Mutual Impedances of Parallel Wires *
By RAY S. HOYT and SALLIE PERO MEAD

This is a theoretical paper relating to circuits of straight parallel wires
traversed by alternating currents under such conditions (frequency of the
alternating currents, diameter and spacing of the wires) that the resulting
non-uniformity of the current distribution is sufficient to play an important
part in determining the mutual and self impedances. The paper deals
primarily with the mutual impedances; but incidentally the self impedances
are dealt with almost as fully, except that no numerical calculations are
made for them.

Part I is mainly a discussion of the physical nature of the mutual and self
impedances in the generalized manner necessitated by the non-uniformity
of the current distribution. It deals with wires which are short enough com-
pared with the wave-length so that the complicating effects of propagation
are negligible and so that the current in each wire can be regarded as an ag-
gregate of filamentary currents.

Part I1 establishes, by recourse to electromagnetic wave theory, calcula-
tion formulas for the mutual and self impedances per unit length of a pair
of long straight parallel transmission circuits forming a square array.
Values of the mutual impedance are calculated over a frequency-range of
1 to 1000 kilocycles per second, for three cases of the circuits, and are com-
pared with measured values.

INTRODUCTION

THE concept of the mutual impedance per unit length between two
straight parallel filamentary conductors is well understood by
engineers, and its calculation formula is simple. This mutual im-
pedance is a pure reactance (directly proportional to the frequency),
the induced electromotive force being in phase quadrature with the
inducing current.

In the case of open-wire circuits, even when operating with carrier
currents of very high frequency, the mutual impedance can be calcu-
lated with high accuracy by regarding the wires as filamentary.

For cable circuits, however, the foregoing statement is not true,
because of the close juxtaposition of the wires. In such circuits the
wires may be termed ‘‘thick,” meaning that their diameter is ap-
preciable compared with their interaxial separation. Depending in a
complicated manner on the conductivity, permeability, diameter, and
interaxial separation of such wires, the frequency may easily be so
high as to render the filamentary formulas for the mutual impedance
of even straight wires quite inaccurate and unreliable. In such cases
it is necessary to consider the current distribution over the cross-section

* The two parts of this paper are distinct, though complementary. Part I
was written by Ray S. Hoyt, Part II by Sallie Pero Mead.
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of the wires.! When this is done it is found that the mutual impedance
comprises not only a reactance component, which is no longer propor-
tional to the frequency, but also a resistance component, which does
not vary in any simple way with the frequency. Both of these com-
ponent departures of the mutual impedance from its simple fila-
mentary value increase the difficulties of balancing out crosstalk, and
the resistance component has also an important effect on the attenua-
tion at carrier frequencies. These matters have recently assumed con-
siderable importance on account of the rapidly increasing interest in the
possibilities of communication transmission over non-loaded cable
circuits with the aid of carrier currents having frequencies high com-
pared with those of speech. As an approximate guide to the behavior
of twisted circuits in cables the theory and formulas for straight wires,
as developed in this paper, have proved to be of considerable service.

The present paper deals with the mutual impedances of two or more
straight parallel wires from two aspects: In Part I the physical theory
is developed and expounded. The current in a wire is there regarded
as made up of an indefinitely large number of parallel filamentary
current elements. On this basis it is shown (among other things) that
the current distribution over the cross-section of each conductor is
necessarily non-uniform, and that this non-uniformity gives rise to a
mutual resistance term in the mutual impedance, besides a change in
the mutual reactance term. In Part IT electromagnetic wave theory
is applied to develop formulas for the mutual and self impedances of a
pair of long straight parallel transmission circuits in close juxtaposition.
Cal!culations of the mutual impedance made with these formulas over
a very wide range of frequencies (1 to 1000 kilocycles per second) are
found to be in very satisfactory agreement with available experi-
mental results.? In both parts of the paper an endeavor has been
made to bring engineering concepts and formulas into closer relation-
ship with electromagnetic theory.

4

1 The convenient term ‘‘proximity effect” when applied to the distribution of
the current over the cross-section of a given conductor means the deviation of this
distribution from the ‘‘intrinsic distribution,” the latter meaning the distribution
when the given conductor is far enough from all other conductors so that the distri-
bution in it is sensibly unaffected by them.

When the given conductor is a straight uniform wire of circular cross-section, its
“intrinsic distribution" is of course axially symmetrical.

Not every axially symmetrical distribution is the same as the corresponding
intrinsic distribution, as is evidenced by the case of two coaxial conductors, where the
proximity effect in the outer conductor may be large although the current is axially
symmetrical in each conductor.

*See the paper by R. N. Hunter and R. P. Booth, in the April issue of this
Journal, entitled **Cable Crosstalk—Effect of Non-Uniform Current Distribution in
the Wires,”' which includes the results of some rather extensive sets of measurements
of the mutual impedance of straight wire circuits, and also of twisted circuits in
cables, and a brief physical discussion with particular regard to the effect of non-
uniform current distribution.
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PART 1

PavsicAL THEORY

The Physical System; Analysis of the Wire Currents inio Filaments

Since the mutual impedance between any two parallel circuits can be
expressed wholly in terms of the mutual impedances between the
various wires composing the circuits,® it will suffice in Part I to discuss
the mutual impedance between the two wires 4 and B in Fig. 1.
These are each of uniform cross-section, but they need not be alike in
cross-sectional shape and area nor in material.

