation is possible only for cases for which 4 < U since
0 <7 < 1. Even when 4 < U the numerical values turn out to be
such that the difference between A4 and U cannot be accounted for by
computed probable values of 7. These values of 7 are determined
chiefly by the shape of the curve giving the work an electron must do
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to get to various distances from the surface. Only when this work-
distance curve is postulated to have a high sharp peak within a few
atom diameters from the surface, is it possible to deduce values of 7
which are appreciable. Now we have good reasons?® for believing
that no such peaks exist, and that the maximum of the work distance
curve occurs at relatively large distances from the surface in a region
where the forces on the electron are given by the well-known image law.
For the latter type of curve, the computed value of 7 is less than 0.07
which is negligibly small. Nordheim, who first pointed out that the
transmission coefficient might differ from unity says: ‘‘ However, the
exact computation taking into account the image force which must
necessarily be considered, has shown that such a rounded-off potential
curve yields a value of D which differs inappreciably from 1.0.” *
A more complete case showing that the values of the reflection coef-
ficient are negligibly small is given by Becker and Brattain.?

THE EFrEcT OF ACCELERATING FIELDS AND RETARDING POTENTIALS

Thus far we have considered how the emission current and the work
function depend on the emitting surface and its temperature ; we have
implicitly assumed that the current was ‘‘ saturated " or that every
electron which escaped from the surface was collected by the anode.
It is, however, well known that the emission current depends also on
the applied fields and the applied potentials. In considering the effects
of these fields and potentials we shall incidentally obtain an insight
into the nature of some of the forces responsible for the work function.

For simplicity consider a large plane cathode and parallel to it a
large plane anode. If the temperature of the cathode is high enough
to emit a small but appreciable current, log 7 will vary with the poten-
tial applied to the anode in the manner shown in Fig. 3. In drawing
curve 1 in this figure three more simplifying assumptions have been
made; namely (1) that the contact potential between cathode and
anode is zero; (2) that all portions of the cathode and anode have the
same work function, and (3) that space charge effects are negligible.
The effect of these assumptions will be considered later.

The curve in Fig. 3 naturally divides itself into two portions: the
part to the left of V, = 0 corresponds to retarding potentials while
the part to the right of 0 corresponds to accelerating potentials. In
the latter region the current is said to be ‘‘saturated " although
strictly speaking the current is never saturated but increases indef-

*See Section by Nordheim in Miiller-Pouillets Lekrbuch der Physik4 Vol. 1V,
"“Elektrizitat und Magnetismus,” Part IV, p. 294, See also footnote 2 on p. 290.
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initely as V increases. Obviously, the effect of V on the current is
quite different in the two regions and these two regions require different

explanations.
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Fig. 3—Retarding potential curves for parallel plates.

Retarding Potentials

Consider first the retarding potential region in which log ¢ decreases
linearly with — V,, the applied potential V. The explanation is to
be found in extending the theories which were used to derive the
Richardson equation. In that derivation it was implicitly assumed
that the only forces which the escaping electron had to overcome were
the cathode surface forces, and that any electron which escaped from
the cathode would reach the anode. If a retarding potential V,* is
applied to the anode then only those electrons whose normal com-
ponent of velocity # exceeds a value #, can reach the anode; where .,

is given by :
mua?/2 = (¢ + Vo)e (39)

in the classical case, or
mu/2 = Pn + eV, (40)

in the quantum-mechanical case. Figure 4, curve 1, illustrates the
* In discussing retarding potentials it is convenient to consider retardmg poten-
tials as positive even though the anode potential is negative, so that V., = V.
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potential energy of an electron at various distances between the
cathode and anode when the anode is V, volts negative to the cathode.
It is tentatively assumed that the anode work function ¢, is the same
as the cathode work function ¢.; this is another way of saying that
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Fig. 4—Potential distribution between parallel plates; Ps = P..

the contact potential is zero. When V, = 0 nearly all the space
between the cathode and anode is field free as shown in curve 2; only
in the immediate neighborhood of the cathode or the anode is the
electron subjected to any forces. When a retarding potential is
applied the electrons must have sufficient energy to pass over the
maximum in curve 1, Fig. 4, in order to reach the anode.

To determine the number of electrons that can reach the anode we
integrate equation (10) or (20), from % = u, to u = = where u, is
given by equation (39) or (40), respectively. Whether we use the
classical or the quantum-mechanical statistics we arrive at the same
result.

i = Ne = iyexp. (— V.e/kT), (41a)
or
log i = log 19 — (¢/2.3kT)V,, (41b)

where 4p = ¢ when V, = 0. The slope of the straight line in Fig. 3
should thus be e/2.3kT.

If ¢. and ¢, are not equal, the field between anode and cathode will
not be zero when the applied potential is zero; a contact potential or
Volta potential Vy will exist between a point just cutside the cathode
and a point just outside the anode. To produce zero field a potential
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must be applied which neutralizes the Volta potential. The true
potential V between anode and cathode is the sum of the applied
potential V, and Vy or

V="V.+ Vy (42)
Since
Vi = ¢c — @a ‘ (43)
V= Va _I_ Pe — Cq- (44)
Since
Vr = - V!
Vi= —Va— ((Pc - ‘Pa) = —-V.+ Pa — P (45)

V. is the true value of the retarding potential and these values of
V, are to be used in equations (39), (40) and (41). V and V, are
measured from the break point in Fig. 3. Figure 5 illustrates the case
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Fig. 5—Potential distribution between parallel plates; P, < P..

when ¢, > ¢o. For V,= 0, V is positive and equal to ¢. — @a.
To produce zero field V, must be negative and equal to ¢. — ¢.. The
dashed line gives the potential energy distribution for a somewhat
larger negative applied potential.

When the contact potential is not zero, the break point in the log ¢
versus V. curve will occur when the field is zero or when

Vo= — (&0.: - (Pﬂ)'

This is illustrated in Fig. 3 by the dashed line for a case for which
Yc > Ya .
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Usually thermionic experiments are not performed with plane
parallel cathodes and anodes but with a small cylindrical cathode con-
centric with a cylindrical anode. In the cylindrical case, the normal
or radial component of velocity is not the only one which determines
whether the electron will reach the anode. Schottky ¥ derived the
following formula for this case on the assumption that the emitted
electrons leave the filament with a velocity distribution given by
Maxwell’s law (equation (7)) for a temperature 7. As we have seen
above both the classical and the Fermi-Dirac theory predict this dis-
tribution for the electrons which escape from the filament. This
formula replaces equation (41).

i = io(2/mh) [[V,e/krji exp. (= Vie/kT)
+ exp. (—xz)dx] . (46)
(iﬂ',.c,‘ki‘)i
It is assumed that the diameter of the cathode is small compared to
the diameter of the anode, and that the current is not limited by space
charge. Table 1 gives values of logi (70/7) for values of V,e/kT
taken from an article by Germer.*

TABLE I _
VALUES OF LOGy io/i FOR VARIOUS VALUES OF V,e/kT (GERMER) 20
VielkT 1 2 3 4 5 6
logio (70/t) 0.2423 0.5827 0.9523 1.3371 1.7312 2.1318
7 8 9 10 11 12
2.5369 2,9455 3.3567 3.7698 4.185 4.6024
14 16 18 20 25

5.4398 6.2812 7.1245 7.9714 10.0978

Figure 6 shows various ideal plots of log 7 versus V for cathodes of
clean tungsten and thoriated tungsten. It is assumed that the anode is
clean tungsten. Curves 1, 2 and 3 are for a clean tungsten cathode at
temperatures of 1400, 1550 and 1700° K., respectively. Curves 4 and
5 are for a thoriated tungsten cathode at 1400° K. activated to such
an extent that the work function is 4.03 and 3.53 volts, respectively.
The dashed lines indicate the currents for a plane cathode and parallel
anode.

Curves 1, 4 and 5 illustrate an important theorem which follows
from the analysis on contact potential given in connection with Figs.
3, 4 and 5. The theorem is: The current collected by an anode is
independent of the work function of the cathode provided that the
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cathodes are in the same position and have the same temperatures and
that the retarding potential is sufficiently great. This theorem was
verified experimentally by Davisson.2!

-4.5
y7
-5.0 Vil
s//
i /
-5.5 3
/!
% (/
/ / /!’
-6.0 7 y
/ /
/ ji...._
-6.5 A 7
I, / / I’
/ (i A / 1, 2,AND 3 —CLEAN TUNGSTEN
=70 / + AT 1400, 1550,AND 1700° K
. / // /II 4 If RESPECTIVELY
2 / / / 4 AND 5 — THORIATED TUNGSTEN
@-1.5 A4 L AT 1400°K — AW=0.5 AND
9 3 / / / / 1.0 VOLTS RESPECTIVELY
/ / /
-8.0 / / i
/ " ,'
/f 2/ / g—
{i
-85 / / ! fi
. If ; 7
r / / /
/ ! !
-9.0H + F
,I / 1 !
/ / !
-9.5 / / /!
7 f; 7
/ 7
; /
!
-10.0 ,.' .
J/ /
-10.5 [
-5 -2 -09 -06 -03 O 03 06 09 12 15 18 21

Vg — POTENTIAL APPLIED TO ANODE IN VOLTS

Fig. 6—Retarding potential curves for cylindrical electrodes.

