Further Extensions of the Theory of Multi-Electrode
Vacuum Tube Circuits

By S. A. LEVIN and LISS C. PETERSON

The response of circuits containing vacuum tubes with any number of
electrodes due to impressed electromotive forces, and under such circum-
stances that the time of transit of the electrons is negligible, is discussed when
arbitrary feedback is present between the circuits connected to the elec-
trodes, each of which may carry conductive current. The use of the theory
is illustrated by obtaining first and second order effects in typical three-
electrode tube circuits.

In a previous paper in the Bell System Technical Journal, October,
1934, the treatment was restricted to three-electrode tube circuits in which
it was assumed that the amplification factor of the tube was constant and
that no conductive grid current was present. In the present paper these
restrictions are removed.

INTRODUCTION

THE response in multi-electrode vacuum tube circuits due to
impressed electromotive forces has been the subject of several
papers. For the three-electrode vacuum tube circuit J. R. Carson !
has used a method of successive approximations, assuming constant
amplification factor and no conductive grid current. E. Peterson and
H. P. Evans ? removed the restriction on the amplification factor but
maintained the assumption regarding the grid current, while F. B.
Llewellyn 3 considered the general case with both plate and grid
currents. Finally, J. G. Brainerd ¢ has treated the general case of the
four-electrode tube circuit. The theories given by these authors did
not take into account any feedback between the circuits of the elec-
trodes except in the first approximation.

In a previous paper ° the theory given by Carson was extended to
include the effects of feedback between plate and grid circuits not
only in the first but also in the second and higher approximations.
The aim of the present paper is to extend similarly the other theoretical
work mentioned above? 3 4 to circuits containing tubes with three,
four, or any number of electrodes.

Tueory oF THREE-ELECTRODE TUBE CIRCUITS
We shall consider the three-electrode tube circuit shown in Fig. 1
where Z,, Zs, and Z; are impedances which may include inter-electrode

1], R, Carson: I. R. E. Proc., April, 1919, p. 187.

1 E, Peterson and H. P. Evans: B. S. T. J., July, 1927, p. 442,

3 F, B. Llewellyn: B. S. T. J., July, 1926, p. 433.

4 J. G. Brainerd: I. R. E. Proc., June, 1929, p. 1006.

5§, A. Levin and Liss C. Peterson: B. S. T. J., October, 1934, p. 523.
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admittances. The impressed variable electromotive forces are €, and
¢, in series with the impedances Z, and Z,, respectively. We will
designate by E, and I, the total plate voltage and current, respectively,
while the corresponding quantities for the grid are E; and I,. In the

oI g W 6D it
LT i

Fig. 1—Three-electrode vacuum tube and circuit.

absence of the variable electromotive forces the d-c. values of these
voltages and currents are Ey, I, By, and Iy, respectively, while the
increments due to the impressed forces are e,, i, €,, and ,, respectively.
Similarly, g and p denote the incremental voltages across Z, and Z,.
All quantities referring to currents and voltages are instantaneous
values. )

We will now assume that I, and I, are functions of E, and E,,
and that we can derive from these functions the expansions

ip = 2 bmnes™e,", 1p = 2 Bmatp™e,", (1)
where
_ 1 6(m+n)[ . 1 a(m+n)1’
bon = ot 10E,"dE,"’ Bnn = St dE,"dE,"’ )

evaluated at the operating point (E, E,).
The important tube parameters are by definition

al, *
1_ar =E=_(‘i‘§e) s M _
rn OE," 7T oI, dE, | rpmeonst. 7 OE, 1,

oE,

o, Heo(3)
1_ 9, _03E, _ _ (dE, s =0 _w
Ty iE,’ o = al, B (d_Ep)Ia=consb- = d0E, - 70

ok, )

where r denotes electrode resistances, B the mu-factors, and S the
transconductances.
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It follows readily from (2) and (3) that

b = 5 G+ 2P Bu = 1 g+ 2T
b= o S S S Py = B oh 4 L 4 T

where P; and T are new notations for be and fy,, respectively. Similar
expressions may be derived for the coefficients b, 8, etc.

