Operation of Ultra-High-Frequency Vacuum Tubes
By F. B. LLEWELLYN

Previous electronics analyses are extended by the introduction of more
general boundary conditions. The results are applied to the calculation of
the rectifying properties of diodes at very high frequencies and to the ampli-
fying properties of negative grid triodes at both low and high frequencies.
The effect of space charge on the various capacitances in triodes is discussed,
and formulas E)r the amplification factor and plate impedance are presented
in terms of the tube geometry. Finally, a discussion of the input impedance
of negative grid triodes is given together with a comparison of the theoretical
value with the results of measurements made by several well-known experi-
menters.

IN the study of the functioning of vacuum tubes at ultra-high
frequencies it has been necessary to retrace the steps followed in
the early history of vacuum tube performance but with the difference
that a microscope for viewing the path at close range must be substi-
tuted for the telescope with which the original trail was mapped from
afar off. As a result of this microscopic survey, formulas have been
developed which are applicable to frequencies so high that the time
of flight of the electron across the tube may occupy several cycles of
the high-frequency oscillation. In addition to this result, several by-
products of the study are found to have a useful application in the low-
frequency field and to throw additional light on the multitudinous
activities of the electrons and their effect upon the external circuit.

In this respect it is particularly interesting to see the way in which
the geometry of the vacuum tube enters into the determination of the
amplification factor of negative grid triodes and to compare the results
now obtained with the earlier results of such workers as Abraham,
King, Schottky, Lane and Van der Bijl. The effect of the negative
grid on the transit time of the electrons also yields low-frequency
relations in which certain new facts concerning the plate resistance are
brought out. ' '

Various papers ! 2 3 4 5 published within the last few years have
dealt with the general problem of vacuum tubes in which the electron
transit time is of importance and have derived results which are useful
in several practical applications. However, in none of these have the
initial relations been general enough to allow more than a very rough
application to be made to the most widely used tube of all—the
negative grid triode. A paper ? by the present writer contains certain
general conclusions concerning the negative grid tube at very high
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frequencies and derives expressions for the complex values taken by the
amplification factor and plate impedance. 'While these expressions
represent the general trend of the variations, they are based on certain
a priori assumptions, as was emphasized in the paper, and hence
partake of the telescopic viewpoint of the low-frequency vacuum tube
analysis rather than the microscopic viewpoint which is now necessary.

It was with the aim of overcoming this limitation that the work
described in the present paper was undertaken. Itssuccessful outcome
was made possible by a very simple generalization of the methods
described in the references, but one which has such far-reaching
consequences that it appears worthwhile to start the analysis at the
very beginning, and abbreviate only to the extent that intermediate
algebraic steps are omitted because of their unwieldy length.

For convenience, the paper is divided into four parts. In Part I the
mathematical analysis is outlined in its fundamental form and general
working formulas are developed. In a way similar to low-frequency
analysis these formulas may be divided into constant or d.-c. relations,
first-order relations, second-order relations, and so on; where the first-
order relations apply to a.-c. effects for small amplitudes only, the
second-order relations contain rectification and distortion terms; and
so on, in exact correspondence with the well known low-frequency
relations. Part Il contains the solution of the first-order relations
expressed in appropriate form for later computations, while Part 111
does the same thing for second-order relations. Also in Part III, by
way of illustration, the effect of frequency on the rectifying properties
of parallel plane diodes is discussed. Part IV applies the general
first-order and d.-c. solutions to the negative grid triode and shows how
its various properties depend on frequency. A discussion of the
important effect of active grid loss is included. '

In certain cases the same formulas are expressed in several different
ways. This is done because of the difficulty of determining the most
useful method of expression before a large number of applications shall
have been made. In most cases the general equations have been
arranged to conform as far as possible with the most widely used modes
of expression of the corresponding low-frequency equations. Where a
choice of modes of expression is available, both modes have usually
been given, it being left to future experience to determine the more
useful one. While this procedure results in some repetition, the two
modes of expression of the same equation are found in many instances
to have their individual advantages, the one being more suitable
for one type of application while the other is more particularly adapted
to a different application.
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PART I-—GENERAL ANALYSIS

In line with most previous electronic papers consideration is here
directed to the behavior of electrons between two parallel planes of
practically infinite extent. Differing, however, from earlier works,
neither plane is to be regarded as constituting a thermionic emitter or
cathode in the general sense. For certain special applications con-
ditions may be chosen so that one of the planes coincides with, and
assumes the properties of a zero potential cathode, but in developing
the general relations this idea is strictly avoided. It will therefore be
premised as a starting point that the velocity and the acceleration of
the electrons at one of these two planes are given as initial conditions.
It will be found that this generalization completely avoids certain
ambiguities which were discussed in the February 1935 issue of the
Proceedings of the Institute of Radio Engineers.* It also allows appli-
cation of the results to be made to a much wider range of devices,
including a fairly rigorous treatment of the negative grid triode.

In the following analysis, and differing from previous references, a
change in the units employed has been made so that all quantities are
expressed immediately in the practical system of engineering units
(amperes, volts, ohms, coulombs, etc.) instead of in the electrostatic and
electromagnetic systems. This change has been found to be of great
advantage in the use of the equations, since it obviates all necessity for
the continuous and irritating transformation of units that accompanies
the electrostatic and electromagnetic systems.

The analysis starts with the expression for the total current density

oE
I—pu-l—e—éﬁ, (1)

where I is current density, amperes per cm.?,
p is charge density, coulombs per cm.?,
u is electron, or charge velocity, cm. per sec.,
¢ is permittivity of a vacuum, which is 1/36r10"* = 8.85 X 1074
farads/cm.,
E is the electric intensity, volts per cm.

The equation of motion of an electron is
ell = kma, ()

where e is electronic charge, coulombs,
m is electronic mass, grams,
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e/m = — 1.77 X 10® coulombs per gm.,*
k = 1077 is the ratio of dyne-cm. to joules,
a is electron acceleration, cm. per sec.?

In this equation the effect of a magnetic field is disregarded. This is
thoroughly justified until electron velocities approach that of light or
the spacing between the two parallel planes becomes comparable with
the wave-length of any alternating field considered. A more detailed
discussion is given by Benham.!

A third fundamental equation is

div eE = p,

which, for the parallel planes now considered, becomes

oE

€ = P (3)
From (1), (2) and (3) is obtained

el da

e ~ 1 @

The total current, I, may be considered to be composed of two parts,
the first being a constant component and the second being a function
of time only. On this basis we can write

el

— =K (L), 5

=K+ "0 5)
where K is the constant part, and ¢'’/(£) is the variable part, the primes
denoting derivatives with respect to the argument in parentheses.
Inserting (5) into (4) and integrating once with respect to time, we find:

=Kt — ta) + &"(t) — &"(la) + aa + a(l), (6)
where ay + a(f,) is the acceleration when ¢ = {, and a, is independent

of t,.
Another integration gives .

w=KEZIE 4 o) — ) — (- e

+ (t = t)aa + (¢ — ta)a(ta) + ta + p(ta), (7)
where u, + u(f.) is the velocity when ¢ = ¢, and u, is independent of £,.