The wires in Fig. 1 will be assumed very long compared to the dis-

POSITIVE DIRECTION

mM=NUMBER OF "FILAMENTS”IN A N =NUMBER OF FILAMENTS"IN B

Fig. 1—Two “thick" straight parallel wires. p, ¢ designate any two “filaments”
of wire 4; ¢, 0 any two of B.

tance between them, so that the end-effects ¢ in the current distribu-
tion will be negligible, yet short enough compared with the wave-
length so that the charging current will be a negligible fraction of the
total current and therefore the current in each wire of sensibly the
same value throughout its length.® These circumstances enable the
current in each wire to be treated as an aggregate of filamentary cur-
rents which are purely longitudinal, and correspondingly enable the
mutual and self impedances of the wires to be described and formulated
in terms of the mutual and self impedances of such filaments, thus
correlating well with the familiar treatment of a system of fine parallel
wires. This treatment by analysis into filaments has been chosen

# For example, the mutual impedance Z,, between two circuits a and b, of which
a comprises wires 1 and 2 and b comprises 3 and 4, is given by Z,, = Zuy — Zu4 — Zn
+ Z.,. However, since the wires are in general “thick,” the value of each mutual
impedance (also each self impedance) must depend on the presence of all four of the
wires.

4 These consist in the currents not being purely longitudinal near the ends of the
wires,

6 Negligibility of the charging current does not by any means imply that the
distributed charges on the surfaces of the wires are negligible as regards the voltages
which they produce, for extremely small charging currents suffice to establish charges
which can produce relatively large voltages.

For a discussion of this very important fact and other underlying concepts of
circuit theory, the reader is referred to a paper by John R. Carson, *Electromagnetic
Theory and the Foundations of Electric Circuit Theory,” published in this Journal
for January, 1927,
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because it lends itself well to a physical exposition and to the derivation
of the simple formulas needed in that exposition.

Since in general the various filamentary currents in a wire are not
in phase the total, or resultant, current in the wire, which is the com-
plex algebraic sum of the filamentary currents, must be less than the
arithmetic sum of the filamentary currents. An extreme instance of
this fact is presented by a wire, short compared with the wave-length,
which is on open circuit and is situated in the field due to other cur-
rents; for although the total, or resultant, current traversing any cross-
section of this open wire must be zero, the individual filamentary
currents are not zero.

The Two Parts of a Voltage, and Their Resultant ®

For clearness in describing and formulating the mutual and self
impedances of the wires, even when these are filamentary, it is neces-
sary to recognize that the voltage along any specified path (which
may, in particular, be a filament in a conductor) is in general the sum,
or resultant, of two voltages which are simultaneously present along
the path, namely the voltage due to all charges, and the voltage due
to all currents; for brevity, these two parts of the total voltage will be
called merely the ‘‘charge voltage' and the ''current voltage” re-
spectively—or, somewhat more fully, the “charge-produced voltage"
and the ‘current-produced voltage.” They will be denoted by V" and
U respectively, and their resultant by W, so that W= V + U.

The two parts of a voltage have the sharply contrasting properties
constituting principles “1” and ‘2" in the following set of four
principles, all of which are of much importance for the understanding
of electric circuit theory and transmission theory.

1. A “charge voltage’ (V) has exactly the same value along every
path between any two fixed points, and hence is zero around every
closed path.

2. A “current voltage” (U) has in general unequal values along
any two different paths between any two fixed points, the difference
in these values being accounted for by the time rate of change of the
magnetic flux in the space between the two paths; thus a *“current
voltage” is in general not zero around a closed path.

- 3. The total, or resultant, voltage (W) must evidently have the
same properties as the ‘‘current voltage” (U) in ** 2.”

4, For any current filament f in a conductor the product of the

resistance R; of the filament and its current I, is, by Ohm's law, equal

¢ This section is based on certain fundamentals of electromagnetic theory sum-
marized in an appendix placed at the end of the whole paper.
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to the total, or resultant, voltage along the filament; thatis R, = W,
= V;+ U;. Hence V; = R;I; — Uy, which is the most convenient
form in many applications, particularly those involving inductances.

Before taking up (in the next section) the more complicated subject
of the mutual and self impedances of ‘‘ thick’ wires, some of the fore-
going principles will be illustrated by applying them to the simple
system represented by Fig. 2, which comprises two filamentary wires

1 POSITIVE DIRECTIONS

m@mc >

Fig. 2—An illustrative circuit of two ' filamentary " wires, Il and K.

I and K forming a loop. The dotted line G is merely a geometrical
path traced directly between the initial terminals of the two wires.

The first form of principle ‘‘1,” when applied to the two separate
paths G and K between the initial terminals, gives:

Ve = Vu+ (— Vk). 1

The following two equations result from the last form of principle
“4" when supplemented by the definitions of the self and mutual
inductances of filamentary wires, which enable the U’s to be expressed
in terms of the I’s:

Vu= Rply — Uy = Ryly + twlyly + twlprlk, (1a)
VK= RKIK—' UK= RKIK+'iwLKIK+f:wLK}IIH, (1b)

where Ly denotes the self inductance of wire H, Lgx the mutual in-
ductance’ between I and K, w = 27 times the frequency, and
i = Y— 1. Further, on account of the choice of positive directions
shownin Fig. 2, Ix = — I'y. Accordingly, replacing I'x by — Iy and
substituting the resulting values of Vg and Vg into equation (1)
gives:

Vo= (Zuu + Zxx — 2Zpx)1n, (1c)

where Zyk = twlyx = wlgy = Zxn, Zun = Ry + imLH, etc. It
will be observed that while the “current voltages' have been elimi-
nated (through the self and mutual inductances and the currents),
the “charge voltages’’ remain and play the role of ‘‘applied voltages.”
For wire H (Fig. 2), the equation (la), when written in the form

Ruylpy=Wy=Vug+ Upg= Vg —itwlly— Lyx)lu, (2)

11

7 The first subscript designates the ‘'disturbed” wire, the second the ‘‘disturb-

ing” wire ("inducing” wire).
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and its “vector diagram" (Fig. 3) both show that, in the limiting case
of a perfectly conducting wire (Rx = 0), Vg and Uy would exactly
balance each other, their values being exactly equal and opposite;

Vi =
“"CHARGE
VOLTAGE"

UH= '
“CURRENT !
VOLTAGE i

Fig. 3—Vector diagram relating to wire H of Fig. 2.

and that, in the case of an actual wire of low resistance, Vg and Uy
nearly balance each other, their values being nearly equal and nearly
opposite, so that their resultant Wx = Ryl uisasmall residual voltage,
although Vg and Uy individually may be very large compared with
WH.