The curves shown in Fig. 6 are for ideal conditions. Experimental
conditions frequently differ from ideal conditions in at least five
respects: (1) The various portions of the cathode are not at the same
potential ; (2) the work function of the cathode is non-uniform; (3) the
work function of the anode is non-uniform; (4) the temperature of the
cathode is non-uniform; and (5) the current is limited by space charge
rather than by the applied potential. The last two conditions are
discussed in other treatises. The first condition is usually due to the
fact that the cathode is a filament and is heated by passing a current
through it. As a result the observed curve is the sum of a series of
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elementary curves, each one of ‘which is shifted along the V axis by the
amount of the potential drop along the filament. Such a sum curve
consists of a straight line having the correct slope at sufficiently great
retarding potentials; the sharpness of the break point in the curve is,
however, destroyed and the slope of the curve for small retarding
potentials is decreased, thus simulating the ideal curve for a higher
temperature. The best way to obviate this difhculty is to work with
equipotential cathodes which are heated indirectly. This makes the
construction of the tube more difficult and has been used only by
Demski.?? Most of the work has been done on filaments which were
heated intermittently by means of a mechanical or electrical com-
mutator.

In this way Germer,* Demski and others have shown that the dis-
tribution of thermionically emitted electrons is Maxwellian and cor-
responds to a temperature which is equal to the temperature of the
cathode to within less than 5 per cent. Germer worked with tungsten
for a series of temperatures between 1440 and 2475° K. Demski
worked with tungsten and with oxide-coated filaments. He used a
mechanical and an electrical commutator and also worked with equi-
potential cathodes. Nottingham *! and others have reported that for
thoriated tungsten and oxide-coated filaments the temperature com-
puted from the shape of the log 7 versus V' curve for small retarding
potentials was about 1.5 times the temperature of the cathode. Not-
tingham explains this as due to a sharp peak in the potential distance
curve through which a part of the wave electrons can penetrate. In
my opinion it is much more likely that these observations are due to
non-uniformities in the work function of the cathode and the anode.

If the work function of the cathode is non-uniform, the observed
curve should result from the summing up of the currents for a series of
curves somewhat similar to curves 1, 4 and 5 in Fig. 6. The sum
curve will have the correct slope at sufficiently great retarding poten-
tials; but at low values of V, the slope should be too small correspond-
ing to too high a temperature. The break point will be less sharp.

If the work function of the anode is non-uniform, the elements of
the sum curve will consist of a series of ideal curves shifted parallel to
the V axis. The sum curve will again yield correct temperatures at
large values of V, but too high temperatures at small values of V.
That the work function of cathodes is usually non-uniform will be
shown in the next section. It is to be expected that the anode work
. function will also be non-uniform since the anode is more difficult to
heat treat than the cathode. However, when one takes into account
the effect of these non-uniformities, it is seen that the experiments
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abundantly confirm the theory that the distribution of velocities of
thermions is that given by Maxwell’s law for an ideal gas.

Acceleraling Fields

As illustrated in Fig. 3, when positive potentials are applied to the
anode, log 7 increases continuously ; but the rate of increase becomes
progressively less so that the current is almost independent of the
anode potential. For many purposes one can safely say that the
current is saturated ; for some purposes, however, it is very important
to consider this lack of saturation. More specifically a consideration
of this effect gives us direct evidence of some of the forces which are
responsible for the work function. Thus, as the electron escapes from
the surface, it must overcome certain forces which tend to pull it back.
The electrical fields responsible for these forces presumably decrease
with the distance from the surface. Call them surface fields F..
When a positive potential is applied to the anode, a field F, is produced
near the surface of the cathode which tends to help the electrons
escape. The value of the field depends on the dimensions of the
cathode and anode. This applied field neutralizes the surface field at
some distance z from the surface; call this distance the critical distance
z,. If an electron can reach the critical distance, it will escape, since
beyond this distance the sum of the applied and surface fields pulls the
electron toward the anode. Obviously the critical distance moves
closer toward the cathode as the applied field is increased.

A more quantitative concept is obtained by considering the effect
of the applied field on the potential energy-distance curve similar to
Fig. 4. Now, however, we will be concerned more particularly with
regions close to the cathode, so that we will greatly enlarge the distance
scale. Figure 7, curve 1, shows such a curve when the true field between
cathode and anode is zero. The true field F is the algebraic sum of the
applied field F, and the field produced by the contact potential. Fre-
quently it is convenient to use the term ‘ applied field " in the sense

of “ true field,” i.e., including the contact potential field. An applied
field decreases the potential energy of the electron as shown in curve 2.
The net potential energy is shown in curve 3.

The maximum height in curves 1 or 3 represents the work function
¢ in the classical theory or the quantity Pn/e in the quantum theory.
In the latter case, since ge = P, — K from equation (24) and since
K does not depend on the applied field,

Ap = AP./e (47)
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or the decrease in the work function due to an applied field is equal to
the decrease in the maximum of the potential energy-distance curve.
Since P depends on F, the true field (applied 4+ contact potential field),
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it will be convenient to designate values for curve 1 for which F = 0
by the subscript 0. Then

P = Py — Fez, (48)
and
dP/dz = dPy/ds — Fe. (49)

At the maximum in the P versus z curve, dP/dz = 0 and =z = z,.
Hence

(dPo/ds)|,, = Fe. (50)

We require an expression for AP, the decrease in P,, due to the field F.
From Fig. 7 it is clear that

AP, = distance A + distance B = P,,0 — Po|., + Fez. (51)
d(AP,)/dF = — dPy/dF| .., + Fe(dz./dF) + ez..  (52)
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Now from equation (50)
dPo/dF| .., = dPy/dz|.dz./dF = Fedz./dF. (53)
Hence from equations (52) and (53)
d(AP,)/dF = ex.. (54)

Combining this with equation (47) we obtain

d(Ag)/dF = z.. (35)
Now from

logi=1log U— 2log T — (¢ — Ap)e/2.3kT
= log 1y + Ape/2.3kT (56)
we obtain
dlog i/dF = (d(A¢)/dF)e/2.3kT. (57)

Combining this with equation (55) we obtain
dlog i/dF = (e/2.3kT)s.. (58)

This equation which was first derived by Becker and Mueller **
allows us to obtain numerical values for z, from the slope of the experi-
mental log ¢ versus F curve. At z, the surface field F, is equal to the
applied field F. Hence a plot of F, versus z can be obtained, and by
integrating this from z to o, values of Pmo — Py can be obtained for
various values of z greater than some minimum value corresponding
to the largest value of F.

A particular case of a surface field, namely, that given by the image
law, is especially significant. In this case F, = e/4z* and it can be
shown that the distances 4 and B in Fig. 7 are equal. At the critical
distance F = F, and F = e/4z. or

z. = (e/4F)L (59)

By substitution in equation (55) and integration from 0 to F it follows
that

Ap = (eF). (60)
Substituting this in equation (56) yields
log 7 = log 40 + (e!/2.3kT)~ T, (61)

= log 49 + (1.91/T)yF.

This equation, which was first derived by Schottky * and is called
the Schottky equation or law, predicts that a plot of log 7 versus VF
should yield a straight line whose slope is €!/2.3kT or 1.91/T.
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Experimental log 7 versus + F plots are found to be straight and to
have approximately the right slope for sufficiently high applied fields.
At low fields, the line is curved and the experimental slopes are greater
than the predicted values. These deviations from Schottky's law are
slight in the case of clean surfaces but become quite pronounced for
composite surfaces such as thorium on tungsten or caesium on tungsten,
We shall show below that these deviations can be ascribed to non-
uniformities in the work function for different regions of the cathode
surface. The prediction that the slope should vary as 1/T has been
verified by Dushman’s experiments.!

In so far as Schottky’s law is verified by experiment, we can conclude
that the escaping electron must in certain regions overcome the forces
due to its own image and no other forces. Thus for clean surfaces the
electron is acted on only by its image force from about 107 to about
50 X 1077 cm. from the surface; for composite surfaces this region will
depend on the size and degree of the non-uniformities; for a particular
surface of thorium on tungsten the image law held from 6 X 107 to
about 20 X 1077 em. When the critical distance is' very small, the
emission is modified because of sharp points on the surface and because
of “intense field " emission.?* When the critical distance is larger
than about 100 X 107 or 1 X 1075 cm. there are apparently other
fields superimposed on the image field. These are larger than the
image field at these distances and thus cause deviations from the
Schottky law. As we shall see later these fields are due to non-uni-
formities on the surface. From all this we can conclude that an
appreciable part of the work function is due to the image force and to
other surface fields.

Table I shows values of Ag, 2., log i/i, and /4, if the surface field
is given by the image law. '

TABLE 1I
VALUES OF Ag, 3, LOG /iy AND iffy IF THE SURFACE FIELD 1s GIVEN BY THE IMAGE
Law

F, voltsfem........... 0 100 1000 10,000 40,000
NFE 0 10 31.6 100 200
Ag,volts............. 0 0.0038 0.0120 0.0378 0.0755
e CMa. .o, © 1.89 X 107 5.98 X 10~¢ 1.89 X 105 945 X 1077
log ifie, T = 1000°K... 0 0.0191 0.0604 0.191 0.382

1/1q b .. 1.000 1.045 1.149 1.553 2,410
logifie, T = 2000°K,.. O 0.0096 0.0302 0.096 0.191

/iy “ .. 1.000 1.022 1.072 1.25 1.55

The Use of the Term ‘'Effective Work Function

There has been a tendency to restrict the term work function to
zero field and to use ' effective work function’ for accelerating
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fields.!» 2 28 In my opinion this tendency is to be deplored since it is
unnecessary and places too much emphasis on zero field. Richardson’s
equation, and the theories underlying it are just as applicable for
accelerating fields as they are to zero field. Since the work function
depends on T as well as F, it would be just as logical to coin a new name
for the work function at any temperature other than 7'= 0. It
seems to me more desirable to retain ‘ work function " in its general
sense and to recognize that it may depend on temperature and on the
accelerating field. The work function or more precisely the quantity
P,./e would be defined as the work required to take an electron at rest
inside the metal to a point at distance z. from the surface, where z, is
the distance at which the accelerating field is equal to the surface field.