*This value is based on deflection measurements (which are apﬁlicable to
vacuum tube analysis) rather than on spectroscopic measurements which give 1.76
X 108, Compton and Langmuir ¢ use the spectroscopic figure. For a compre-
hensive discussion of values of physical constants, see Birge, Phys. Rev. Supp., Vol.
1, July, 1929.
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A third integration gives

— RO o) — ) — - o) - E5 )

+“}m%+(}m4m+u—wm+a~mw¢(”

where x is zero when ¢ = {,.

This choice of initial conditions allows one of the two parallel planes
to be located at the position where x is zero and where the electron
velocities and accelerations are given as above in terms of the time
instant ¢, when the electron crosses the plane, which may be referred to
as the “ a " plane. When these initial conditions are specified, then
(6), (7), and (8) allow the acceleration, velocity and position, re-
spectively, to be determined at any time ¢, thereafter.

These quantities are expressed in terms of # and ¢, whereas it is more
convenient in vacuum tube work to have the acceleration and velocity
expressed in terms of £ and x. Ideally, this could be done by solving
(8) for ¢, and thence eliminating ¢, from (6) and (7). Practically, (8)
cannot be solved directly for £, because it is a higher order equation and
involves ¢, @ and p which may be (and usually are) transcendental
functions of t.. However, an indirect method can be employed.

If ¢, a and u were zero, then x would be given by the relatively simple
equation

(t _ ta)a
Although this is a cubic, nevertheless (¢ — ) may be obtained with
relative ease in any particular case. The use of a new variable T" to
replace x is suggested by (9) and accordingly the defining equation of T
under all conditions is taken to be:

+a B - 0. ()

3 2
x=K%+aa%+uaTl (10)

which holds even when ¢, @ and u are not zero. It is evident when
¢, o and u are small that T does not differ very much from ¢ — £, as
(10) must then become nearly equivalent to (9). It thus seems
expedient to write in general -
t—ta=T 3, (11)

and note that 8 becomes very small when ¢, « and p are small.

On the basis of (11), functions of (¢ — #) may be expanded into
series in powers of § as follows:

fU—m=ﬂT+ﬁ=ﬂﬂ+fUﬁ+%ﬂ@W+uu(m)
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and similarly functions of ¢, may be written
fE) =f¢—-T—-08)=f¢t—-T)—-f(¢—-T)
+ = TR = s (13)

When (10), (11), (12) and (13) are used in conjunction with (8) the
result is a relation between ¢, T" and § as follows:

0 = X r3rntars o]
+ 57 [2T6+8 ]+ uab
+o(t)— [ e(t—=T)— ' (t—T)s+ % o' (t—T)o2— - ]
—(T+9) [ o= T) = " (1= T)o+ o " (=TI - - ]
- % (T2 4275482 [ tp”(i—T)—gam(t—T)a-i—% oMt —T)8— - - - ]
+ 3 (T*42T54+5) [a(t— T)—a/(t— T)o+ zl!a"(t-r)az_ . ]

FTH0) | W=D =i =Dt gwe=Die—- |- )

This equation may be written in the form of a power series in 5. It
cannot yet be solved directly for 8. It has the advantage, however,
that § is not involved in the transcendental functions ¢, a and g, so
that an indirect method may be used. Let 3, ¢, @ and u each be split
up into series as follows:

6 = 61 + & + 83 + etc.
¢ =@ + o2+ ¢3 + etc. (15)
a=a + as + az + etc.
m + pe + us + ete.

These are to be substituted into (14) and the resulting expression may
then be expressed as an infinite series of separate equations such that
the first equation includes all linear terms which have the subscript 1,
but no other terms; The second equation includes all linear terms
having the subscript 2 and also all quadratic terms having the subscript
1; the third equation includes all linear terms having the subscript 3,
cubic terms with subscript 1, and also products of quadratic terms with
subscript 1 and linear terms with subscript 2. The rules for succeeding
equations are analogous, so that in general, the sum of the subscripts
of each term of the nth equation is equal to n.

I
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The first of these equations may be solved for ;, the second for 83,
the third for 8s, and so on, giving the following:

[m(t) — = T) = Tt = T) = 3 Tt = T)
+¥%M—ﬂ+nﬂ—ﬂ]

51 = - Tz ! (16)
K _2" + aaT."}_ Ua
o)) = et = T) = Tod = T) = 5 2"t = T)
4 3 Thas(t = T) + Talt — T)
+&(%Pmmu—fj—%TMKh—ﬂ
+ Tou(t — T —Tuw'(t—T) + it — T))
+or (K] +7a.)
b= — L L,oan
KE- + ﬂaT + Uq
() = alt = T) = Tt = T) = 5 %" ¢ = 1) |
5 Tes(t — T) + Tualt = 7)
+ 62 ( % Tt — T) — % Tai/(t — T)
+ Tealt = T) = Tl(6 = 1)+t = 1))
+ & (%ngaz”'(t -7 - % T/ (t — T)
4 Tau(t — T) — T (t — T) + palt — T))
+ 512 (_ %Tz(plrm(t _ T) + % Tlpl"”(ﬁ — T)
+éﬁww—1)—nﬁ@—n+éma—r)
g
+ﬂww—n—mw—n)
+5152<KT+I%) +513%{
o = — T2 =y (18)
K7 =+ ﬂuT + Ua

Jy= - : (19)
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These formulas together with (11) and (15) allow the acceleration
(6) and velocity (7) to be written in terms of ¢ and T, and hence effect-
ively in terms of ¢ and x, for 7" is a function of x only, as given by (10).
The resulting equations for acceleration and velocity are conveniently
broken up into a series of equations in accord with the same rules
formulated for obtaining the §'s from (14). Thus, we write

a=ag+ a1+ a:+ as + etc.,, (20)

where a, comprises those terms having zero or no subscript, and obtain
from (6):

ao= KT + a, (21)
a = K51 + (,01”(0 — qD]_"(t - T) + C\![(f - T), (22)
ay = Kby + @""(t) — @'t = T) + &"'(t = 1)y

+ Ote(t - T) - alr(t - T)51, (23)

as = Kés + @'(t) — @"'(t = T) + &"'(t — T)b2
+ ot = T)h — 2""(t = T)52 + asls — T)
— et = T)h — a6 — Ty + 5 aa(t = T)a,  (24)
as= ---. (25)
Treating the velocity in a similar way we write
u = uy + u + uy + usz + etc. (26)

and obtain from (7)
T2
Uy = K 7 + aal + Ua, (27)

= KT8 + achs + &'(t) — @/t — T)
CTel(t = T) + Teult — T) + m(t — T), (28)
s = KTbs + % 52 + aids + e'(t) — @'t — T)

—Te'(t = T) + T/t — T)o1 + Tes(t — T)
ot — 7)oy — To'(t — T)oy + pa(t — T) — wi'(¢ — T)ér,  (29)

uy = KT8 + Kéids + auds + 05/ (t) — @'(t — T)
+ % galr”(ﬂ - ’4.’1)(512 - T(pa”(t - T) + Tl,m"”(t - T)!Sz
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+ Tod"(t — T)o — 3 Tes™"(¢ — T)ot + Tas(t — T)

— Tal(t — T)bs — Tay'(t — T)b1 + % Tar"(t — T8
+ a1(t - T)az + az(f —_ T)(Sl - al'(t - T)BF + ‘u-;g(t - T)
(= D) — (= T)b + " — TIBE. (30)

Aside from their length these equations are not complicated and in
applications to special cases many terms are apt to vanish, leaving
relatively compact expressions.