The Mutual and Self Impedances

The mutual impedance (and similarly the inductive part of each
self impedance) of the wires 4 and B (Fig. 1) cannot be defined as the
negative of the voltage induced in either by unit current in the other,
because the induced voltage necessarily has unequal values along the
various filaments of which the disturbed wire may be regarded as
composed. Thus in general this definition, which might be called the
elementary definition, is applicable only to the individual filaments
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composing the wires, or to wires which themselves are fine enough to be
regarded as filamentary.®

The self and mutual impedances of the wires could be formulated
in terms of the self and mutual impedances of their filaments by
eliminating the filamentary currents. However, without such elimi-
nation it is possible to obtain a type of formulation which is simpler,
more compact, and in many ways more enlightening, as will now be
shown by aid of the foregoing section:—Considering, in Fig. 1, any
filament p of wire 4, let R, denote the resistance of that filament and
I, the current through it; then, by Ohm's law, the product R,I, is
equal to the total voltage W, along p. But W, is the resultant of the
“current voltage" U, due to all of the wire currents, and the ‘' charge
voltage’ V, due to all of the charges; however, V, is equal to Vy, the
“‘charge voltage along wire 4 as a whole, since the ‘' charge voltages”’
along all of the various filaments in a wire must be equal. These
various facts are expressed by the equation *

R, =W,=Uy+ V,=U,+ Va. (3)
But, from the definitions of the filamentary self and mutual impedances,

Uy= —ZI, — EZMLJ — 2 Zwls, 4)
a=p @

where Z, = iwL, denotes the inductive part of the self impedance
Z.p= R, + iwL, of filament p, Z,, = iwL,, the mutual impedance’
between p and any other filament gof 4, and Z,, = iwL,, that between

8 The case where one wire is ‘‘thick" and the other filamentary is on the border
line, the elementary definition of the mutual impedance being applicable when the
“thick' wire is the disturbing wire but not when it is the disturbed wire.

The generalized definition, to be formulated later herein, must of course be such
that the mutual impedance between any two wires will have exactly equal values
in the two directions.

9 The distribution of ¥ over the cross-section of the wire being uniform, equation
(3) shows that if U is non-uniform I also must be, and conversely. This is exem-
plified in skin effect and proximity effect.

By averaging the whole set of equations, of which (3) is typical, relating to all of
the filaments in wire 4, and denoting the total current in this wire by [ and its
direct current resistance by R,° we find that

RI=W=U+V=U+V,
a bar indicating an average value over the cross-section. The relation R = W
appears sufficiently useful and interesting to justify its enunciation in the form of a
theorem, as follows: When the varying current in a single piece of uniform wire, which
may have any cross-sectional shape, has sensibly the same lolal value I throughout the
length of the wire, whose direct current resistance is RY, the product RI is equal to the

cross-sectional average W of the total, or resultant, voltage W along the wire belween its
two ends. For a wire which is fine enough to be regarded as filamentary, the above
equation reduces to RI = W = U+ V. For a wire carrying direct current, it

reducesto R0 =V = V.
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filament p of A and filament ¢ of B. On substituting (4) into (3) we
get for filament p the “ voltage equation:”

Vy= Zﬂ:zwlq + %ZML# = Va. (5)

Next we multiply this equation through by I, add together the m

such resulting equations corresponding respectively to the m filaments

of wire 4, and introduce the condition that the sum of the filamentary

currents in 4 is equal to I4. Finally, we divide the resulting equation

through by I4 and denote the current-ratios I,/la, 14/1a, Is/Is by

Ju Jg Jy respectively, each J thus denoting the ratio of a filament

current to the total current in the wire to which that filament belongs,

so that J may be called a “'relative filamentary current.” We thus get’
the equation

Va= IA%ZR:ZMJPJQ + IBZ§Z;=¢L:J¢- (6)
P

Comparison of this with the equation

Va=Zaala + Zaplp, (6a)

which is the “voltage equation” for wire 4 as a whole, yields the
following formulas for the self impedance Zi4 of wire 4 and the
mutual impedance Z4p to 4 from B (Fig. 1):

Zan = ;ZZ;,«J,}J@. (7} Zap = ;%Zmijrl]d&- (8)
[}

Similarly, for wire B,
Zpp = §;2¢31¢Je, (9) Zpa = §22¢pfafpv (10)
p

Z 4 denoting the mutual impedance to B from A. It will be recalled
that p, ¢ designate any two typical filaments of wire 4, and ¢, # any
two of B.