Tue Errect oF Non-uniForRM WOoRK Funcrtions: PATCH THEORY

We shall now consider how the emission is altered if the cathode
work function is non-uniform. Here again we shall find it necessary
to consider the effect of such non-uniformities on the P vs. z curves,
i.e., on the curves for the potential energy of the electron versus dis-
tance from the surface. For the present we shall not consider the
causes for the mechanism which is responsible for the non-uniformities.
We shall assume that the surface work functions are non-uniform.
As a consequence, local fields must exist between the various regions
having different work functions. The effect of these fields on the
log 4 vs. F curve will depend on the size, shape and degree of the
non-uniformities.

The Simple Condenser Analog

Consider a simple case: The cathode is uniform except in a circular
region of radius R which is covered with a positive charge density o, a
short distance I above the surface. There is induced at a distance [
below the surface the image charge density — . These two sheets of
charge act like a finite circular condenser. The field between the
condenser plates will be 47s e.s.u. or 300 X 4me volts/cm. if o is
expressed in e.s.u. If the zero of potential is taken at the surface of
the metal or at the center of the condenser, the potential just outside
the outer sheet of charge will be 300 X 4wol. If the sheet of charge
were infinite in extent or if R were several times the distance from
cathode to anode, then the field outside the condenser would be zero,
and the work function of the patch for electrons would be reduced by
300 X 4mol or by 300 X 2rM; where M = 20l the moment per cm.?
of surface. Actually there is a field outside the finite condenser which
tends to pull an electron back to the surface. The integral of this
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field out to infinity or a distance large compared to R is just sufficient
to reduce the potential to zero again. Hence when the applied field
is zero so that z. is very large, the work function over the condenser or
patch is not reduced at all. Calculations show that if a small accelerat-
ing field is applied, the work function is reduced more than it would
have been if there had been no condenser. For a sufficiently large
applied accelerating field, 2. moves so close to the surface that z, < R.
At this distance the potential at z, due to the sheets of charge will not
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Fig. 8—Potential energy vs. distance from cathode surface for electrons moving
against image field plus field due to a uniform circular patch for applied fields of
zero or 6000 volts/cm.

differ greatly from the potential just outside the condenser., The
work function will now be 300 X 4wl less than it would have been
without the patch. Hence the extra reduction of the work function
due to the patch is zero at zero accelerating field and increases with
this field up to its limiting value 300 X 4wal.

To treat this case in more detail consider the curves in Fig. 8.
Curve 1 is a plot of P;fe in volts vs. z in cm. P; is the potential
energy due to the image force and is given by

Pile = P_le — 300e[43, (62)
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where P, is the potential energy when z = © and F = 0;¢ = 4.774
% 10—, Curve 2 is the potential energy P, due to the patch or con-
denser along a line normal to the surface at the center of the condenser.
R has been taken as 4 X 10~ cm. The equation of this curve is

P, = 1200xel[3/(z2 + R2)*]. (63)

In the derivation of this formula it has been assumed that either
R>1 or else that z>> I; for our case the first of these assumptions
will always be fulfilled so that the formula is applicablé when z is
equal to or larger than I; it is not applicable for z less than /.

Curve 3 is the algebraic sum of P values for curves 1 and 2. It
represents the potential energy along the central normal due to the
image and patch fields. Curve 4 represents the potential energy due
to an applied field of 6000 volts/cm. Curve 5 is the sum of curves 1
and 4; curve 6 that of 3 and 4.

The effect of the applied field is to reduce the critical distance z.
and the work function. A given applied field will reduce z. more for a
clean surface than for one with the patch; but the converse is true
for the work function. The reduction in the work function is equal
to the reduction in the value of P,/e. This consists of three parts as
indicated in the figure for curve 6. AP;/e is the decrease in P due to
the image forces from z = 2, to 2 = % ; AP,/e is the decrease due to
the patch field from z = z.toz = o ; Fz, is the decrease in P due to the
applied field from z = 0 to z = z.. These quantities can be evaluated
after one has determined the value of 2, as follows:

The peak or maximum in curve 6 occurs at a value of z = 2. at
which

dP[dz = dP;/dz + dP,/dz = Fe. (64)

From equation (62) dP;/dz = 3.58 X 1078/2%,

and from equation (63)

dP, 1 i
__&_ = (120011'61!)3[ @+ Rz)i_i_ 2+ Rz)i]
Rﬂ
IZOOWUlG{_‘Tg)
so that
3.58 X 10-8 R
F= — + 120070! l @+ Ra)g] ) (65)

From this equation F is plotted for various values of 2. For any value
of F a value of z can be read off. This value of z will be the critical
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distance z.. To obtain Ag, 2. is substituted in the equation,

: —8
eAp = AP; + AP, + Fz, = PQ—M

+ 1200mz( 1 — (72%122_)44' cm). (66)
This A¢ is the decrease in the work function for a region near the center
of the patch. For other regions on the patch A will be smaller; for
regions on the uncovered portion of the surface Ap will be still smaller
until at large distances from the patch Ag will correspond to the Ag
appropriate for the image law.

To obtain the effect of the patch on the log 7 vs. For log i vs. ¥ F
curve it is necessary to divide the entire surface into small regions,
compute Ap for each and substitute these in equation (56); the values
of 7; in this equation are the same for all regions of equal area since at
large distances P,, has the same value over all regions. The values of ¢
are then added up for all regions and log 7 is plotted vs. ¥ F. Since
this process is very tedious, and since in most thermionic experiments
one is not likely to deal with a single patch, it is not worth while to
make such an exact computation. It is, however, instructive to make
some further computations based on simplifying assumptions.

Suppose we assume: (1) That for all regions on the patch, Ap has the
same value as for the central region, and (2) that the current from the
patch is large compared to the current from the uncovered portions
of the surface. These assumptions approximate the true conditions
for some cases and the errors due to the first assumption tend to
balance out those due to the second. If ““a” is the area of the patch
then

logai =loga-+ log U+ 2log T — ¢e/2.3kT + (Ap)e[2.3kT
. = log aiy 4+ Aee[2.3kT, (67)

where ai, is the current from the patch area when I = 0.
Hence log iliy = (Ape[2.3kT). (68)

Values of Age obtained from equation (66) are substituted in equation
(68) and log i/i is plotted as a function of ¥ F. Figures 9 and 10
show such plots.

Figure 9 shows the effect of varying the radius R of the patch while
the charge density o is kept constant. The value of ¢ is so chosen that
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12007ql is equal to 0.3 volt. It will be convenient to treat ¢ as if it
were expressed in volts, i.e., as if ¢ stood for 1200wel. If the patch
were very large ¢ in volts would be the decrease in the work function
due to the patch. Itis to be noted that a typical curve starts along a
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Fig. 9—Variation of emission current with applied field for circular patches of

various sizes; I and ¢ constant. Comparison with experimental curve for thoriated
tungsten,

line having the Schottky slope; but soon it rises at a much more rapid
rate and continues until it almost reaches an upper line having the
Schottky slope; then it bends rather sharply and approaches this line
asymptotically. For the larger patches, the curve starts to rise at
very small values of ¥ F and it is very steep. For smaller values of R,
the curve follows the lower Schottky line for an appreciable distance
and its slope never attains very large values; also the place at which
it bends toward the upper Schottky line moves to large values of  F.
Note also that as long as ¢ is constant all curves are bounded by the
same two Schottky lines.

Figure 10 shows the effect of varying o while R is kept constant.
The distance between an upper Schottky line and the lower Schottky
line is directly proportional to ¢. In fact this shift is given by

A log ifty = oe[2.3kT. (69)
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It is also apparent from Fig. 10 that increasing o results in a steeper
curve and in an increase in the value of ¥ F at which the curve bends

toward the upper Schottky line.
Actually, of course, the observed current will be composed of the
current from the uniform part as well as that from the patch. The

-
—_———
e ———T

-

16 +——=

== gIN VOLT.V
— 0.?

1.2 Z-———""""— ]
.-.-—""—-—'-_ /

|9 1.0 s
o =
g / N i e
08 4.—-—"" —
’ - 0.2

0.6
/ ———SCHOTTKY LINES
R=4.0X1075¢cM
T=1380°K
0.4 /
Y,

0.2 ——=

P
—_——
e
[ —

80 100 120 140 160

60
VE (VVoLTS PER CM)

Fig. 10—Variation of emission current with applied field for circular patches; ¢
variable, T and R constant.

amount by which the patch current influences the total current will
depend on the ratio of the patch area to the total area.

The Hill and Valley Checkerboard

Instead of being covered with a single patch, the surface in the case
of most thermionic cathodes consists of numerous patches of varying
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sizes and varying work functions above and below some mean value.
To treat this case would obviously require very complex expressions.
We can simplify the problem without departing too far from actual
conditions by postulating a surface which is divided up into a large
number of squares arranged in a checkerboard fashion. We might
suppose that all black squares have the same ¢ and all white squares
are bare or else have a smaller ¢. It turns out, however, that the
formulas and the computations are much simpler if we suppose ¢ is
largest at the center of each black square and is least at the center of
each white square; between the centers ¢ is given by a cosine law. In
other words on the black squares we have a hill of charge while on the
white squares we have a valley of charge. It will be found that such
a charge distribution predicts changes in emission with applied
fields, which agree rather well with experiment if the size of the
squares is comparable to the crystal size and the difference in contact
potential between the hills and valleys corresponds to several tenths
of a volt.
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©)

Fig. 11—A. Checkerboard array. B. Charge distribution for hill and valley checker-
board. C. Subdivision of checkers.