In circuit work the potential difference between the two parallel
planes, “ @’ and “ b,” say, is more often required than the electron
acceleration. This may be found from the definition of the potential

difference, namely
b
Va— Vo= f Eox, (31)

in which ¢ remains constant during the integration. From (10)
T2
dx = (K7+GET+ua)dT=uudT. (32)

so that with the aid of this equation and (2) the potential difference is
given by:

b T T2
Wﬂ—Wf,:f adx=f a(KT—i—aaT—]—uﬂ)dT, (33)
a 1]

where the symbol, W, is used as an abbreviation for eV/km.

In the same way as the acceleration and velocity are divided into
components, the potential difference may be split up into (Wa — Wb)a,
(Wa — Wi)1, (Wa — Wh)s, etc. which are defined by:

(Wu — Wb)o = fT amd T, (34)
(W, — W) = fT ayuedT, (35)
(Wa - Wb)z = IT aguudT, ’ (36)

(W — Wa)s = f " asuodT, 37)

0
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and where the §'s given by (16), (17), (18), etc., are to be inserted in
the a's given by (21), (22), (23), etc., before the integration can be
carried out.

The formal solution of the problem has been reached with the
attainment of (34), (35), (36), etc. As soon as specific functions are
chosen for the' current, [K + ¢'"(f) Jkme/e, the initial acceleration,
a, + «(f), and the initial velocity, #. + u(#), the integrations can be
performed to give the potential difference between two planes located
respectively at x = 0 and x = x.

While the general relation between current and potential is non-
linear, the first order current ¢’’’ (¢)e/kme is linearly related to the first
order potential difference (W, — W3)e/km, and the results for this case
can be expressed conveniently by using complex functions in the
manner usual with electrical engineers. This will be done in some of
the following applications.

In the treatment of second and higher-order components, it is
convenient to select the current components to correspond with powers
of the potential rather than vice versa. For example, (V. — V)1 is
taken to be the complete expression for the fluctuating component of
potential, thus causing (V. — Va)s, (Va — Vb)s, etc. to vanish. Equa-
tion (36) then yields an expression for the second-order current in
terms of the first-order current, and (37) does likewise for the third-
order current.

The general equations are, however, applicable to any converging
method of selecting the components, and the proper one for any
particular case is to be determined by considerations of simplicity and
convenience.

PART II—FIRST-ORDER SOLUTION

This is the linear case, so that to each component of current, 4 sin wf,
say, there corresponds a potential component of the form B sin (wf 4 7).
It follows that a current of the form Ae?! will produce a corresponding
potential difference Pe?t, and that $ may be taken to be a generalized
exponent having the value 4w when sinusoidal currents are considered.
In the latter case, P will usually be complex. The generalized ex-
ponent p results in a more compact symbolism than would be possible
with the imaginary exponent, iw.

Thus, we write for the current

GI ne
— =K+ o"'(t) = K + Jert. (38)

kme

In a similar way the initial fluctuating components of acceleration and
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velocity are taken to be
ar(t — T) = Ger"=T) = (GePT)er?, (39)
wm(t — T) = Her't™T = (He PT)er". (40)

With this nomenclature, all terms appearing in the first-order
equations will contain the factor e?*, which may accordingly be omitted
throughout. Thus, instead of writing Ge?* for the acceleration at the
“ ¢ " plane, the single symbol a; will be used, where the omission of the
functional notation ay(¢ — T) indicates that the acceleration is taken at
the “ @ " plane where T is zero, and that the multiplying factor e’ is
understood. In a similar way the symbol g will indicate the first-
order fluctuating component of velocity at the “ a " plane with the
factor et understood.

A still further symbolism will be of assistance. The quantity pT
will be denoted by 8. When p is the imaginary 4w then wT is the
transit angle, 8, which has been defined in previous papers,': * and in
the sinusoidal case § = 6.

With this nomenclature, the first-order potential difference, (35),
acceleration, (22), and velocity (28) may be written:

-7

p4
B

foa (B 4perter—1) 4 puG+er - |

3
(Wa — Wi [K(%—,@—Ze*ﬂ—ﬁe_ﬁ—}—Z)
- -;—; [aa(Be® + B — 1) + up(e® — 1)]

+ ;_; [K(Be? +e? —1)], (41)

m=%[1—e”—pﬁo(l—e‘ﬂ—ﬁe—ﬂ—%zeﬂ)]

KT* K1
—8 — B
s ) e L e, (42)

+a1(1—
A I N (R Sy S R
=i g (1)
T T
-I—%(l—%')ﬁe‘ﬂ—}-m(l—%o—)e‘”. (43)

An alternate method of procedure, which is particularly useful at
moderately low frequencies where the transit angle ¢ is only a few
radians, is to expand functions of (¢ — T') into power seriesin . The
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same result may be obtained from (41), (42) and (43) above by
writing e fin series form. The result is:

(Wn - Wb)l
_ 5 n KT'n+2) |, a.T%n+ 2) u T2
=508 [J( O IR ey +(n+2)!)
@T*n+1) T
+m((n+m!*%n+nJ

n(SEE5)]

o= £GP [ (i - KT L)

a(1-5E) -n ()]

Zuo

w=3 (_F)ﬂ[-rp(niz_%‘(n_lm)

rar(1-5) o (1))

214’-0

These latter forms of expression clearly show what happens at low
frequencies and they prove that the equations do not give infinite
values for any of the components so long as a¢7T"/ug and KT%/u, remain
finite. Now in general

T _ (KT +a)T

- 2
o K%-f—anT-i—ua

and
KT? KT1?

= 7
e K%+aaT+uﬂ

and these remain finite for all finite positive values of T, K, a, and ,.
Thus the difficulty at the origin which was discussed ¢ in the Proceedings
of the Institute of Radio Engineers, February, 1935 is overcome by the
generalized definition of T in (10). Itis true that 8, still tends toward
infinity when T approaches zero if @, and #, are zero and p; is different
from zero. This means that the ratio of the variation in transit time,
81, to the transit time T tends toward infinity when T approaches zero,
and when variations in initial velocity are still present with no constant
initial acceleration. This is a logical and expected result, but it leads
also to the conclusion that the electrons actually halt their forward
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motion and reverse their direction. When this happens, (1) is no
longer applicable because the velocity at a given point has become
multi-valued. This restriction was pointed out by Miiller ? as limiting
any analysis which starts with (1).

It may be concluded then that the inherent limitation on (41), (42)
and (43) is a singly valued velocity rather than the behavior of the &'s
in the neighborhood of a point where the acceleration is zero.