The presence of the relative filamentary currents (the J’'s) in these
equations accounts for the fact that the self impedance of a wire
depends on the current-distribution over its cross-section, and the
mutual impedance between two wires on the current-distributions
over their cross-sections. The self and mutual impedances of two
wires, such as 4 and B, must thus depend on the currents in any other
wires that may be present, because the voltages induced in A and B
by these other currents will partly determine the current-distributions
in A and B. Although the values of the summation expressions in
equations (7) to (10) depend on the currents in any other wires that



MUTUAL IMPEDANCES OF PARALLEL WIRES 517

may be present, nevertheless the forms of these expressions do not.
Thus, so far as the forms of the expressions are concerned, the two
wires A and B need not be alone but may be any two of a system of
parallel wires 4, -+, B, -+, D carrying arbitrary currents I4, ---,
Iy, -+, Iprespectively; still further, 4 and B may even be any two of
the parallel longitudinal parts of which any wire may arbitrarily be
regarded as composed.

Equations (8) and (7) respectively show that the mutual and self
impedances of ‘‘thick" wires have the following significance:

The mutual impedance between two wires is equal to the sum of the
weighted mutual impedances from every filament in one wire to every
filament in the other, the weighting factor of any filamentary mutual im-
pedance being the product of the corresponding two relative filamentary
currents (the J's).10

The self impedance of a wire is equal to the sum of the weighted mutual
impedances from every filament to every other filament, including the
weighted mutual impedance from every filament to itself, the weighting
factor of any filamentary mutual impedance being the product of the
corresponding two relative filamentary currents (the J's).!

Or, more briefly, the self impedance of a wire is equal to the sum of the
weighted mutual impedances from every filament to every other filament
and to itself.

Several matters of interest regarding the ‘'thick” wires 4 and B
(Fig.1) will next be discussed, mainly from the physical viewpoint
corresponding to equations (7) to (10).

Reciprocity of the Two Mutual I'mpedances

Since Z,s and Z,, are unquestionably equal, because they relate to
filaments, comparison of formulas (8) and (10) shows that the mutual
impedances Z,p and Zgs between the wires 4 and B are equal. The
same conclusion follows also from the first italicised paragraph above,
which is based on formulas (8) and (10).

Complex Nature of the Mutual and Self Impedances

Although every mutual impedance between different filaments is a
pure reactance which is directly proportional to the frequency, never-
theless the mutual impedance Z4z between the wires 4 and B has in

10 [n other words, the mutual impedance of two wires is equal to the sum of the
weighted mutual impedances between all of the various filaments taken in pairs
each pair consisting of one filament from each wire.

I [n other words, the self impedance of a wire is equal to twice the sum of the
weighted mutual impedances between all of the various filaments taken in pairs,
plus the sum of the weighted self impedances of the filaments. (The weighting
factor of the self impedance of any filament is evidently the square of its relative
filamentary current.)
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general not only a reactance component which is not quite proportional
to the frequency, but also a resistance component which does not vary
in any simple way with the frequency. On the basis of formula (8)
these facts are to be accounted for by the consideration that in general
the various filamentary currents in a wire are not only not in phase but
have no simple phase relations. Thus if (8) is written in the form

ZAB = iwz%LwJpJ'p = RAB + 'iwLABs (11)
P

then R,y is not zero, and Rap and L. vary with w although L,y does
not.

That the self impedance Z,4 of the wire 4 is not a pure reactance
can be accounted for similarly, with the additional reason that the
self impedance of each filament is complex, because of its resistance.
Thus if (7) is written in the form

ZAA = ;(Rp + ":‘-"‘L.D)-jrp2 + iwzﬂ gprquJq = R.-i + ’iwLA, (12)
the: R4 is not zero, and R4 and L, vary with w although R,, L,, L,
do not.

It may be noted that in the idealized case of perfect conductivity
the mutual and self impedances of the wires would be pure reactances
and directly proportional to the frequency; for in this case the fila-
mentary currents in any wire would all be in phase and their distribu-
tion would be independent of the frequency. (The current dis-
tribution would be the same as the charge distribution and hence
purely superficial.)

Case of Negligible Proximity Effect

The case here considered is that in which the wires 4 and B are of
circular or of annular cross-section (but external to each other) and
are far enough apart so that the proximity effect ! is negligible and so
that therefore the current distribution over the cross-section of each
wire is sensibly axially symmetrical.

For this particular case the mutual impedance Z i = Zpa is not
complex but is pure reactance, being equal to the mutual impedance
Z4op = Zpoar between two filamentary wires A’ and B’ having the
same interaxial spacing as the given *‘ thick"” wires A and B. Although
this statement is clearly true when only one of the wires is “thick," it
really needs a proof in the general case where both are *‘thick.” The
following simple proof depends on the fact that everywhere (except
near its ends) outside of a long straight wire, of circular or of annular
section, carrying an axially symmetrical current the magnetic field
produced by that current is the same as though the current were con-
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centrated in the axis, and the proof also utilizes the reciprocity relation
for the mutual impedances in the two directions between the two
wires involved; thus,?

Zap = Zag = Zpa = Zpa» = ZA‘B',
Zps = Zpar = Zyp = Zyipr = Zpryr.

The statement at the beginning of this paragraph is thus proved.

PART II

MATHEMATICAL THEORY AND CALCULATIONS

The theoretical investigation of the self and mutual impedances per
unit length of two long parallel pairs of wires in space is an application

4=

Fig. 4—Cross-sectional diagram of 4-wire system.
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of two dimensional wave propagation theory. The specific case of
four wires in a square array was selected as the basis of a comparison of
measured and theoretical values of mutual inductance. The configura-
tion with four equal wires is shown in cross section in Fig. 4 where
wires No. 1 and No. 4, centered at O; and O, and carrying currents
Iyand — I, respectively, form the first pair or primary and wires No. 2
and No. 3 at O: and O; and carrying currents I; and — I, respectively,
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Fig. 5—Real and imaginary components, M, and M3, respectively, of the mutual
inductance between a pair of No. 10 A.W.G. wires and a pair of filaments. Length
of wires = 74 inches; interaxial separation = 0.14 inch.
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form the second pair or secondary. We have

0103 = 0204 = 2¢
and
0102 = 0104 = \{_2_6.