To represent such a charge distribution, choose the origin of coordi-
nates at the center of a covered square; let x be measured parallel to

one edge of the squares while y is measured perpendicular to this
edge as indicated in Fig. 11A. Let the length of each square be b.
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Then the surface charge density ¢ is given by
e = p-+ ucos (rx/b) cos (wy/b) = o + uB, (70)

in which p is the mean value of ¢, p + g is the maximum value of o,
p — u is the minimum ¢, and 8 = cos (rx/b) cos (7wy/b); B has values
between 4+ 1 and — 1. It readily follows that along the edges of the
squares 3 = 0 and ¢ = p. Figure 11B shows ¢ as a function of x
when y = 0, b, 2b or nb.

The great advantage of this particular charge distribution is that
we can represent the potential due to this charge and its image at any
point above the surface by means of a comparatively simple formula,
viz.,

P,le = — 300 X 4wl p + pB exp (— V2wz/b)], (71)*

P, is the potential energy of an electron due to the charge distribution
at a point which is z cm. above the surface over a region at which the
charge density is ¢. The charge distribution is located in a plane
which is 7 cm. above the surface. This charge distribution induces a
corresponding negative charge distribution at z = — [, i.e., I cm. below
the surface. p and u are in e.s.u. of charge per cm.? Sometimes it
will be convenient to treat p and u as if they were expressed in volts,
ie., as if p and u stood for 1200mpl or 1200w ul, respectively. The
total potential energy of an electron at z cm. from the surface is given
by P in

P=P;,+ P, — Fez
= P, — 300e/4z — 12007l [ p + uB exp (— 2V2m[b)] — Fez, (72)

where P;= P, — 300¢/4z and e = 4774 X 1010,

In Fig. 12, curve 1 shows P; vs. z; curve 2 shows P, for various values
of B8; the curve for 8 = + 1 is for the normal taken at the center of a

hill; 8 = — 1 is for the center of a valley; 8 = 0 is for the edge of the
squares; all other curves must lie between those for § = + 1 and
B = —1. Curves 3 show P;+ P,for3 =1, 0and — 1.

For all values of 8 between 1 and 0 the curves have the same maxi-
mum value which occurs when 2. = ®. The value of this maximum
is P, — 1200mlp. This means that for all points of a hill checker
the work function is reduced by the same amount, namely, 1200mlp;

* For the derivation of this and several other formulas I am indebted to Professor

V. Rojansky now at Union College, who worked with me on this problem in the
summer of 1930,
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and this amount is the same as would occur if the charge density of the
hill and valley checkers were uniformly distributed over the entire
surface. On the other hand for 8 between 0 and — 1, i.e., for points
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ferent subcheckers of the hill and valley checkerboard; zero applied field.

on a valley checker, the value of z. depends on the particular point
chosen. The reduction in the work function is less than 1200wlp and
varies from point to point.

The next step is to ascertain the effect of an accelerating field on
these P vs. z curves. Figure 13'shows thisforg=1,%% — 1, — %
and — 1, respectively, for F = 5000 volts/cm. The effect of the
field is to decrease z. and P,,. From Figs. 12 and 13 it follows that the

decrease in 2z, and in P,, due to F varies with 8 and is much larger for
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points above a hill checker than for points above a valley checker.
Values of z. and P,, are shown in Fig. 14.

Figure 14A shows z. at various values of x for v = 0; it also shows
z. at various values of x for y = /3. Figure 14B shows P,, for these
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ferent subcheckers of hill and valley checkerboard; applied field of 5000 volts/cm.

same values of x and y. Since P,, — K = ¢e, it is clear from these
figures that different portions of the surface will have different work
functions, or stated more precisely, the energy an electron must have
to cross the critical surface (loci of the values of z.) depends upon
where it crosses the critical surface. This in turn means that the
chance that a given electron will escape depends not only on its
normal component of velocity but also on the place at which it leaves
the surface and on the angle its path makes with the surface.

To compute accurately the emission current is a very difficult task.
It would appear that the following procedure should give a good
approximation to the true current. Divide a “hill”" square and a
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neighboring “valley " square into nine subsquares each, as indicated in
Fig. 11C. It is apparent that the B squares are all alike; similarly the
C, B' and (' squares are alike. Determine the g for the center of each
subsquare. For the 4, B, C, A’, B’ and (' subsquares the values of B
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Fig. 14—A. Distance to critical plane for various points of hill and valley checker-
board. B. Potential energy at critical plane for various points of hill and valley
checkerboard.

are, respectively, 1, 3, 3, — 1, — 3 and — §. Then compute the P

vs. 7 curve for the normals at the center of each subsquare. These
are the curves shown in Fig. 13. Next compute the current for each
subsquare assuming this to be the same as it would be for an equal area
of a large surface having the same work function as that for the center
of the subsquare. This is equivalent to assuming that the effect of
the velocity components in the x and y directions average out. Do
this for various values of F. At each F, add up the currents for all 18
subsquares and multiply this by 1/2% the number of pairs of squares in
acm.? This will give the current per cm.? of surface for various values
of F.

Figure 15 shows the values of the current for the various subsquares;
more precisely it shows log i/is vs. ¥ F where 4, is the current that
would be obtained from an equal area at zero field for a surface covered
with a charge density p which is the average value of the charge
density for the entire surface. 144 is equal to the current from the hill
or active subsquares at zero field, but the current from the valley
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subsquares is usually less than 4,. The reason for this is clear from an
inspection of the curvesin Fig. 12. Figure 15 also shows log 7/7,, for the
average current for 18 subsquares in a pair of hill and valley squares;
more precisely, 7/1, is the sum of the current for the 18 subsquares
divided by the current that would be obtained if the charge density
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were uniform and the applied field were zero. As the field is increased
the relative contribution to the sum current from the central hill square
becomes larger and larger, while that from the valley squares becomes
less and less. At very large fields the curve for any subsquare ap-
proaches a straight line whose slope is the Schottky slope; hence the
sum curve also approaches a straight line having this same slope.
The area which is now contributing most of the current is, however,
considerably less than the entire area. Roughly speaking, one might
say that at low fields something more than half the area is “effective™
in emitting electrons; as the field increases the “effective” area de-
creases; at large fields and high values of p, 50 per cent of the total
current comes from about 5 per cent of the total surface; one might say
that the “effective’ area is approximately twice as large as this or 10
per cent. The values of the “effective’ areas depend on the value of
u: as p increases the “effective’” area decreases.

Such average curves as the one shown in Fig. 15 depend on three
variables, b, pand 7. This dependence is illustrated in Figs. 16, 17 and
18; in each case two of the variables are kept constant. Figure 16
shows log 4/i. vs. ¥ F for three values of b. This curve is similar to
Fig. 9 for a single circular patch. All the curves still approach a
Schottky line at high values of v F but because of the averaging
process they do not start cut from a common value when F = 0 and
the initial slope is not equal to the Schottky slope. In both figures
as the size of the patch decreases, the curves get less steep and the
place at which the curves bend over toward the upper Schottky line
moves to higher values of F. Note also that beyond this bend, the
curves are approximately straight but only approximately and that the
values are still somewhat below the theoretical Schottky line.

This theoretical line has an intercept given by

log 75/l = log (1/18)[exp pe/kT + exp — ue/kT
+ 4(exp pe/2kT + exp — ue/2kT)
+ 4(exp we/4kT + exp — pe/4kT)]. (73)

This equation which defines is is based on a subdivision of the hill and
valley checker into 18 subcheckers. The exponentials contain the
value of B for each type of subchecker, in this case 1, § and §. If each
checker were divided into a larger number of subcheckers the number of
terms would be increased, but fortunately the value of log /7., would
not be greatly affected. This is particularly true as long as pe/kT is
less than 5. Since ¢/kT ~ 0.1 this means that values of log 7/i., are
essentially correct for p less than 0.5 volt. We have plotted log 7.s/7u
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vs. pe/kT for 9 subcheckers and for 25 subcheckers. For pe/kT = 5
the former curve is only 4 per cent higher than the latter; for ue/kT = 10
the difference is about 6 per cent; for pe/kT less than 5 the difference is
negligible. This makes us feel that our average curves which are
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based on 18 subcheckers are essentially the same as would be obtained
for a much larger number of subcheckers. Equation (73) is analogous
to equation (69). Note that it depends on p but not on b.

Figure 16 might have shown log #/is instead of log 7/.,,. To convert
it to this coordinate it is merely necessary to reduce all values of the
ordinate by log 7s/1., or by 1.44. The advantages of this ordinate will
become apparent when we compare theoretical and experimental
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curves. For the latter it is quite easy to obtain log s but not so easy
to determine log 7.

In Fig. 17 we have thus shown log i/is vs. ¥ F for constant b and T
but varying x. Had log i/i., been plotted the curves would have been
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close together at /¥ = 0 but would have approached upper Schottky
lines whose position varied greatly. As it is, all curves approach the
same upper Schottky line but “fan out” toward lower values of + F.
Note that the curves do not cross over as they do in Fig. 16; note also
that as p increases the curves become steeper and the bend toward the
Schottky line occurs at larger values of  F.