ParT III—SECOND-ORDER SOLUTION

The second-order solution has practical utility in the computation of
distortion and of the modulating and detecting properties of ultra-high-
frequency thermionic systems. Even in low-frequency applications
such computations are long and tedious. The introduction of the
added complication of appreciable transit angles causes further diffi-
culty because of the unwieldy length of the equations. Accordingly,
instead of a general exposition of second-order effects, a greatly
simplified special case will be treated at the present time, leaving the
details of a more general solution until the need for it has become more
acute.

The rectifying properties of a parallel plane diode operating with
complete space charge will be calculated. The complete space charge
condition is defined by placing initial velocities and accelerations
equal to zero. When this has been done in (16), (17) and (23) and the
resulting values of the §'s have been substituted in (23), functions of
(¢ — T) may be expanded into power series to give the following:

© — T)"+1§D (n+3)(t)
250 (n + 3)(1:-{— 1)!

(__ T)"+m+1¢p],("+3)(£) (Pl(m+3) (t)
e L Hm F

The second-order potential difference is given by (36) where o
= KT?/2 for complete space charge. Thus, from (44)

(Wa = s = K £ 2ED (- 1w

] o0 (_ T)n+m+4¢, (n+3) (t) ¢1(m+3}(t)
E Z=: (n+m+ 4)(n1+ 3)(m + 3)nlm! + (45)

The second-order potential difference (W, — Wa)s will now be taken
as zero, which implies that the first-order potential difference only is
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impressed on the diode. This gives from (45)

1 , 1 : 1
[T e (1) | Tor™Ber" () | Toorer(t) |
"2 [ 36 T — Tt s T ]
+[= TP (8) g1 (2) + T e (t)  Tloi"' () erv(8)
60 180 756
T (O err'(t) _ T (e (®) | TPoi"Beri() .
+ 4032 224 + 1152 ] (46)

If the first-order voltage which is impressed on the diode is taken to
be a single sine wave, it follows from the linearity of the first-order
relations that the first-order current is likewise a single sine wave of
the same angular frequency, w. Thus, let

e’ () = A sin wt. (47)
Then
e1'(t) = Aw cos wt,
e1"() = — Aw? sin wt,
e1"i(t) = — Aw® cos wt.

When these are substituted into (46) it is seen that the right hand
side of the equation contains a d.-c. term and a double-frequency term.
The left hand side must accordingly contain terms of the same fre-

quencies. Hence the most general form which can be assumed for the
second-order current ¢.""'(t)e/kme is:

e2"'() = (a0 + a0 + asf® + - -)
+ (bD + blﬂ + b292 —|— . .) sin 2wt
+ (CO + cif + o + - ) cos 2wt, (48)

where § = wT is the transit angle, and the a’s have no reference to the
symbols previously used for acceleration.

When (47) and (48) are substituted into (46) it will be seen that the
coefficients of the d.-c. term, the sin 2wt term and the cos 2wt term
respectively may be equated on the two sides of the equation. This
gives three equations and in each of these, coefficients of corresponding
powers of the transit angle may be equated, thus providing the values
of all of the coefficients in (48). ,

Without carrying out this procedure in detail it is possible to find the
d.-c. component directly from (46) and (47) by noting that time
derivatives of the d.-c. component of ¢s'"/(t) are zero. Hence the left
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hand side of (46) reduces to its first term. Substitution of (47) into the
right hand side and selection of d.-c. components then gives:

2 2 4

oo, = 15 [1 ~ 55+ 7806 — ] (49)
This indicates that the rectified current decreases when the transit
angle 8 becomes appreciable. In the second part of his first electronics
paper,! Benham reached the conclusion that the rectified current
increases with frequency. To reconcile his result with (49) it is only
necessary to note that (49) indicates a decrease in rectified current with
frequency provided that the amplitude A of the first-order current
remains constant, whereas Benham's result was based on a constant
amplitude of the first-order voltage. A direct comparison therefore
necessitates the computation of the first-order voltage. From (41a)

with zero initial acceleration and velocity we have:

JKT*

3. 1 1. 1
(Wa—th:T[l 3*ﬁ52+8—4%03+—9‘~“]- (50)

“10Y 15 560

Taking the amplitude of the current factor ¢,"’(f) to be 4 as in (47)
and the amplitude of the voltage factor (Wa — W3)1 to be B, we find
from (50) that

8 2
Bﬂ=_A2K2T [(1_%5824——!—94—---)

144 560
3 1, :
+(_Ea+8_46 B )]

KT 13 1
—_ 2 - p? pt — L],
B =4 [1 3000 T 12600 © T ] (51)

or

The A2 may thus be eliminated between (51) and (49) giving

mnr — 12B? ,!i 39.._ 4
e (Nae. = g | 1 T 500 & T 120000 04 + , (52)

which is in agreement with the result obtained by Benham.

The physical explanation of the increase in rectified current which
occurs when the transit angle becomes appreciable follows directly
when it is realized that as the frequency is made higher, the funda-
mental component of the alternating current increases when the a.-c.
voltage is maintained at constant amplitude. This is because of the
capacitance of the diode. It is this increase in fundamental current
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which causes the increase in rectified current, and not the effect of
transit angle directly.

PART IV—NEGATIVE GRID TRIODES

The general aspect of the negative grid triode is shown in Fig. 1.
The upper diagram shows a plan view of the electrode arrangement and

|
%
1 l el 2
Lo T
- | I S — 4y — 4
[
w e ! | Ip
o —_ I o —_— w
o | | =
x X (| X j
'S C R P a
I
Tc : o | Tp
|
Ve Va = Vg [NEARLY) Vp

POTENTIAL

Ve

Fig. 1.—Nomenclature and potential distribution in negative grid triodes.

indicates the nomenclature which will be adopted. The planes at V.
and V, constitute the cathode and plate, respectively, and the grid
wires are indicated by the small circles. The planes 4 and B are
imaginary planes located on opposite sides of the grid and only far
enough away so that the irregularities in the potential distribution
caused by the individual negative grid wires have practically disap-
peared. An analysis of the potential distribution in the immediate
neighborhood of a shielding screen has been made by Maxwell (Treatise
on Electricity and Magnetism Vol. I) and this applies to the grid of the
triode in the absence of electron flow. The presence of electrons
between the negative grid wires will tend to decrease the irregularities
shown in Maxwell’s analysis and therefore allow the planes A and B
to be placed somewhat closer together than his figures would indicate.
As far as the writer is aware, exact relations for the potential distri-
bution near the grid wires in the presence of electron flow have not been
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worked out so that Maxwell’s analysis is our only basis at the present
time for determining how near to the grid we can imagine A and B to
be fixed.

The distance from cathode to grid will be called x. and from grid to
plate will be called x,. Corresponding to x. there will be an electron
transit time T., and to x, there will be the transit time I',. The
density of the total current leaving the cathode is I, so that the current
factor eI/kme will be J.. The factor for the density of the total
current reaching the plate will be Jp.

The general scheme for analysis of the triode is to regard the struc-
ture as composed of two parallel plane diodes. The first of these
comprises the cathode and the imaginary plane 4, while the second
comprises the imaginary plane B and the plate or anode. In accord
with normal operation, complete space charge is postulated at the
cathode, so that initial velocities and accelerations are zero, and the
general parallel plane equations, (41), (42) and (43) may be applied
directly to conditions between the cathode and the plane 4.