The notation for the dimensions and coordinate systems is shown in
Fig. 4. The theoretical values of mutual inductance are calculated
from the geometry and electrical constants of this system by means of
the formulas which will be derived herein, while the measured values
are those obtained for this system by R. N. Hunter and R. P. Booth.?

Numerical Resulls

A close agreement between the values of mutual inductance com-
puted on the basis of the approximate formulas derived below and
the experimental results is shown by the curves in Figs. 5 and 6.
In fact, for No. 18 gauge wires, in which case the proximity effect is
comparatively small, the computed and measured values are indis-
tinguishable in Figs. 6A and 6B. Evidently the error introduced by
the fact that actually the line is comparatively short while theoretically
we assume it of doubly infinite length, is inappreciable. The drawings
give relative values of the real and imaginary components of the com-
plex mutual inductance M = M, + iM;, for 74 inch lengths of wires
with vertical and horizontal interaxial spacing of 0.14 inch over a
frequency range of 1 to 1000 kilocycles per second. (The value
0.565 X 103 emu. is assumed for the conductivity of the wires and
unit permeability for both wires and dielectric.) The solid curves
represent computed values and the dotted curves measured values.
The values shown are the ratios of M, and M, to the value of M, at
1 kilocycle. In Figs. 5A and 6A the frequency scale is linear, while in
Figs. 5B and 6B it is logarithmic. The computed curves of Fig. §
(obtained from formula (13) below) assume a pair of No. 10 A.W.G.
wires (0.102 inch in diameter) as the primary and a filamentary
secondary. Actually the secondary was a pair of No. 28 A.W.G. wires.
In the two cases shown in Fig. 6, computed from formula (14) below,
both pairs of conductors are of the same size; namely, No. 10 and No.
18 A.W.G. wires, respectively (the latter being actually 0.0410 inch in
diameter).

It will be observed that we have the relation

M = Zm/"':wr

Z,. denoting the mutual impedance, w/27 the frequency and ¢ the
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Fig. 6—Real and imaginary components, M, and M, respectively, of the mutual
inductance between (1) two pairs of No. 10 A'W.G. wires and (2) two pairs of No.
18 A.\W.G. wires. Length of wires = 74 inches; interaxial separation = 0.14 inch.

imaginary. In the last step of the analysis below the mutual im-
pedance of two circuits of wires of large 2 cross-section is derived by a
method of successive approximations. A first approximation is ob-
tained by assuming the field due to each wire of the second pair cir-

12 The wires of a pair are to be considered ‘' large” for a given frequency (f),

provided the values of the radius (@), interaxial separation (d), conductivity (¢) and
permeability (u.) are such that the magnitude

| (2a/d)(Ji(z) [ To(2))?]

is not small compared to unity. Here Jyand Ji are Bessel functions of the first kind
of zeroth and first orders, respectively, and of complex argument, ¢ = ia Virouiw.
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cularly symmetrical. Physically this is equivalent to assuming the
concentration of the current on the axes of the secondary as if it were
filamentary so that the proximity effect in this pair is eliminated.
Thus equation (13) formulates the solution of the case which is
represented in Fig. 5. Regarded as an approximation to the solution
when both pairs of wires are of large cross-section, it will be seen
that these values account for about 50 per cent of the departure
of the final results from the d.c. value. (This is 0.261 microhenry for
the square arrangement.) The second approximation (formula (14))
takes into account the circularly unsymmetrical components of the
field due to the unsymmetrical distribution of current density in the
wires of the secondary as well as of the primary and so adds the prox-
imity effect due to the thickness of the secondary. A summary of the
formulas for mutual inductance follows:

Formulas
With the notation
A= al2c
a = radius of wires in centimeters
2¢ = diagonal interaxial separation of wires in centimeters
o = conductivity of wires in emu.
f = /27 = frequency

and denoting by M@ the complex mutual inductance per unit length
of two circuits, one of wires of large cross-section and one filamentary
or, from the other point of view, a first approximation to the mutual
inductance of two circuits of wires of large cross-section and, by M,
a second approximation to the latter, we have

M® = 4(log, V2 — ki), (13)
M= MO — 4k, — Tk + 4ks), (14)
where
_ R‘ZTl
L
_ Aty
k= T

Tl=1+igber'x+ibei'x’
x ber x 4+ 7 bei x
—1— v+ iv when x — =,

i =1—7'§—i4 ber.'r—{—ibeix'
? ‘22 x ber’ x + 1 bei' x
— 1 — 2v + 42y when x — =,

x = avdrow = V2/v,

v = 1/(2ma \fﬁ)—.
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For values of ber x, bei x, ber’ x and bei’ x see Jahnke u. Emde, “ Funk-
tionentafeln.” M@ and M are given above in emu. per centimeter.
We assume M and M proportional to the length and multiply by
0.1880 to obtain michrohenries per 74 inches.

No assumptions with respect to frequency are made in formulas
(13) and (14) but terms of the order of magnitude with respect to
unity of 9%,® = 9A® or smaller are neglected. That is, the accuracy of
(13) and (14) is limited by the dimensions rather than by the frequency.
But for frequencies of about 100 kilocycles or higher and not too small
wires (that is, when x = about 10) formulas (13) and (14) may be
expressed in interpretable form; namely,

) MO = M,® 4 iM,© (15)
an
M = Ma + ":Mbl (16)
where
0 =411 32 b N
M@ = (Og* _1—2)\2+1—4A2”)'
RZ
0) = 4"
My H—om”
M, = M,® _4(L_3)\4 + 4y jﬁ_@\.;)
“ ¢ 1 — 27\ 1 — 452 !