At first sight it might appear that by plotting T log i/is it would be
possible to eliminate I" as a parameter; while this is true for any one
subchecker for which g8 is a constant, it is not true for the average
curves. This is illustrated in Fig. 18 which shows (kT'/e) log i/is vs.
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v Ffor constant b and p and varying T. Note that the departure from
the Schottky law is more pronounced for the low temperatures.

Comparison Between Theory and Experiment
It has been found possible to choose values of » and p such that the
calculated average curve fits a given experimental curve over its entire
range. The agreement is not perfect; but a perfect fit is not to be
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expected when one considers that in an experimental filament the
patches are not all of the same size and neighboring patches do not
have the same differences in work function. One example is illustrated
in Fig. 19 which shows (kT /e) log i/i.. vs. ¥ F for a thoriated tungsten

0.14
EXPERIMENTAL | | ___-}=""]
Th oN W | R
0.2 == —l---T" 1
' CALCULATED -1 == [ _CALCULATED /

b=3.0X1074cM —al""_+=-" b=45 x1074CM

4= 0.50 VOLTS /,’/ J=0.47 VOLTS
0.0 e

//
2717
A
7/
0.08 i
o 7, .
'“‘l-—'P ’ T=1380°K
Iﬂ 4
8 o006 i
-4 ’f /
Blo b
0.04 -
/

/

0.02 E
/ __,-—-__._./—-—-‘"“ SCHOTTKY
F7 — SLOPE
of=%
i’
’7
e
L
-0.02
0 20 40 60 80 100 120 140 160 180 200

V& (VvoLTs PER o)

Fig. 19—Comparison of experimental and calculated curves.

filament, 70 per cent of whose surface was covered with thorium.
For this curve ,, is merely an arbitrary constant, chosen so as to give
the best fit with the computed curves. By comparing the experi-
mental curve with calculated curves in Figs. 16 and 17, we decided to
try & = 3.0 X 10~! em. and p = 0.50 volt.* The average curve for
these values is shown in the figure. It appeared that & was too small
and p was too large and a new curve was computed and plotted
assuming b = 4.5 X 10~* cm. and uz = 0.47 volt. The agreement is
better. Probably a slightly better fit could be obtained with

= 4.0 X 10~* cm. and g = 0.48 volt. For other thoriated tungsten
filaments we have found values of b from 1 X 10~ to 1 X 10~% and u
values from 0.25 to 0.48 volt.

* In choosing these values some allowance had to be made for the fact that the

experimental curve was for 7 = 1380° K., while the calculated curves were for T
= 1160° K.
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An examination of a number of thoriated tungsten filaments with a
microscope showed that the diameter of the tungsten crystals was
of the same order as the values of b given above, namely 10~ to 10~% cm.
These filaments had been given the customary heat treatment in a
vacuum at temperatures near 2800° K. for times measured in minutes
and at temperatures near 2100° K. for many hours. It was natural,
therefore, to form the hypothesis that different crystals have different
adsorptive properties and that consequently different crystals in the
same filament should be covered with varying amounts of thorium.
Different crystals will then have different work functions. The values
of u found by the above analysis are consistent with this hypothesis
since 2u, which is the difference in work function between a hill checker
and a valley checker, is always considerably less than 2.0 volts which
is the maximum difference in work function between clean tungsten and
thorium on tungsten.
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It this hypothesis is true, then as a thoriated tungsten filament is
activated, the curves for the various stages of activation should all
correspond to approximately the same value of 4. Figure 20 shows
such a family of experimental curves taken by W. H. Brattain of these
laboratories. Curves 3, 4, 5 and 6 were taken at 7 = 1270° K.; curve
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1 is extrapolated from data at 7" = 1650° K.; curve 2 is extrapolated
from data at 1503 and 1650° K. The extrapolations were made by
extending Richardson lines; curves 1 and 2 are, of course, not quite as
certain as data taken at 1270° K. The currents at any V or F vary by
large factors as f, the fraction of the surface covered with thorium
varies. In order to compare the curves more effectively log #/iv_in
has been plotted. This is equivalent to shifting the log 7 curves until
they pass through a common point at V' = 100 or v F = 60.5. A
comparison of this family of curves with the computed curves in Figs.
16 and 17 shows a great similarity with Fig. 17 but not with Fig. 16.
In Fig. 17, b was constant while x was varied. From this similarity
it follows that the experimental curves in Fig. 20 are consistent with an
approximately constant value of & but varying u.

From the position and shapes of the curves in Fig. 20, we estimate
that the value of b or the crystal size isabout4 X 10~*cm. This value
is probably too large for curve 1 and too small for curve 6 but unless
a complete analysis were made, it is not desirable to discuss small
variations in b. It is apparent from the figure that u changes with f.
We have estimated the following values of u, the second significant
figure being in doubt:

TABLE III

VALUES OF f, THE FRACTION OF SURFACE COVERED WITH THORIUM AND VALUES OF
p IN VoLrs (EQ. 71) p IN VoLTs = 1200mul.

f=004 0.33 0.57 0.86 1.0 1.11
u(volts) = 0.23 0.44 0.45 0.36 0.28 0.23

These values of u are reasonable. Furthermore, the way in which
u varies with f is to be expected from the shape of the work function vs.
f curve which will be discussed later under adsorption.

A particularly interesting test of the patch theory is furnished by
Taylor and Langmuir’s 2 electron emission from cesium on tungsten
because in this case the crystal size of the tungsten is known. In
Figs. 11, 12 and 13 of their article they give log ¢ #s. V or ¥ I curves.
Since the diameter of the filament is given as 2 mils, it is possible to
convert values of 7 to values of F and to obtain log 7 vs. 4 F curves.
We have done this for the curve for 8 = 0.60 and have then analyzed
it on the basis of the hill and valley theory. This analysis gave
b= 0.8 ¥ 10~* ecm. and u = 0.20 volt. The article states * ‘the
average grain size in these filaments was about one-fifth the diameter
of the wire.” So that the average grain size was about 1 X 10~ cm.
which is about the same as the calculated value of b.

* Taylor and Langmuir, reference 25, page 431.
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Another striking confirmation of the hypothesis that various crystals
of a filament have different work functions and thus emit electrons
with greatly varying intensities, is given by pictures of such filaments
obtained by means of electron optics.* Figure 21 shows an electron

Fig. 21—Electron-micrograph (above) and photo-micrograph (below) of platinum
ribbon.

and photo-micrograph { of a portion of a platinum filament. Cor-
responding crystals have been labeled by 1, 2, 3 and 4. The reader
can find more cases of correspondence. Of course, a perfect cor-
respondence is not to be expected since two neighboring crystals may
have the same reflection properties for light while the electron emis-
sivities differ and vice versa.

Fig. 22t—Electron-optical pictures at various stages of heat treatment for a nickel
surface coated with oxide.

Figure 22 shows a series of electron-optical pictures taken by W.
Knecht 2 of part of a nickel surface covered with BaO and SrO. The

* For an interesting and instructive account of the technique and applications, see
the book: Geomelrische Elektronenoptik by E. Briiche and O. Scherzer, published by
]. Springer (Berlin, 1934).

1 I am gratefully indebted to Dr. C. J. Davisson and Mr. C. J. Calbick of these
laboratories for this figure.

1 We take this opportunity to thank the publishers of the Annalen der Physik for
permission to reproduce this figure from Knecht’s article in Annalen der Physik 20,

180 (1034).
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original magnification is 27-fold. Several lines were scratched on the
surface. The filament was mounted in a vacuum tube and activated.
Picture “a' shows the electron emission from the various granules of
the oxide. At this stage the cathode had the characteristic appearance
of ordinary oxide coated filaments. The filament was then flashed
at a comparatively high temperature for successive intervals of time.
After each interval another electron picture was taken. As a result
of this treatment the oxide evaporated so that the filament had a
metallic appearance. However, there is good reason for believing that
metallic barium had been alloyed with the nickel, and the emission
was much greater than that from clean nickel. The pictures show
that when the oxide has disappeared, different areas emit electrons
with greatly different intensities. The shapes and sizes of these areas
are strikingly similar to those obtained in ordinary optical pictures.
In fact Knecht states that the pattern is that of the nickel crystals.

Numerous other pictures similar to Fig. 22 can be found in the book
by Briiche and Scherzer referred to above. Some of these indicate
that there is a fine structure non-uniformity inside of a single crystal
as well as the non-uniformity between crystals.

The emission from thoriated tungsten has also been investigated by
electron optics and while the pictures are not as striking as those for
barium on nickel, they prove rather conclusively that the emission
varies from one crystal to the next or from one region of a crystal to
the next. Finally the emission from surfaces to which no impurity
has purposely been added have been investigated. These too show
patchy emissions.

It has generally been felt and frequently stated that the emission
from clean surfaces, particularly clean tungsten, varied with applied
field according to the Schottky equation. While this is true at moder-
ate and high fields, I have never seen data which showed agreement at
low fields, but have seen data which showed disagreement. The
deviation is less pronounced than it is for thoriated tungsten but in my
opinion it is none the less real. This I have interpreted to mean that
even in a polycrystalline surface of clean tungsten, individual crystals
have work functions which vary by one-tenth or a few tenths of a volt.
This interpretation receives strong support from the work of Farns-
worth and Rose. They showed that a (111) surface of a single
crystal of copper had a contact potential with respect to a (100) surface
equal to 0.463 volt. The direction was such that the work function
of the (111) surface was 0.463 volt less than that of the (100) surface.
Even after heating the crystals to about 900° C. for as much as 1000
hours, the contact potential difference was still 0.378 volt and had
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remained practically constant during the last 700 hours. This decrease
is ascribed to the formation of new crystal facets, which produce more
nearly equal work functions for the two surfaces. That different
crystal planes have different work functions also follows from the
photoelectric work of Nitzsche 8 on single crystals of zinc. The work
function for a surface normal to the hexagonal axis was found to be
3.28 volts while that for a surface parallel to this axis was 3.09 volts.
These observed differences in work function of different surfaces of
single crystals are quite large enough to account for the deviations
from the Schottky law for clean surfaces.