The plane B and the plate also constitute a structure to which the
general equations can be applied, but first the initial velocities and
accelerations at B will have to be found, and finally a relation between
J. and J, will be needed. Moreover, the relation of the potentials at
A and B to the potential V, of the grid wires themselves must be
found, because it is only the latter that is available for external use or
measurement.

As an aid to finding these various relations the lower diagram in Fig. 1
will be of assistance. This is a graph showing the general form of the
d.-c. potential as a function of the distance from the cathode. Between
cathode and plane A the potential curve is the same regardless of
whether the line 1-2 in the upper diagram which passes between two
grid wires is followed, or whether the line 3-4 which passes through a
grid wire is followed. The same thing applies between plane B and the
plate. -

Between planes 4 and B, however, conditions become vastly different
according to whether the potential curve is drawn for the line 1-2 or the
line 34, and the general shape of the potential curve for the two
conditions is marked 1-2 and 3—4 respectively in the lower diagram.
Along 1-2 the potential is everywhere positive, as otherwise electrons
would not be able to penetrate the grid mesh and reach the plate. On
the other hand, the grid wires themselves are at a negative potential,
and the curve 3—4 shows the way in which the potential surface forms
into pockets surrounding the grid wires. The size of these pockets,
and hence the location of the planes 4 and B is determined by the
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relative potentials of grid and plate, the size of the grid wires, and the
spacing between them.

In applying the general analysis for parallel planes to this type of
structure it is possible to find all of the desired initial conditions at
the B-plane in terms of conditions at the A-plane as well as to find the
actual a.-c. potential of the grid wires themselves and the relation
between plate current and cathode current provided that a very simple
condition is fulfilled. This condition is merely that the size of the
potential pockets surrounding the grid wires is so small that the planes
A and B may be taken close enough together to cause the electron
transit time between the two to be negligibly small compared with the
transit time from cathode to 4 or from B to the anode. Without this
condition, the problem appears almost hopeless. With it, the pro-
cedure is straightforward and simple.

For the factors affecting the fulfillment of this condition, Maxwell's
analysis fortunately provides a guide that is at least safe, because if the
planes can be located near together compared with the distances x,
and x, on the basis of his analysis, then the smoothing effect of the
electrons between grid wires will make the actual operating conditions
still better. The adaptation of his equations gives the following
expression for the potential distribution and for small diameter grid
wires:

X
V= V"_xc-!-xpr [47rx,,<xc+d)
( XeXp ﬂr—2lo ZSinW—C) @ e+ %
X+ xp,/ a g a

Xe + %Xp

— loga (1 — zeﬂrdla COS?:‘:,’a + enlrd_fa)] + Vp( Xe + d ) . (53)

Here d is the distance from the grid to the place where the potential
is to be computed, and is considered positive when directed from the
grid toward the plate, z is distance measured parallel to the grid, a is
the distance between centers of grid wires, ¢ is the wire radius, and the
cathode potential, V. is taken to be zero. The only term here con-
tributing to the potential pockets surrounding grid wires is the loga-
rithmic one which alone involves z, the distance along plane 4 or B.
The condition for the wvariations to be smoothed out with either
positive or negative values of d is

82rD,’ﬂ >> 2’
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where D represents the magnitude of d. Below are given some of the
values of e?*P/a

D/ﬂ g2rD/a
L 1.875
0.2, ... 3.514
L 6.587
8 12.35
0.5 . 23.17
0.6, 43.39
0.7 . 81.34
0.8, .. . i 152.5
09. ... .ol 285.5
1.0, 536.0

This shows that if the magnitude of the cosine term which involves z
is to be limited to one per cent of the largest of the three terms consti-
tuting the logarithm, then D/a should be greater than 0.84. On the
other hand if a ten per cent variation is tolerated, then D/a may be as
small as 0.48. :

There is a further consideration that tends to smooth out the
corrugations in the potential caused by the grid wires. The relation
(53) was derived on the assumption that the cathode and plate were
quite distant from the grid. When this is not the case, the fact that
both are equipotential surfaces tends to crowd the irregularities in
toward the grid, and hence to decrease the area of the pockets.

The general conclusion to be drawn from this investigation into the
potential distribution is that the electronics analysis can be applied
with greatest accuracy to tubes where the grid wires are very close
together relative to the distance between grid and either cathode or
anode. When this is not the case, the analysis may be expected to
show the general trend of the performance in most cases but to be
unreliable for quantitative computation. In extreme cases, where the
grid wires are very far apart, the grid action approximates more nearly
to a change in the effective cathode area than a uniform action over
the entire surface. The electronics analysis can be adapted to this
extreme case when the change in effective cathode area occurs instan-
taneously with a change in grid potential, for then the diode analysis
applies directly between the effective cathode area and the anode.
Means for doing this will become evident when the theory for grids
with fine mesh is understood so that the details will not be described.

The analysis for fine-mesh grids now follows, based on the assump-
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tion applicable to them that the planes A and B in Fig. 1 are very
near together compared with x, and x,. As a first consequence of
this assumption, the electron velocities at B must be the same as those
at A, and hence one of the initial conditions at the B-plane is provided
for. A second consequence is that the potential at B is the same as
that at 4, and therefore the potential between plate and cathode is
the sum of the potentials between cathode and 4 and between B
and the plate.

The accelerations at the two planes are not the same. This can be
seen from the lower diagram in Fig. 1 when it is remembered that the
acceleration is proportional to the slope of the potential curve. The
accelerations can be found, however, by a relatively simple calculation
and this will be done in the course of the following analysis.

D.—~C. Relations

As a preliminary to the treatment of first order effects in negative
grid triodes, certain d.-c. relations will be determined.

The distance is related to the transit time by (10). At the cathode
and for complete space charge the acceleration and velocity are zero,
so that the cathode-grid transit time T is given by

T3

x, = K 6

(54)
At B the acceleration is yet to be found, but may be taken to be g
times that at A. Hence, f_rom (21)
ap = gKT.. (55)
The velocity at B is the same as that at 4, so that from (27)

2
u3=K£2°- (56)

These values, (55) and (56), may now be inserted as initial conditions
in (10) to give a relation between x, and 7. Calling the ratio T,/T,
by the symbol & and x,/x. by the symbol y we thus obtain:

gh? = y/3 — h — k3. (57)

In this way the acceleration is related to the transit times. These
have now to be expressed in terms of quantities that can be measured
directly, namely the current and the plate voltage. To do this, the
general expression for potential difference is obtained by integration
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of (34) which gives:
J R | 1 1
(Wa — Wi)o = 3 KT +§K&0T3 —l—EKuﬂTz +-2~ alT? + a.u,T. (58)
Putting in the initial conditions we have

(W, — Wa)o = %K‘*TJ (59)
and

(W — W) = %KﬂT;[a;ghu 4 B?) + 4gth? + 2k + 1], (60)

From these, and placing the cathode potential equal to zero, we get

Vo _ .
V4-2gh+1+h.