AZ
= M,©® — LNV
My = M, 4V(1 e oA )
The asymptotic values (when f or ¢ or both approach infinity) are,
therefore,

2
Mo = 4(logewf§ _1%'2?) (17)

A2
= M — - _
M= MW 4(1 e 37\4) (18)

and the d.c. value (when f approaches zero) is, of course,
M = 4 log, V2.

Thus M is real (i.e., My = 0) when the frequency is either zero or
infinite.
Formal Solution

The following derivation of these results is an application of the
general method of calculating the self and mutual impedances in a
system of parallel wires which is outlined in Section V of John R.
Carson’s paper “‘ Rigorous and Approximate Theories of Wave Trans-
mission along Wires,” B. S. T". 7., Jan., 1928. This method of solution
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has proved valuable in investigating a variety of problems in wave
propagation along parallel conductors. Reference may be made to
the paper itself for a fuller exposition of the underlying theory, much
of which is omitted from the present analysis.

In terms of a vector potential 4 and a scalar potential V, the elec-
tric and magnetic forces E and I per unit length in the dielectric are
given by the relations,

E= —grad IV — iwd
and (19)
uH = curl 4,

where u is the permeability of the dielectric. Assuming that the wave
varies as exp (fwf — vz) and putting F = {wd., the axial electric force
E. (omitting the subscript z) may be written

E=~V—F, (20)

where v is the propagation constant per unit length of the system.

Now, as we shall show below, the electric force E inside of the con-
ductors and the wave function F in the dielectric may be expressed as
linear functions of the conductor currents. That is, at the surface of
the jth conductor, for example, we may write

E; = eyly + esils + e5ils + esily
and -

F; = iy + foils + faids + fuils,

where e;;, and f;, are determined by the geometry and electrical con-
stants of the system. (17, the potential at the surface of the jth
conductor, is determinable from the geometry of the conductors as a
linear function of the conductor charges, Qi, s, -+ -; that is, V; may
be written

Vi= p1iOn + 2,02 + $3i0s + £1;04,

the p coefficients being the Maxwell potential coefficients of the system.
These, however, are not required in the present problem.)

But relation (20) must hold at the surface of the conductors. Thus,
since the electric force is continuous at the surface of the conductors,
relations (20) and (21) give

Zn + Zoyls + Zyls + Zuls = ~vVi= E,+ F, rn=a,
(22)

Zuli + Zodo + Zyls + Zuly = vV = Es+ F, ry=a,
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where
Zi = e + [ = Zuiy

Z:i':l' = Zkkl

and

the Z coefficients being the self and mutual impedances of the indi-
vidual conductors. The required self and mutual impedances, Z, and
Zm, respectively, however, are the impedances of the circuits 1-4 and
2-3. Owing to the relations, I; = — I, and I, = — I3, of the cur-
rents, Z, and Z,, are given by

Z'a = Z(Zu - Zu)

and (23)
Zm = 2(22] - Zﬂl)-

Thus, from equations (22) and (23), we have
Z.BII + ZmI? = 'Y(Vl — 1/4) = Z(El + F)r t = a. (24)

The problem is then reduced to the determination of E and Fin terms
of I, and Is.

The function F must satisfy Laplace’s equation in two dimensions
and may be resolved into four waves centered respectively on the axes
of the four wires, each satisfying Laplace’s equation. Thus, at any
point (7, 8;) in the dielectric, F may be written

F=F1+F2+F3+F4, (25)
where
F;i = Aﬂ;' IOg t + )_: (Anj‘(_:c%f—aj—*' Brtiglr:, T:TBI) ’ ] = 1v 2! 3! 4.
n=1 i i

The arbitrary constants A4,; are determined by the relations

27
bl = — f (f;f) ado;. (26)
o rj ri=a

But owing to the specific configuration and to the conditions
I4: ““Il aﬂd Igz —Iz, (27)

the 8 arbitrary constants A,;, B,; may be reduced to 4n. Thus, we

have
Aul: - Aﬂ4=An| Bnl=Bn4= Bm

(28)
AnE = - Ana = Cm Bﬂﬁ = -Bﬂﬂ = -Dm

and also

AU]= —Am: ““2#1.(,0]1, Aazz —AD.’;= - Zpiwfg.
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Inside of the conductors the axial electric force E; must satisfy the
wave equation in two dimensions. It may, therefore, be expressed
as the Fourier-Bessel series,

E; = goiJo(rizla) + nxlf,.(r,-z/a)(g,,,- cos n; + h,;sin n8;).  (29)

The constants gg; are given by the relations

. i [ OF; _
drpawl; = jol (R) e adb;
or |
| Jo(rizla
go; = ZfIi—_(r;l(z—é'll (30)

Z, being the internal impedance per unit length of the jth conductor
with concentric return. Here u. is the permeability of the conductor,
J.(z) is the Bessel function of the first kind of nth order and argument
z = aiV4roudw and the arbitrary constants g.; and h,; are to be
determined by boundary |conditions; it is evident, however, that we
must have

g F — Ena, ftat = T,

31
Egna ﬁ - Ena, hnﬂ = hna- ( )
At the surfaces r; = «, the boundary relations are
| OF _ _mOE
| or; e 975
and (32)
aF _ _OE
ag; ae;’

Heénce, introducing (25) and (29) in (32), applying (32) at the two
surfaces 71 = @ and r: = a and equating harmonic coefficients, gives 8n
equations in the 8n arbitrary constants 4., Ba, Cu, Dn, gn1, gn2s Bty
Jina. This procedure requires that F be expressed in terms of 1, 6, and
of rs, 6 by suitable transformations of coordinates.!” Thus, for all
points in the neighborhood of 7, = @, for example, F may be written

F = 2oy 10g 2 + 2uioly log% > ( - 512) C.