If we now apply the circuital laws to the network external to the
tube, we get a number of equations, two of which are

g =4g+1e, & =P+ é. O]

To obtain a solution of (1) and (5) we utilize a method of successive
approximations. Let

Gy = Tipky g = Ligk €p = Dok € = Ly £ = 28k P = XPr (6)
where the summations extend from & = 1 to £k = «. Let us further
define the terms in the series (6) by the following equations:
Tyipt — €pl = Hplp
Tolgl — € = Hy€m , (7
&= g1+ en, &= P+ en
Poipe — €2 = ppeer + 7p(bnepm® + buemen + bozen®)
Pylge — €2 = Wg€pr + 7o(Buen® + Buemen + Boen®) (8)
0= g2+ ep, 0=+ ep

Puips — €ps = Hples + Tp[ 2bnemens + bulemess + €meq) + 2boenes
-+ b.’i[)gpls + bzleplzegl + b128p18g12 + bnae,13]

Tylgs — €3 = Mg€ps + 7o 2B20epmern + Bulemes + ep2e51) + 2Bmenesn (9)
+ Baem® + Puep’ey + Prenen® + Busen’]

0= g3+ ez, 0= ps+ em

and so forth for subsequent terms.?
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The physical interpretation of equations (7) to (9) is readily ob- |
It follows from (7) that the equivalent circuit of Fig. 1 for

tained.
first order quantities is given by Fig. 2. The equivalent circuit of

~—p

eg, epr

J %9 EJZ- 9P [}23 Zp Iﬁ

I Eg ngp 1 uieT EP I

Fig. 2—Equivalent circuit—first-order effects.

Fig. 1 for second and third order effects are those shown in Fig. 3,
and Fig. 4, respectively.
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g(ﬂzo pr* Busp qn"aaze;l)x 'p(bzoepl * b1|epreg1+boz gn)

Fig. 3—Equivalent circuit—second-order effects.

It follows from (4) and (8) that
r"ﬂ(bzﬂepl? + bllepl.eﬂl + b028y12)

1/ 9 a
= rpPa(em + wpen)® + 2 ( =t + up #p) e’ + 6E L enen,
(10)

ro(Baoem® + Buemen + Pozeor?)
1/9 O,
= TETE(EG]_ + y‘ﬂepl)E + —2_ ( ] + #u 'u ) epl + BE e})leﬂl

L

The corresponding terms in (9) can be expressed similarly.
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Equations (7), (8) and (9) contain the general theory of the three-
electrode vacuum tube circuit. In the special case when conductive
grid current is absent it is only necessary to omit the second equation

Zz
—
lgs —e —ips
€g3 . . pa

Al (| oo L, | Do e

Ypegs

N\ /
g [Eﬁzneplepz+ ﬁ,,(eplega+ ePzeg')+ s [abzoepuepz* b,, ®p1%g2* €p2 eg')
zpnzeglagz+aue;|+ 3;1";1 eqi+ +2by,eq,8q9,+ bso':‘:|+ baieh, e

5|z°p|”g| *ﬁoa"g-ﬂ thyyeped + b”e3g':|

Fig. 4—Equivalent circuit—third-order effects.

in each of the equations (7) to (10), inclusive, and to omit in each of
the Figs. 2, 3, and 4, the branch containing 7,. If it is assumed that
not only conductive grid current is absent, but also that u, is constant,
the second plate e.m.f. in (8) reduces to r,Ps(en + ppen)® as is seen
from (10), and (8) thus becomes identical with the corresponding
equation already obtained previously.® A similar reduction and
correspondence occurs for the second plate e.m.f. in (9), as well as in
subsequent equations.

APPLICATION TO STEADY STATE SOLUTIONS

In this section the use of the theory is illustrated by obtaining first
and second-order effects assuming the circuit configuration to be that
shown in Fig. 1. To avoid unnecessary complications the discussion
is limited to steady-state solutions, and it is also assumed that no
plate e.m.f. is impressed. We shall first obtain the solutions in the
general case and then indicate how these are simplified in such special
cases which have been treated by some previous investigators.?: #: §
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General Case
Let the impressed grid e.m.f. be

€ = 2 kycos (wpt + &3) = R kpeilwnttm) i=+—=1 (11)

where the summation extends from & = 1 to & = #n, and the letter R
before an expression means its real part. Referring to Fig. 2 it may
be shown that

RZ b ((:.)h; k g 3w t+xp)

1= RY — ag(w;,; gilwp t+uy)

“ r (12)
(en + mpes) = RY 1, '}35‘”"% it
(gﬂl + H-aepl) = RZ c}‘éwh; gi(un t4xy)

where

1
Z(w) = @7 T ZorZ, {[Za(re +2,)) + 1,2, ]

X [Zz(fp + Zp’) + prp’:l
= Z4'Zy (ueZa — 1) (upla — 1)}, (13)