With (57) the ratio g may be eliminated from this, giving
Vo _ 2y 1
\jﬁ—Sh 1+-§k. : (61)

When % is small, as it normally is, the last term may be disregarded,
giving
_ 2/3y
1+ AV,/Va
Equations (57) and (61) allow g and % to be found in terms of V,,

which can be measured directly, and V4 which can be found in terms
of the current and the distance x, by combining (54) and (59) to give:

(approximately). (61a)

(W. — Wa)o = § K¥3(62"". (62)

This is the well-known Child’s equation, and when W and K are
expressed in terms of voltage and current appears in the usual form

Iy = — 2.34 X 10—%V432/x,2 amperes/cm.? (63)*

Several other expressions which are useful for computation purposes
may be found from these d.-c. relations:
* The negative sign occurs because of the assumed current direction, from the

cathode. The numerical factor is 2.34 instead of 2.33 given by Compton and
Langmuir ¢ because of the value of e/m which was used, q.v.
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The transit angle 6, = w7, may be written in terms either of the
voltage V4 or the current I, thus

x. \1/3
b =——= = ——— ( Tc) radians, (64)
0

where A is the free-space wave-length in centimeters of an alternating

current of angular frequency w. )

_ The slope of the static characteristic of a diode coinciding with the
cathode and the plane A may be expressed

_9Val _ .= = 2 Vi _ 285,000x? _ — 3780x1 ©5)
aly |, Tt 31, N7 = TR ’

where 7, is the low-frequency resistance in ohms of a square centimeter
of area.
From (64) and (65) it can be seen that

7. = 30Ax,0,. (66)

A further expression that occurs frequently in following equations is:
KT
€

= 127,. (67)

Later we shall be able to show how the low-frequency plate resist-
ance of the triode is related to #, and the amplification factor, as well
as how the inter-electrode capacitances of the ‘‘ cold " tube are in-
volved in these quantities. A simple approximation for the transit
time ratio % will also be derived.

First-Order Relations

In the picture shown by Fig. 1 an alternating current is assumed
to flow from the cathode to the plane A. This current I, is related
to the quantity J in the general equations (41) or (41a) by the ex-
pression J, = el./kme, and the current includes both conduction and
displacement components. Complete space charge at the cathode
allows initial velocities and accelerations to be placed equal to zero,
so that the first order potential difference between cathode and plane
4 is given by (41a) as follows:

(W, = W = JETS £ (~ g 2D

RN )

In a similar way, the potential between plane B and the plate can
be written when the initial first-order acceleration at B has been found,
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the d.-c. initial conditions being given in the previous section, and the
first order initial velocity being the same as that at A. From (43a)
we have

pp = pa = J.T mgo%_@&—t—l) . (69)

The computation of the a.-c. component of acceleration at B is
based on the particular property possessed by negative grid tubes
that no electrons reach the negative grid. Then, because the velocity
at B is the same as that at 4 it follows that the conduction component
of the current is the same at both planes. The total first-order current

may be written from (1)
dE
Iy = (pu)1 + f—*atl :

Multiplying through by e/kme we can write

J=Q+%, (70)

where Q = (pu).e/kme measures the conduction current, and is the
same at planes A4 and B. Hence at plane 4, and since 9/dt = p for
exponential currents and voltages:

Jo = Q + paua. (71)
At plane B we have similarly
Jp = Q + pas. (72)
From (71) and (72) there results
pap = Jp — Jo + para. (73)

The value of a;4 may be obtained from (42a) so that the acceleration
at B is given by

I N S
pan = Ty = Jo = He BT 31

(74)

All of the initial values at the plane B have been obtained and are
expressed in (55), (56), (69) and (74). The potential between B and
the plate is now obtained from (41a) and follows, where h = T5/T.:

(Ws — W

N T, =, (= hB)"(n +2)
e = = T + T 3

2B, 0 (m+ 49!
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o[ o (e 2 449

hi > hn(— Borm

0 m=0

ghtn + D)(m +2) + (n 4+ 2)(m + 2) — h(n + 1)(m + 1)
( | (n+2)1(m +3)! )]
The attainment of (68) and (75) does not completely solve the
problem because it is the potential of the grid wires that can be
measured rather than the potential at A and B. The transformation
may be readily accomplished, however, by writing

(Va = Voh = I,Z,, (76)

where Z, is the effective impedance between the plane 4 (or B) and
the grid wires. In the negative grid tube when 4 and B are close
together, Z, is a pure capacitance, C,.

Writing (68) and (75) respectively in terms of ¥ and I instead of W
and J we now have in symbolic form

(75)

X

(Vc - VA)I = Ir:ch (77)
(Va—= Vo1 =1,(25 — Z1) + I,(Z, + Zs), (78)

where
L=1,+1, (79)

The four equations, (76), (77), (78) and (79) are the basis of nega-
tive grid triode analysis. The impedances involved refer to a square
centimeter of area and are as follows:

z, = % — impedance between plane 4 (or B) and the grid (80)
wires,

z. = 12rc“i(— 8)%(n + 2)/(n + 4) 1. o

Zy = 12rh(gh + 1)/26., o

Z, = 12rch‘§[,(— 1B)"(n + 2)/(n + 4) !, (@3)

Zy = 12r2 [éo(_ 18" ( 2gh(n ;E,,Z)N*.-Z)(? +3) )]

+ 12r.h [ 3% (= B)rtmhn

n=0m=0

(Za'h(n +1D(m+2)+ (n+2)(m+2) — hin+ 1)(m + 1))], (84)

(n+2)!m+3)!
The value of 7, is expressed by (65).
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For large values of transit angle it is convenient to have these im-
pedances expressed in closed instead of in series form. By using (41)
instead of (41a) throughout the analysis the result may be obtained.
The expressions for Z, and Z; will not differ from those given above,
but Z., Z» and Z; may be written in the following forms:

Z, = 1.321;'c —Qﬁf — Bolefe + 1) — 2(e~fe — 1) ] (81a)

Zy = _1% [ ;’13(53,,3 — hB(e~HFe + 1) — 2(e~"Fe — 1) ], (83a)
12r. [ 1

Zy = S | g Ot a)

+ BL(h — 2gh — 1)e~ Wb 4 he~hbe 4 =P ]
+ [2(h — gh — g)e*V8 4 2(1 — h + gh)e P + 2ge~Fc — 2]

+ ﬁz (1 — g)(e= V8 — g~ — g=Be 4 1) ] (84a)

Of the various impedances Z; is the only one that is really trouble-
some. The values of Z, and Z, may be obtained from data given in
published papers !+ 2 when it is noticed that Zs/h* may be calculated
from Z, if B, is replaced by B, = hf.. In the treatment of Z, there
seems to be no easy road, although the series form (84) may be ex-
panded with comparative ease.