Still another prediction of the patch theory is verified by experiment.
In connection with Fig. 15 it was peinted out that at low applied fields
something more than half the area is effective in emitting electrons; as
the field is increased the effective area decreases until the log i 5. ¥ F
curves approach the Schottky line when the effective area attains a
constant value whose order of magnitude is 0.1. From this it follows
that if Richardson lines are obtained for a series of applied potentials,
the intercepts or values of log A should decrease as I increases, but
should approach a constant value for sufficiently large values of V.
Experimental values of log 4 vs. " are given in Fig. 14 of Brattain and
Becker’s * article on thorium on tungsten. They show the predicted
trend. Furthermore, the change in log 4 with V should be most
pronounced for large values of u. It was shown above that the
largest values of u occur in the neighborhood of f = 0.6 while near
f = 1.0, pis comparatively small. The experimental curves show the
largest dependence of log 4 on V for f = 0.6 and only a small de-
pendence for f= 1. In this respect too, experiment confirms the
theory.

Non-uniformities on the cathode affect the shape of the retarding
potential curves as was explained in a previous section. Here too,
there is at least qualitative agreement between theory and experiment.

In connection with the analysis of log 7 vs. ¥ F curves we have, in
the course of the last five or six years, developed a number of simple
methods for computing approximate values of b and x. We have also
proved a number of useful theorems. If and when the interest in
this subject warrants it, we intend to publish these methods and
theorems.

Checkerboard with Uniform Charge Distribution

While the agreement between experimental log 7 vs. 4 F curves with
theoretical curves based on a hill and valley charge distribution over a
checkerboard array is quite good, it is probable that even better
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agreement could be obtained if the charge density over the black
squares was assumed to be uniform and equal to p + & while over the
white squares it was assumed to be uniform and equal to p — %. In
terms of the previous notation, 8 = -+ 1 for all points of the black
squares while 8 = — 1 for all points of the white squares.

If we use the coordinates indicated in Fig. 11A, such a charge
distribution can be represented by the following double Fourier series

16w (— DOV aNx o (= )EE Ky
a—p—l—?EN ¥ cos— K z cos —=, (74)

in which N takes on all values, 1, 3, 5, 7, etc., and for each N, K takes
on all the values 1, 3, 5, 7, etc.  If such a charge distribution is located
at a distance I above the surface while its image is located at a distance
1 below the surface, then the potential energy of an electron due to
this double layer is given by

300 X 65ul — 1)W+E)2
P,Je = — 300 X 4mpl — % ZNZK(—_J\)IT‘—
i 2 2%
X exp (_W%Q z) COSN;xCOS@. (75)

This formula is accurate provided I/b < 1, which is always fulfilled in
any case in which one is likely to be interested. The electric field
normal to the surface due to the double layer is

1dP, _ MZ 5 _(._ 1)V +RI(N? 4 K2)}
e dz b N K NEK
— 2 2\ 1

X exp(i.w—b—'_ﬂz) TN K (76)

CcOos T X COST y.

Equations (74), (75) and (76) reduce to the corresponding equations
for the hill and valley distribution if 16z/7? is replaced by u and if only
the first term of the double series is used, i.e., if N =1and K = 1.
See equations (70) and (71).

Recently Mr. Albert Rose working with Professor L. P. Smith at
Cornell University has made calculations for a checkerboard with uni-
form charge distribution and has compared his computations with
experiment. The agreement is as good as we have found and his
computed values of b and p are about the same as ours.

Linford ¢ in an excellent review on the external photoelectric effect
has shown that a checkerboard distribution of charge or potential
satisfactorily accounts for a number of photoelectric phenomena
observed with composite surfaces. His equation (42) is almost
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identical with equation (75) above if his Vy = 8w/, his 2/ 4+ 1= N
and his 2k 4+ 1 = K. His equation is not quite as general as ours
since he deals only with the case for which p = j.

Compton and Langmuir * in 1930 presented an interesting discussion
of the poor saturation in composite surfaces. They, too, proposed a
checkerboard or patch distribution like the one we are discussing,
and on page 151 of their paper they give an equation for the potential
above such a surface. Unfortunately there is an error in this equation
which was pointed out by Linford.®* They use only a single summation
whereas a checkerboard distribution requires a double summation.
However, since they use only the first term of their summation and
since this first term is the same as the first term of the correct equation,
this error is not serious in their case. Their formula, too, is less
general than equation (75) since they deal only with the case p = ;
this is equivalent to assuming that the white squares are clean tungsten
and only the black squares are covered.

They reject their patch theory because (1) ‘‘to obtain departures
from the Schottky curve comparable to those observed, the patches
must be assumed to contain many thousands of atoms,” and (2)
‘“the patch theory predicts a departure from the Schottky curve which
is small with small fields and increases with large fields, whereas
exactly the reverse is the actual case.” f From what has been said
above it is clear that their second objection is really tied up with their
first one, for if larger patch sizes are assumed their statement is
incorrect and quite good agreement is found with experiment. They
assumed a value of & = 10~% cm. whereas the experimental curves
require b ~ 10~* cm. They feel that such *‘extremely non-uniform
distributions’ or "'such large clusters of adsorbed atoms’ are “very
improbable.” One reason for this belief is that * Becker has shown,
for example, that a thorium layer at emission temperatures behaves
like a two-dimensional gas on the surface.”

In my opinion these objections to the checkerboard or patch theory
are not well founded. It seems quite natural to me that various
crystals on the surface or various crystal facets may have somewhat
different adsorptive properties and that consequently different crystals
would be covered to different extents with thorium and would thus
have different work functions. It is probable that the size of the
squares should be comparable to the crystal size which is of the order
of 107* ecm. This is still true if thorium migrates over the surface
of the tungsten. The successes of the patch theory presented above
far outweigh these objections.

* Reference 1, especially pp. 146-160,
t Reference 1, p. 157.
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More than this, some of the very data presented by Compton and
Langmuir support the generalized checkerboard theory as we have
presented it, i.e., taking into account that both the black and the
white squares may be covered with thorium but to different extents.
On page 155, Compton and Langmuir discuss two log 7 vs..4 F curves
obtained by Reynolds® for thoriated tungsten. Curve 4 in their
Fig. 4 is a ““normal”’ curve while curve C is taken after the surface has
been bombarded by positive ions. They state ‘‘this bombardment
must have roughened the surface and there is evidence that it also
fractured the surface layer of tungsten crystals.” In our notation this
means that b has been decreased because of the roughening and g
has been increased because the amount of thorium removed in some
spots was larger than that removed in others. Now the decrease in b
should shift the region at which the curve approaches the Schottky
line to higher values of F or ¥ F; while the increase in u should result
in a steeper curve and should decrease log 7,. (See our Fig. 16.)
But this is precisely what curve C does.

Reynolds® in discussing this same data says: “The effect of bom-
bardment was a semi-permanent one. Subsequent activation and
deactivation by temperature (below 2700°) shifted the curve along the
current axis but did not otherwise alter its unique character. Flashing
at 2700° K. or higher, where rapid sintering of tungsten is known to
take place, destroyed the effect of bombardment and subsequent
activation produced normal log 7 vs. V¥ curves.” Every detail of this
behavior is just what is to be expected on our view; the ‘‘semi-perma-
nent” effect is caused by the decrease in b which does not become
normal until the damage to the crystals has been repaired by high
temperature treatment; the shifting of the curves along the current
axis is caused by changes in p and p brought about by activation and
deactivation.

On page 156 Compton and Langmuir ! discuss Kingdon and Lang-
muir’s data for thoriated tungsten at various degrees of activation
(@ or f) and at various temperatures. Some of the results are shown
in their Fig. 5 which is a plot of T log i vs. ¥ . They point out three
and only three distinctive features of these curves. All three support
the checkerboard theory. They say: ‘‘At the highest field-strengths
(about 10,000 volts/cm.) the curves are seen to approach the theoretical
slope.” Qur analysis shows that this means that all surfaces have
about the same & irrespective of 8 and 7. This is predicted by our
theory since b is determined by the crystal size which is independent
of fand T. In discussing curves for a constant f they say: “In every
case the departures from the Schottky line become greater as the



THERMIONIC ELECTRON EMISSION 465

temperature is lowered, —.” The theory predicts this as shown by
Fig. 18. There may, however, be another reason: As T increases u
may decrease. If there are differences in concentration between
neighboring crystals, and if the temperature is high enough for migra-
tion to occur, Boltzmann's law would require that the difference in
concentration should decrease as T increases.