= £ (=) [(es) e = cot (s ) B = Do)
-+ i: (cosnby) (A,/rn"+ Ba/r™) + Z: (sinn6y) (Co'r" + Du'ri™), (33)

13 The necessary formulas for these transformations are derived in Note II of
the paper ‘' Transmission Characteristics of the Submarine Cable” by John R.
Carson and J. J. Gilbert, Journal Franklin Institute, December, 1921.
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where 4,', B,', C,’ and D, are expressible in terms of 4,, B,, C, and
D, and of the currents, electrical constants and dimensions of the
system. In the neighborhood of 7, = a, F is given by a similar ex-
pression in the coordinates 7, 6.. The application of the boundary
relations at ;, = @ and r: = a then, as explained above, leads to a set
of equations which determine the arbitrary constants in terms of the
currents, electrical constants and dimensions of the system. When
these equations are solved and the arbitrary constants are known,
equation (24) becomes

ZJy+ Zuly = 2 (zl + 2pic 1og%+ A,,) I

—+ 2 ( 2#‘1-1.0 lOg? + Am) Izv (34)
2
where

AaIl + AmIE = - i (_ _‘)" C‘n

+ (sin " ) 8. = D |-

The formal solution is then complete, A, [y + A, representing the
correction in the series voltage drop of the primary circuit due to the
proximity effect.

Solution by Successive Approximations

As the set of simultaneous equations, upon which depends the de-
termination of the arbitrary constants 4,, B., Cn and D,, involves
an infinite number of unknowns, a direct solution is, in general, im-
possible. Consequently, some method of successive approximation is
required. The convergence of the harmonic sequences indicates the
practicability of the following procedure in the present problem.

(1) Determine first approximations 4, and B, by boundary con-
ditions at 7, = a, neglecting the summations in C, and D,. For the
first approximation only 4, and B, will be required and the series
may be represented by their leading terms.

(2) Determine C, and D,® in terms of 4, and B, by con-
ditions at 7. = a.
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(3) Determine 4,® and B,® in terms of C,™ and D, by con-
ditions at r, = a.

Then, we have, for example,
w0 1 n ] 1 n
2 —5) Co= 2 —5) (Ca® + Co® + C,® 4 ---) (35)
n=1 2¢ n=1 2c
and similar expressions for the other summations. Now, putting
C," = D,™ = 0, the first approximation to the proximity effect
is given by
AI(O) + BI(O}

@) O], =
AO + A, O], r 2

(36)

Next, since, for example, 45/ /(2¢)? is of the same order of magnitude
as A;0/(2¢), the increment due to C,® and D, ™ will be
4,0  B® D
) Wy, = —
As Il + Am Iﬂ 26 + 26 26

By® (M Dy

22 TR T 2 O7
Then a second approximation to A,I; + A, will be
(A, 4+ AN 4+ (A © + A, )],
and, in general, '
Ady 4 Anly = 35 (AT, 4 Ap™I). (38)

n=0

Applying this method we assume unit permeability for wires and
dielectric. Then putting the first approximation in equation (34)
gives equation (13) above for M©®. Neglecting terms containing
A, we find C1®/2¢ and D,®/2¢ ignorable. In B.®/(2¢)%, Ca®/(2c)2
and D, /(2¢)? we require the first terms. We then have

AW+ AnW Iy = — 24wl (ks — 6k + -+ + ks 4 ---)
— 2iwly(ky — Th* + -+ + 4ka 4+ -++). (39)
Hence
Zn = 4iw(log N2 — 2k, + Th® — -+ — dky + --+) (40)
and

2zl+4iw(log?—3kl+6kﬁ— R ) (41)

Zs
2
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where
Ny
kl - 1 —_ 2)21'1|
_ Ny
k=i,
and
2n Ja(7)
L=1—== .
T 5 Jual2)

The relations
Jo(2) = ber x + ¢ bei x
and
1
o) — —— ! ’ 1! A
J1(2) Wiy (ber’ x + 7 bei’ x),
where

z2=2x\V—1

give the expressions in equations (13) and (14) for r; and 7..
For the asymptotic values we have

%H_i,“’hc“x_,w'
so that
™ — 1 —|»1,2'£’
2
or
n—o1—v+iay
and
n— 1 — 20+ 2y,
where ’ .
» = N2 = 1/(2rafo).
Also,
> - .\
’ %T_—w(l 1= 27\2) Ty
A 2v oy
2 N T
ki - 2)@)2(1 1 — 2)\2) -I-a(l o
and

A 2v . Ny
L g 12)\4(1 i m*) iAo

Thus equations (15) and (16) readily follow.
In addition, the high frequency value of the self impedance, Z,, is
given by

2 2 2
z,w:=zzl(1+ﬁ—)+4¢w(1og% LS 2’“’)

1 — 4N Y CAL P
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and

2
Z,= 2,0 4 22, (13—"4)\2 - 6)\")

. A2 3., N,
4‘“’(@‘5"‘”(1—-4—)@ 3"))-

where

21_711\/;(1 +4) = wr(l + ).

APPENDIX *

ProbpucTioN AND PROPERTIES OF ELECTRIC FIELD INTENSITIES AND
VOLTAGES

This appendix gives a summary of certain points in fundamental
electromagnetic theory which are necessary for a thorough under-
standing of some portions of Part I of the paper.