Further steps consist in the transposition of these equations to
obtain convenient forms and to show how they harmonize with low-
frequency theory. A useful expression may be obtained from the
fundamental relations (76), (77), (78), (79) by eliminating V4, I, and
I,. The resultis

(Z] - Zc - Z:i)
(Vg - Vp)l + Tﬁ;—‘ (Vc - Vo)l
L [[Z+ Zo + Z3)Zy + (21 + Z0)Z.]
—Iﬂ[ Z. + 2, ] #

This begins to look like the familiar low-frequency equation

(Vc - V:p)l + F(Vc - Vv)l = IPZP' (86)

where u is the amplification factor and Z, is the internal plate impe-
dance. The two are equivalent at all frequencies if I, is interpreted
as the density of the total plate current, and not the conduction com-
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ponent, only. Then we have:

_Zv—Zi—Zs _(ZiA 7)) — (Z. 4 22+ Zy)
k=77, %2, Z. + 2, '
_ (Zc + Z2 + Zs)zq + (Zl + Zﬂ)Zc.

ZP - Zc + Zg (88)

(87)

The relations involved in these two equations may be made some-
what clearer by finding what they resolve into at low frequencies.
This may be done by going to (80)—(84). The first thing to notice is
that Z, and Z, become very large because the frequency term p = iw
appears in their denominators. The other terms are relatively small
at low frequencies and we have:

ﬂD'_’ZI/Zm (87&)
tp =2Zp—Z(1 + w) + Z: + Za. (88a)

It will be shown below that this formulation for the amplification
factor is in accord with that derived by Maxwell in his * Treatise on
Electricity and Magnetism ”’ for the shielding effect of a grid mesh.

Low-Frequency Relations in Negative Grid Triodes

In (87a) and (88a) the general form of the low-frequency triode
relations is given. It is instructive to compute these in some detail
so that the role played by the capacitance C, between the planes 4
or B and the grid wires is demonstrated.

To do this, (82) which gives the impedance Z; may first be trans-
formed by aid of (57) and (67) to give

=X —p
A o (1 — k/y). (89)
The impedance Z, may be written as in (80) so that the low-frequency
amplification factor is

po =2 C,(1 — I)y). (90)

It is of interest to note that €/x, is the capacitance per unit area
between the plate and a solid plane at the grid. As expressed by
Compton and Langmuir ¢ from Maxwell's analysis the low-frequency
amplification factor is

po =—22 (91)

2 og. 2
2r 2w
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where a is the distance between centers of grid wires and ¢ is the wire
radius.

Comparing (90) and (91) we see that both are proportional to x5,
but that (90) contains a correction term, %*/y which is normally very
small as h is usually of the order of one-third to one-tenth. The
presence of the correction term may be explained by remembering
that (90) was derived for conditions holding when electrons are flowing
while (91) applies strictly only to a cold tube in which no free electrons
are present. This being the case, it is to be expected ‘that the two
equations would be equivalent if the correction term were omitted
from (90). The term being small, this is very nearly true in any case
and gives

C, = — 2™ farads in cm.? (92)

a
a log. e

The capacitance C, which was introduced as existing between the
electron stream and the grid wires is thus shown to have a value which
can be calculated with fair exactness under the conditions when Max-
well’s equation (91) holds, namely when the grid wires are small com-
pared with their separation.

Attention is now directed to the low-frequency value of the plate
impedance, Z,. From (88a) together with (81), (83) and (84) it may
be shown that

fp=fc[.ua+§(1+3f)(1+k)—%(1+k)‘]- (93)

This is thought to be the first instance of an expression for the plate
resistance derived on strictly theoretical grounds. The formula as
it stands contains 7, which is given by (65) and & which is given by
(61), and both involve V4. This latter may be found from (63) in
terms of the direct current. A convenient approximation for Vy is
obtained by making the assumption that the presence of electrons
changes the d.-c. potential V4 by a small amount only, so that its
value may be calculated from the static capacitances of a cold tube.
The appropriate diagram is shown on Fig. 2.

From the figure, putting V. = 0 we obtain
Vp() + gﬂ Vg(l
VAQ = _C‘—f’? .

v .
1+ o + z,
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It was shown in (90) that C,/C, is the static, or “ cut-off " ampli-
fication factor, uo’ of the tube. Again, y = C,/C, so that

Voo 4 w0’ Vigo
14w +y

When the cathode is heated so that electrons flow, the potential V4
becomes depressed below this value which should be used only in
forming rough estimates.

Vo= (approximately).

GRID
K
IqI::Cq
IC IP
| ! |
o— o

CATHODE [ v 1 PLAT

c A E

Ve ¢ <P Ve

Fig. 2—Equivalent network of negative grid triode in the absence of electrons.

A more accurate formula for V4 involves the transit time ratio k,
but may be obtained as follows: The plate current of an ideal negative
grid triode is proportional to (Vpe + uV,0)%2 so that

2Vt Vi)

=3 T,

Similarly
_2Va
=371,

From these two equations together with (93) is obtained

Vo + moVao
4 1
po 31+ )W+ B) — 5 (1 + Bt

VAD =

which may also be written
If\pﬂ + .Uovgo

Vao = 1 1 )
1+Mo+§3’(1 + k) —§h2(6+4h+k?)

(94)

This is in a form for comparison with the approximate equation
above and shows the modification produced by the presence of elec-
trons.
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General Relations in Negative Grid Triodes

The high-frequency values of the amplification factor and the plate
impedance could be computed in detail from (87) and (88) together
with the various expressions given for the impedances involved. To
do this would require an enormous amount of computation, so that
the details are deferred until such time as it becomes evident that (87)
and (88) express the high-frequency properties of tubes in the most
useful way. The fact that they are analogous to the ordinary low-
frequency conventions does not at all assure their general utility in
the high-frequency field, and the fundamental equations (76) to (79)
may be arranged in a wide variety of forms. For example, a com-
panion equation to (85) may be obtained from the fundamental
equations by eliminating Va4, I, and I. and thus obtaining:

Z.
Vo= Vo= (g ziTz) e s

_ (22+Z3+Zc)zﬂ+ (Z1+Z2)ch|.
,_Ig[ Zs + Zs + Z, (95)

Just as (85) gives an equivalent circuit between cathode and plate
involving the whole current reaching the plate, so does (95) give an
equivalent circuit between cathode and grid involving the whole
current reaching the grid. The two equations completely describe
the tube performance when the external connections are known.
Because of the way in which I, and I, are defined they include the
so-called grid-plate path, which is treated as a separate circuit at low
frequencies.

The impedance presented by a tube to an e.m.f. applied between
cathode and grid may now be calculated. To carry out the com-
putation in general, it would be necessary to know the impedance
attached between plate and cathode in the external circuit so that
(Ve — V)1 could be obtained from (85). However, the high-fre-
quency properties of negative grid tubes may be illustrated more
directly by choosing for consideration a special case that avoids
having to take this additional step involving (85). This special case
is the one where such a large capacitance is connected between the
plate and cathode that (V. — V)1 is zero for any of the frequencies
to be considered. The result will therefore be particularly applicable
to finding the input impedance of screen tubes where the requirement
for the special case is fulfilled.

For this special case where (V. — V})1 is zero, (95) may be solved
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directly for the impedance Z, presented to an input applied between
grid and cathode and gives

(Z1+ Z5)Z.