About the third feature they say: ‘ These results indicate that with
nearly complete thoriation of the surface (f = 0.91) and with a bare
surface (f = 0.00) the approach to the Schottky curve is fairly close,
but relatively large departures occur with incomplete thoriation.”
This fact which is abundantly confirmed by my experience not only
with thorium on tungsten but also with cesium on tungsten, cesium on
oxygen on tungsten, and barium on tungsten means that as f increases,
k increases at first, rises to a maximum and then decreases. Such a
variation of g with f is to be expected from the shape of the log 7 vs. f
or ¢ vs. f curve which will be discussed more fully later on. As f
increases, ¢ decreases rapidly at first, then more and more slowly until
it passes through a minimum when f = 1; beyond this point ¢ increases
again. Itis natural to expect that Af, the difference between f for the
black and the white squares, should increase with f; Af is probably
nearly proportional to f. From this and the shape of the ¢ — f curve
it follows that A, the difference in ¢ between black and white squares,
is small when f is small; as f increases Ay increases at first but later on it
decreases; when f approaches 1.0, A approaches 0 and the surface has a
uniform work function. Since p and Ag are proportional, u should
vary in the same way. Hence this feature of Compton and Lang-
muir’s curves as well as the first two is entirely in agreement with the
predictions based on the checkerboard theory.

Whether the uniform charge distribution or the hill and valley
distribution gives better agreement with experiment has not been
decided. This, however, is not very important or very pressing. In
an experimental filament the distribution is probably neither one nor
the other but something in between. Furthermore, it should be
emphasized that in an experimental cathode the patches are not all of
the same size nor is the contact potential between two neighboring
patches a constant; both of these quantities fluctuate about a mean
value. Nevertheless I believe that a sufficiently good case has been
made out to show that non-uniformities play an important role in
many thermionic experiments, and that the checkerboard theory can
be used as a powerful tool in the study of adsorption phenomena, where
non-uniformities almost always occur.

This analysis of the effect of non-uniformities has brought out that
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the work function is not a characteristic of a given substance but
rather of a given surface of a given substance. Strictly speaking, one
should not talk about the work function of tungsten but rather of the
work function of a particular surface of tungsten. This is true even
if the surface is clean tungsten.

THE VALUEs oF THE WORK FunNcTION. FOR CLEAN SURFACES

The experimental determination of the thermionic work function
or the heat function for clean metal surfaces has been the subject
of many investigations. In the case of a number of elements, the
determinations by different investigators are not in accord. This is
due, in most cases, to adsorbed layers of foreign material caused by
either poor vacuum conditions or impurities in the metal which have
not been eliminated by a proper heat treatment. Although these
measurements have been summarized and discussed in other reviews,
it seems advisable that the summary be brought up to date and the
most probable values selected from the existing data. Since the
photoelectric work function is equal to the thermionic work function,?
the determination by photoelectric methods should also be included.

A summary of the data is shown in Table IV. The values of the
photoelectric work function and the thermionic heat function are
expressed in volts. The reference for each value is indicated by the
superscript. As discussed in an earlier section, the heat function is
the slope of a Richardson line. The photoelectric work functions are
mostly calculated from the long wave-length limit except in the case
of recent determinations which are made by an analysis of the data
by Fowler’s ! method. The photoelectric values listed in the table
were selected as representative of values for the best outgassing of each
element. For a listing of all determinations see Hughes and Du-
Bridge's book. In most cases, the heat function and the thermionic
work function differ only by small amounts so that for practical pur-
poses we can compare the photoelectric work function with the heat
function. The most probable values of the heat functions tabulated
have been chosen from the several determinations.

Recently several attempts have been made to find an empirical
relation between the work function and the atomic properties of the
elements. Such a correlation, if applicable to all of the metallic
elements, would be of value in predicting values of the work function
for the cases in which the existing data are inadequate or no data are
available. The work of Rother and Bomke # gives the best correlation
thus far obtained. In their article they have given a summary of the
early attempts at a correlation and therefore we will not consider
them here,.



TABLE 1V

COMPILATION OF VALUES OF PHOTOELECTRIC AND THERMIONIC WORK FUNCTIONS IN
VOLTS AND THE VALUE oF THE HEAT FuncTiON

PROBABLE VALUE
ELEMENT PHOTOELECTRIC WORK FUNCTION THERMIONIC HEAT FUNCTION OF HEAT
FUNCTION
Ag (4.58 to 4.75)% (4.71 to 4.75)" (4.08)%= 4.7
Al (2.99)%» 3.0
Au (4.75 to 4.84)? (4.86 to 4.92)22 (4.32)= 4.8
Bi (4.05) (3.74)7 (4.37)% 4.1
C (4.72)28 (4.81)4 (3.93)% 4.7
Ca (2.76)%0 (3.20)% (3.02)29 (2.24)19 3.2
Cb (3.96)57 4.0
Cd (4.07)* 4.1
Ce (2.84)% 2.8
Co (4.12 and 4.25)4 4.2
Cr (4.60)3% 4.6
Cs (1.67)%0 (1.81)% 1.8
Cu (4.49)81 (4.08)3° (3.85)58 (4.33)>" 4.1
Fe (4.72)8 (4.77)n (4.04)3 (4.77)% (4.04)1 4.7
Ge (4.85)80 4.9
Hf (3.53)% 3.5
Hg (4.53)18. 27, 47 4.5
K (L77)% (2.0)3% 1.8
Li (2.21)%0 2.2
Mg (approx. 2.43)¢ 2.4
Mo (4.15)18 (4.08)37 (4.30)55 (4.50)38 (4.44)%0 (4.38)81 4.3
(3.48)40 (4.14-4.17)1 (4.32)1
Na (1.80)41 (2,25)4. 8 (1,94)80 1.9
Bii (5.01)= Eg;)lg-“ (2.77)51 (4.31)52 (4.63)11 (5.03)5 5.0
8 .
Pb (3.50;“ (3.97)% (4.14)%8 (3.97)% 4.0
Pd (4.97)17 (4.99)17 4.98
Pt (6.30)14 (6.27)15 (5.40)% (5.93)4s* 6.0
Rb 1.82)80 1.8
Re approx. 5,0)% 5.0
Rh 4.95 to 4.57)12 (4.58)12 4.6
Sh 4.02)10 4.0
Se 4.62)8 4.6
Sn 84.50; v4.38; liq. 4.24)" (84.30)2 4.4
Sr 2.06)1% 2.1
Ta 4.10-4.14)" (4,12-4,19)5 (4,12)% (4.2)% (4.51)3% (4,18)% (4.07)2 (4.04)4 4.10
'{)h "3# .34 “ (3.57)18 (3.38)4a (3.35)84 g‘é
w ;4 69 and 4.54)5 (4.60)4 (4.52)9 (4.53)11% 4,52
Zn 3.6 “ (3.68)% (3.08)% (3.32 and 3.57)1 3.3
Zr (3.73 (4.13)84 4.1

* For complete listing see S. Dushman, Rev. Mod. Phys.
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In the preceding sections the thermionic work function W was
shown to be equal to P — K where P is the difference in potential
energy between an electron at rest inside and outside of the metal
and K is given by equation (16). If we assume that there is one free
electron per atom in the metal for all elements, then

K/le = 25.9(D[M)}, (7M)

where D is the density of the metal and M the atomic weight.

From values of K /e given by equation (77) and experimental values
of W/e, Rother and Bomke calculated P/e for a number of elements.
Their values of P/e were said to be in accord with the empirical
equations

Ple = 12.6(Dz/M)} for some elements (78)
and
Ple = 16.3(Dz/M)} for all other elements, (79)

- where z is the maximum chemical valence of the element.

We have computed values of K /e from equation (77) and with the
most probable values of W/e from Table IV have determined the
probable values of P/e. Since the work function and the heat func-
tion differ by only small amounts, it is justifiable to use the heat func-
tions for W/e. To test equations (78) and (79) we have plotted log
PJe vs., log (Dz/M) in Fig. 23. According to equations (78) and (79),
the points should fall on two straight lines in this plot. The two lines
are shown in the figure and have a slope of 3. The values of z used in
this plot are those given by Rother and Bomke. The points lie in the
general neighborhood of the lines but there is no clear indication of a
division into two groups. The deviations in about half of the cases are
larger than the possible experimental error.

Bombke # has recently found that his values of P/e (from calculated
K /e and experimental W/e) plotted against the compressibility gave a
smooth curve. The equation of this curve was

Ple = 0.30k°%, (80)

where £ is the compressibility. Unfortunately he plotted his data on a
linear scale and most of the points on his plot were clustered near one
axis where the curve was steep, making it difficult to estimate the
deviations. A plot of log P/e vs. k which is similar to Fig. 23 showed
that the deviations were of the same order of magnitude as the devia-
tions in Fig. 23 previously discussed. Hence values of P/e calculated
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from equation (80) will only be approximate. The approximation is
about the same as computing P/e from equation (78) or (79). Equa-
tion (80) has the advantage that P/e is given by a single function.
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Fig. 23—Correlation of P with atomic properties.

Chittum * has related the work function to the bulk modulus of
compressibility in a different manner than that used by Bomke. His
computed values of the work function deviate from the experimental
values by about the same amount as do the values computed from
equations (77) and (80).