Precisely defined, ‘‘voltage” (1) means the line-integral of the
electric field intensity (X) along a specified path (s) between two
specified points. Thus

W=fE,ds=fE-ds. (1)
(6] (=)

At any point, in a dielectric or in a conductor, the total electric
field intensity E is the resultant of a part k£, due to all charges and a
part E, due to all currents; thus E = E, + E,. (E;and E, might
be called the ‘‘charge electric intensity’” and the ““current electric
intensity " respectively.)

Precisely stated, the phrases ‘“due to all charges’ and “due to all
currents’’ have the same meanings respectively as in the formulations
of the "‘retarded scalar potential’ ¥ and the “‘retarded vector poten-
tial” A of electromagnetic theory, as summarized in the following
paragraphs. ‘‘All charges” and “‘all currents,” respectively, include
polarization charges and polarization currents in a dielectric, thus
allowing (indirectly) for a specific inductive capacity of any specified
value. Furthermore, ‘‘all currents” include also such additional cur-
rents (current whirls) as would account for a magnetic permeability of
any specified value. On the other hand, displacement currents are not
included and should not be, for they do not play the role of true

* This appendix relates to Part I.

14 The “‘electric field intensity " (or, briefly, ‘‘electric intensity ") is often called the
‘electric force.”
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physical “causes” when ‘‘retardation” is allowed for in the formula-
tion of the effects.’®

It is of course possible to give, in a single step, formulas for E, and
E. in terms explicitly of the charges and currents to which they are
respectively due. However, it is much preferable, both mathe-
matically and physically, to proceed in two steps, of which the first
consists in giving the formulas for the two potential functions, ¥ and 4,
and the second in giving the formulas expressing E, and E, in terms
of ¥ and A respectively. For convenience these four formulas will
now be given together. For completeness the formula for the mag-
netic field intensity H will be added, although it is of only secondary
interest here and in Part I of this paper; further, the formula for the
relation between ¥ and A4 will be included, since it underlies the
formulas for ¥ and A. These six formulas, which are classical,
follow. The functional notation g(¢ — r/c), in formula (2), indicates
that the charge-density ¢ is to be evaluated at the time ¢ — r/c, as
discussed in the next paragraph; similarly for the current-density u
in (3). '

T = IM@, (2) A =%fu(t—_rf-@dv, (3)
E, = —grad ¥, (4) Ey=— 71: aa;:i ' (5)
H = curl 4, 6) div 4 + % %‘f’ ~ 0. )

Although usually the application of the first two of these formulas to
specific cases is difficult and laborious, their physical meaning is
rather simple, as will shortly appear in the following description and
discussion of them.

The six formulas in the above set constitute a complete explicit
solution of Maxwell’s differential equations of the electromagnetic
field, and form the connecting link between those differential equations
and electric circuit theory. They express the potentials (¥, 4), and
thence the field intensities (E,, E., H), at a specified point P and time
¢, due to all of the distributed charges and currents contemplated.
The point P may be anywhere, in a dielectric or in a conductor; and
the time ¢ is that observed at P. dv is a fixed element of volume or of
surface (as the case may be!f) at any typical point in the contemplated

15 For a mathematical treatment relating to the various matters touched on in
this paragraph reference may be made to the appendix of the paper by John R.
Carson cited at the end of footnote 5.

18 For brevity the term *volume-element' will throughout be used generically to

include ‘‘surface-element” as a limiting case, with ‘‘charge-density’ being inter-
preted as “‘volume charge-density” and *'surface charge-density” respectively.
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system of charges and currents; 7 is the distance between dv and P;
and ¢ is the velocity of light in free space. ¢t — r/c) and u(t — r/c)
are the charge-density and the vector current-density, respectively,
in dv, not at the time ¢ but at the slightly earlier time ¢ — r/c, allowance
thus being made for the time of propagation of the effect from dv to P.
Thus in (2) the integration, made at the time £, which is that observed
at P, must include every volume-element dv which contained any
charges at the time ¢ — r/c, whatever the motions of those charges; and
in (3) the integration must include every volume-element dv which
contained any current (moving charges) at the time ¢ — r/c; moreover,
associated with each volume-element dv is a corresponding value of r.

r denoting distance, ¥ and A are called ‘‘potentials” because of
their inverse dependence on r and their direct dependence on the charge-
density g and the current-density # respectively. ¥ is called the
‘“'scalar potential” because it does not have direction in space; A
the ‘‘vector potential” because it has direction. These potentials
are qualified as being ‘‘retarded’ potentials” because the values to be
taken for the charge-elements and current-elements are not their
actual values at the contemplated instant ¢ but their ‘‘retarded”
values, that is, their values at the earlier instants ¢ — r/c. (It is to
be remembered that the time ¢ is that observed at the point P where
¥ and A are to be calculated.)

In the way of a summary statement regarding the set of formulas
(2) to (7), we may say that electric charges, whether stationary or
moving, produce a scalar potential ¥ calculable from (2), and thence
an electric field intensity E, calculable from (4); and that if the charges
are in motion, thus constituting currents, they produce also a vector
potential 4 calculable from (3), and thence an additional electric
field intensity E, calculable from (5) and a magnetic field intensity
H calculable from (6). Thus the total, or resultant, electric field
intensity £ = E, + E, is calculable from

194
E——grad\If—Eﬁ- (8)
If the contemplated point P for which E is calculated is in a conductor,
of resistivity p, where the current-density is %', there exists the addi-
tional relation E = pu', in accordance with Ohm'’s law.

Of the important contrasting principles enunciated in the section
entitled ““The Two Parts of a Voltage, and Their Resultant,” principle
‘1" is an immediate consequence of equation (4) of this appendix, and
2" is a consequence of (5) and (6) together.

1" Sometimes called “ propagated” potentials.