Zo=Zit g7+ 7.

(96)

The impedance Z, is a pure capacitance, but the second term on
the right of (96) contains both reactive and resistive components which
latter account for the active grid loss which has been the subject of
several investigations both of a theoretical and experimental
nature.>» "+ 8 At very low frequencies the capacitance represented by
Z, predominates and the resistive component vanishes leaving for the
input impedance Z, merely the following

Z.
Za._)Zg +Z] (Z2 +-Z-__H-a + Z "c)
_b=n rolte
mCe 1 2 b )W 4 1) — 51+ iy

(97)

This expression may be written in several different forms but in
none of them does a simplification occur in the way in which the
transit time ratio % enters the equation. Perhaps the best mode of
expression is a comparison of the ‘ hot’ capacitance C, given by
(97) where Z, = 1}iwC, with the capacitance C, of a cold tube with
plate and cathode tied together. This latter may be written

'Co(1 + )
Co = "E'_F__T . 08
T iyt ©8)
where uo is the “ cold ”" amplification factor, (91), and is related to uo
as shown by (90) so that po = w'(1 — #*/y). The ratio C,/Cy is the
“ dielectric constant " of the hot tube and is.

4 1 .
SA+NA+D =30 +H)

Q_(1+y+md
Co

T4y ©9)

w30+ — 31+ 89

For illustration suppose that a certain tube has the following values:
v=1, uo=10, h = 1/5. Then from (99) the dielectric constant of
the hot tube would be 1.19. This is somewhat less than the value of
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4/3 obtained by Benham! in an analysis which considered effects
between cathode and grid only. Benham's value applies strictly to
the capacitance between cathode and the plane 4 in Fig. 1 while (99)
applies to the parallel combination of cathode-grid and grid-plate
capacitances. The constants of the individual capacitances may be
calculated from the fundamental equations (76)—(79) but are omitted
here because of space limitations. A series of experiments performed
several years ago by Mr. A. J. Rack and the writer and covering a
wide range of operating conditions with several vacuum tubes showed
values greater than unity for the dielectric constant of the cathode-
grid capacitance and less than unity for the grid-plate capacitance.
The parallel combination had a dielectric constant which was greater
than unity in the range investigated, being thus in accord with (99)
which always gives constants greater than unity for normal values of k.

The input capacitance of detector- and voltmeter-tubes being thus
a somewhat complicated function, it is to be expected that the cal-
culation of the impedance at higher frequencies where transit times
are appreciable will be similarly complicated. To avoid undue length
only the first term contributing to the resistive component of the
active grid loss will be computed in detail. It must be pointed out,
however, that the series in powers of transit angle which represents
the input impedance converges slowly so that the first term is useful
only when the transit time is small.

Keeping this in mind, we go to (96) and write the impedance in
series form, obtaining finally the following expression for the equivalent
shunting resistance between cathode and grid:

1 _ 6 m[yd=yB+C
B (y — B*)?
Ko

R, 180 r,
X 2 1 y  (100)
Mo+§(1+y)(1 + h) ""3(1+h)‘

where
A = 9 + 44k + 4512,

B = 51h* + 123h* 4 55h* + 3k,
C = 45h* + 51h% 4 24k + 1147 + 3K8.

As in previous cases, this may be written in several ways, depending
on the mode of expression of 6. and ,. For example

0. = 27':0-’ Cr:,
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so that
1 (wCC)zﬁ,[y"’A — yB + C]
Re 45 o (y — W*)?

Ho

b +3 )W+ ) = 1 (1 + By

X

(100a)

Comparison of (100) and (100a) shows that the transconductance
po/7» appears in the numerator of the former, but in the denominator
of the latter, and illustrates the care that must be taken in deriving
sweeping conclusions concerning the effect of various tube parameters
without taking all of the contributing factors into consideration. In
the case of (100) the conclusion is that the loss may be reduced by
decreasing the transconductance, but only if the transit angle 6, is
unchanged. On the other hand, (100a) says that the loss may be
reduced by increasing the transconductance, but only if this is accom-
plished without change in the cathode-grid spacing, and without
altering h by an amount large enough to affect materially the factors
in square brackets.

Experimentally, it is found in many tubes that the loss increases
when the transconductance is increased by changing the voltages
applied to a given tube. This would seem to be at variance with
(100a), for the cathode-grid spacing, and hence C., has not been
altered by the voltage change. The explanation of the difficulty
apparently lies in the departure of the static characteristics of many
tubes from the 3/2 power law, which again may be explained in part
by the presence of initial velocities and the large size of the potential
pockets surrounding the grid wires. In a rough way the action of
the latter is to vary the effective cathode area when the voltages are
changed, producing an increased area with increase of current, and
hence producing a current variation greater than the 3/2 power law.

In a recent paper, D. O. North !! derives a formula for the active
grid loss by neglecting space charge between grid and plate. His
result is similar in many respects to (100) and both contain the factors
62 uo/r». In an experimental check, W. R. Ferris !° secures excellent
results by obtaining the transconductance from the static character-
istics of the tubes used, but computing 6. by a formula which differs
only slightly from (94). It can be shown that such a procedure would
give a computed loss which increases with transconductance when the
static characteristic is of the form I = K(V, + poVy0)" and when n
is greater than 2. The static characteristics are not given in Mr.
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Ferris’ paper so that it is not evident whether the exponent is greater
than 2. The loss did, however, increase with transconductance and
was checked by the computations in a satisfactory manner, which
would imply either that the exponents were actually greater than 2 in
Mr. Ferris' tubes, or that their cylindrical shape caused a decrease in
the effect of the transconductance on the transit angle.

The equations in general indicate that the shunting resistance
between cathode and grid is proportional to the square of the wave-
length. This is in accord with the theory and experiments of Thomp-
son and Ferris,”" 1 and with the experiments of J. G. Chaffee ® on
tubes biased as class 4 amplifiers. However, when the tubes were
biased as detectors, Chaffee 8 ? found that the resistance varied more
nearly as the first power of the wave-length. There are several factors

_which may contribute to this difference. With detector bias near cut-
off the transit angles are large so that more terms of the fundamental
equations may be needed. In Chaffee’s work these were computed to
be of the order of two or three radians which was scarcely enough to
cause the entire effect observed by him. Another cause is thought to
be an actual reversal in the direction of motion of electrons caused by
the alternating potential operating in the vicinity of cut-off. Further
study both of experimental and theoretical nature is required, however,
before the point can be considered to be satisfactorily explained.

CONCLUSION

In general, the analysis presented in the foregoing pages is capable
of serving as a guide to indicate the kind of results to be expected in
the operation of vacuum tubes at ultra-high frequencies. In those
cases where the physical structure of the tube complies with the con-
ditions laid down for the theoretical treatment, a quantitative agree-
ment can be anticipated. The importance of departures of the
physical structure from this ideal can be evaluated in many instances
by a careful comparison of the actual with the ideal structure.

Much yet remains to be done in the way of computing and tabulating
the various factors involved in the equations and of investigating the
effects of such things as initial electron velocities from a hot cathode,
large size grid wires, coarse mesh grids, and cylindrical structures.
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