From the fact that metals with large atomic spacing have a low P
while those with small atomic spacing have a high P, it might be
expected that P would depend on the spacing of the atoms in the
surface layer and that different faces of a single crystal would have
different work functions. In fact, Farnsworth and Rose ?” have shown
that the contact potential for different faces of a single crystal of Cu
varies by about 0.4 volt; and Nitzsche ?* finds the photoelectric work
function of two planes of a single crystal of zinc different by about 0.2
volt. Now the values of (D/M) or of the cubic compressibility used
in the above calculations do not take into consideration any dependence
on the crystal face exposed and, therefore, we would not expect P to be
a single-valued function of these properties. This fact may explain
_ the failure to correlate exactly the body properties of the metal with
P or the work function. It is quite likely that a better correlation
exists between the work function or P and the atomic spacing which
prevails on the crystal faces which develop when a metal is heated in a
vacuum,
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F. CUuRrRENTS LIMITED BY SPACE CHARGE

Thus far we have only considered the effect of the surface and ap-
plied fields on the number of electrons that escape from a cathode and
reach the anode at a particular temperature. However, an electron
traveling from the cathode to the anode is also subjected to a field
due to all of the electrons in the space between the electrodes. If the
electron density in this space is large enough, the current that reaches
the anode will be determined by these charges rather than by the
work function and temperature of the cathode. The current is then
said to be limited by space charge. If, on the other hand, the applied
potential is raised to a sufficiently high value, the current is no longer
limited by the charges in the space but is then determined by the work
function and temperature of the cathode. The current is then said
to be saturated or limited by emission. The space charge and satu-
rated emission regions are illustrated by curve 2 in Fig. 24 which isa
plot of log 7 vs. log V. In the region to the left of point 4, the current
is limited by space charge and increases rapidly with the applied poten-
tial. To the right of 4, the current is limited by emission. Curve 2
has been calculated from equations that will be discussed later. A
sharp break point is indicated at A, whereas experimental curves
usually show a gradual transition. This gradual transition is due
to non-uniformities in work function.

When the current is limited by space charge, the charges in the
space increase the height of the potential barrier which electrons must
cross in traveling from cathode to anode. The current is determined
primarily by the applied potential and electrode geometry and second-
arily by the temperature of the cathode and magnitude of the saturated
emission. The problem of relating the current to these quantities
is very difficult but has been solved on the basis of certain simplifying
assumptions for several forms of electrodes by Child,*® Schottky,
Epstein,** Fry,2 Langmuir ®~% and others. These assumptions
together with the solutions will be summarized in this section.

In all of these solutions it is assumed that the maximum of the
potential hill which is due to the surface forces and the applied po-
tential, occurs right at the cathode surface. Actually, in the absence
of space charge, the maximum in the work distance curve occurs at a
small but finite distance from the surface, about 3 X 10~°® cm. for
the image equation with moderate applied fields. The space within -
this distance has a much larger density of electrons than if the potential
had its maximum value at the surface. The above assumption, there-
fore, neglects the influence of these excess charges on the space charge.
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This has been justified by Schottky * and Laue *” who concluded that
the effect of these charges is negligible. For convenience, the zero of
potential is taken not inside the metal but at a point where the electrons
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Fig. 24—Currents between parallel plates limited by space charge.

have just overcome the surface forces. Because of the assumption
made above, this point is taken at the cathode surface.
In order to obtain a solution, some assumption regarding the velocity
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distribution of the emitted electrons must be made. The simplest
assumption is that the electrons are emitted from the cathode with
zero velocity. From this assumption and the assumption discussed
in the preceding paragraph it follows that the potential maximum
always occurs at the cathode surface and the emitted electrons are
accelerated everywhere in their path between cathode and anode. The
current to the anode is determined by the potential distribution in
the space.

A better assumption is that the electrons are emitted with a Max-
wellian velocity distribution. For this case the potential maximum
occurs at some distance from the cathode. The position and value of
the maximum depends upon the work function and temperature of the
cathode, the geometry of the electrodes and the applied potential.
In order that an electron shall reach the anode, its initial velocity
normal to the surface must correspond to an energy which is equal
.to or greater than the potential maximum.

For parallel plates and cylindrical electrodes the following solutions
have been obtained for the two assumptions in regard to the velocity
distribution of the emitted electrons.

Electrons Emitted with Zero Velocity
For infinite parallel plates:

i = (V2/97)(e/m)}(Vi/x2) = 2.33 X 10-5(V1/x?), (81)

where 7 is the current to the anode in amp. per cm.?; x the distance in
cm. between cathode and anode; and V is the applied potential in
volts corrected for the contact potential; e and m are the charge and
mass of the electron, respectively.

For long coaxial cylinders:

i= (2v2/9)(e/m)}(VI/RB®) = 1.48 X 10~5(V/Rp?), (82)

B is a function of R/r, where R and r, are the radii of anode and cathode,
respectively. Table V shows a few values of #? as a function of R/rg

TABLE V
VALUES OF #?

Riro...... 1.0 2.0 5.0 7.0 10.0 20.0 40.0

[ 0.000 0.279 0.767 0.887 0.978 1.072 1.095
Rirg...... 70 100 200 400 1000 5000 )

[ S 1.088 1.078 1.056 1.036 1.017 1.002 1.000

taken from a table given by Langmuir and Blodgett.*
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The equation for coaxial cylinders only applies to an equipotential
cathode. Ordinarily the cathode is a filament and the potential varies
along its length because of the heating current. It is of interest to
examine the modification of the equation due to this effect. It can
be shown that for V, > V;

i = (2V2/9)(e/m)}(V,}/RG?)
X [1—=3Vy/4V,+ 3/24(Vy[Vy)*-- ], (83)

where V, is the applied potential between anode and negative end of
the filament and V; is the total potential drop along the filament.
For the case in which V, < V;

i= (2v2/9)(e/m)}(2V,52/SRB*V;) = 5.92 X 10~V 52/[RV,. (84)

For concentric spheres:
i = (42/9)(e/m)}(Vi/a?) = 2.96 X 10-5V1/a?, (85)

where o is a function of R/ry and has been tabulated by Langmuir and
Blodgett.® o* increases with R/ry. For Rfro = 5.0, o® = 1.141; for
Rirg = 10, o = 1.777; for R/r, = 100, o® = 3.652. :

Electrons Emitted with Maxwellian Velocity Distribution

For infinite parallel plates the space charge limited current is given
by

i= (ﬁ/gﬂ-)(efm}a((v - Vm);/(x - xm)z)
X [1 4 2.66(kT/(V — Vae)t]
= 2.33 X 1075((V — V) (x — xm)?)
X [1+4 248 X 10°¥T/(V — Va))i]. (86)
In this equation

Vi = (— 2.3Tk/e) log (i,/i) = — 1.98 X 10T log (i,/i) (87)
and Xm = 1.092 X 107873/, /44, (88)

where V is the potential applied between cathode and anode corrected
for the contact potential; V,, is the value of the potential maximum
measured with respect to the zero of potential previously defined; x
the distance between cathode and anode; x, the distance from the
cathode to the potential maximum; T the temperature of the cathode;
and 7, the value of the saturation electron emission. ¢{; is a function
of In (i,/i). Table VI gives a few values of ¢, as a function of In
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TABLE VI
VALUES OF {1.

In (4f8)...coooonn 0.00 0.30 0.60 1.00 1.60 2.40
o PP 0.000 0.979 1.312 1.600 1.881 2.117
In (G/0)............ 3.4 4.5 7.0 10.0 15.0 25.0

[ 2.293 2.404 2.511 2.544 2.553 2.554

(i,/i). The values listed in the table were selected from a more
extensive table given by Langmuir.¥ From equation (87) it follows
that space charge acts as if the work function of the surface were in-
creased by V.

An expression for 7 as a function of V could be obtained by eliminat-
ing V,, and x,, between equations (86), (87) and (88). Because of the
nature of these equations an analytical expression for i cannot be
given. However, for any temperature and electrode spacing it is
possible to calculate 7 as a function of V. The effect of introducing the
Maxwellian distribution of velocities can be seen by comparing curves
calculated from equations (86), (87) and (88) with equation (81).
Such a comparison is made in Fig. 24. Equation (81) gives a straight
line with a slope of 3/2 on such a plot and is represented by curve 1.
Curves 2 and 3 were calculated from equations (86), (87) and (88) for
parallel plates of tungsten spaced 1 cm. apart at 2000 and 3000° K.,
respectively. The introduction of the Maxwellian velocity distribu-
tion causes the currents to be somewhat higher than predicted by the
simple 3/2 power law, especially at low applied potentials. Further-
more, at applied potentials considerably less than necessary for
saturation, the slope of log 7 vs5. log 1V is less than 3/2. Near the break
point, the slope is practically 3/2.

For long coaxial cylinders, Schottky ?* and Langmuir * # have
pointed out that the effect of introducing the Maxwellian velocity
distribution is less important than its introduction in the plane parallel
case. Langmuir # has discussed an approximate formula for this case.

Effect of Fermi-Dirac Velocity Distribution

The introduction of the newer theory that the free electrons in the
metal have a Fermi-Dirac velocity distribution requires no medification
of the space charge equations deduced on the assumption of a Maxwel-
lian distribution. This is because of the fact that the electrons which
escape across the potential barrier at the surface have a Maxwellian
distribution, as was shown in connection with Fig. 1. In this con-
nection it is of interest to compare some calculations by Bartlett  as-
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suming a Fermi-Dirac distribution in the metal at 3000° K. with
calculations based on a Maxwellian distribution. This comparison
also is shown in Fig. 24, curve 3. The circles were taken from a curve
by Bartlett and the line was calculated by equations (86), (87) and
(88). The two calculations agree, thus indicating that the assumption
of a Fermi distribution in the metal leads to the same result as the
assumption of a Maxwellian distribution.

G. MisceLLANEOUS Torics

In order not to lengthen unduly this review we have omitted a discus-
sion of a number of topics. Such topics have either been adequately
treated in the reviews and books referred to in the introduction or else
no significant advances have been made recently. Some of these
topics are: Secondary electron emission, high field emissions, thermi-
onics as related to photoelectricity and contact potential,* and cooling
and heating effects accompanying the emission or absorption of elec-
trons. In connection with the last topic we feel that a critical analysis
of how the quantities determined by experiment are related to the
work function and heat function should be made. Most of these
experiments were performed before the day of the Fermi-Dirac-
Sommerfeld contributions and should thus be reinterpreted.
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