— Z\[Zo(ry + Z5') + rpZs ]
O T @ 2D (9
_ ZZy (uply — 1)
az(W) - (Zl _i_ Zﬂ)(zz-2 +Zy.l) ', (15)
_ Za(ppls + w2, + Z,)) -
) =TTz T 2)) (16)
@ (w) - ZaZary + ZiZoZy (1 nu-uﬂp) + ZlprJJ'(l + Fﬂ) (17)
! Zi+ Z)(Z2 + Z;)
1oy iy iy — 212y
Z"(w)_Za——l—Z_,,’ Z, (w) Zit 2, (18)

The right-hand expressions in (13)—(18) are to be evaluated at w.
If we write

ar(w)

Z(w)

ai(w) _

) —
) e b =12 3,4, (19)
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the equations (12) can be written

en =Y ?E::i kn cos [ont + tn — ei(wn) ]
e = — 2. ca(wn) ki cos [wt + & — @alwn)]
Z(wh) L, (20)
ep + Hptp = 7o azsgzzg kn cos Lot + ki — ealwn) ]
€g1 + Mg€p1 = Z ?EZS kh COs I:wh't + Kn — 'P’(wh)]

This concludes our consideration of effects of the first order and we
now turn to those of the second order. For this purpose we substitute
the values given by (20) in the right-hand side of the expressions (10)
for the grid and plate e.m.f.’s, and we then obtain two expressions,
each of which is equal to a sum of sinusoidal terms. If we limit our
attention to the terms of frequency (wi—uwe), it is readily shown that
the grid e.m.f. of this frequency is equal to the real part of

[l (3o 1 1 (2 2 ) o (e

- 35 (e () + (%) Fo ) tbercorenm 2

and the plate e.m.f. is equal to the real part of
. ag(w1) [ eawn) 1 .@.‘ﬂ Ay ) ay(wr) (a[(wg)
[”f’ P Z(w1) ( Z(w) ) T2\ 35, T 3E, ) Z(oy \ Z(w)

20FE, Z(ws) Z(wa)) Z(w)

where a bar over a quotient indicates its conjugate complex.
It follows from Fig. 3 by straightforward calculations that the
currents 4, and 4, produced by the e.m.f.’s (21) and (22), are

i — @) = R [_ Zea(‘*l;lfﬁE @) Z"(CE:IEI wg)] (23)
A [«] __ [e] :
ig(wy — w2) = R [Z,.(wl — wp) Ze(wr — wa) ]

where [¢,] and [¢,] are abbreviations for the complex quantities (21)
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and (22), respectively, and

1
Ty (Za’ + Z!!)

Za(rp + Z,') + roZy

rﬂ(zﬂ’ + 22) ;
S\l T 2L2) _ 5 ¥ (w)
Zi(unZa — 1)~ 12o@ e

Zi(w) = Z(w)

= | Zu(e) et

Zy(w) = Z(w)
L (24)
= ro(Zs + 2,)) _ ide(w

Zo(w) = Z(w)m = |Zc(w) | el
r(Z: + Z,')

Zi(w) = Z(w) Zy(r, + 2Z)) + 1,2y

= | Zu(w) e

J

In (24) the introduction of the angles ¢ is convenient when it is desired
to evaluate the real parts of the expressions (23).

The expressions (21) to (24) can be used to obtain any second-order
current of frequency (w, — ws) by replacing w; with w, and w, with w,.
The remaining second-order currents are found by a process similar
to that above. For instance, 7,2(2w;) and 7,2(2w,) are given by the
right-hand expressions in (23) provided the e.m.f.’s [¢] are those of
frequency (2w;) and the impedances Z are evaluated at (2e;). In
passing it may be remarked that equations similar to those in (23)
and (24) also occur when third and higher-order effects are calculated.

Special Cases

If the impedances Z,, Z;, and Z; are infinite the case treated above
reduces to that considered by Llewellyn,® and after proper simplifica-
tions the previous equations give results identical with those obtained
by him. For instance, if we take the limiting values of e, in (12) as
Zy, Zy, and Z; tend to infinity, and if we then divide the quantity
inside the summation sign by — Z,(w), we get an expression for 7,
which may be shown to be identical with equation (33) in Llewellyn’s
paper, except for differences in notations. Similarly, the plate current
ip(w; — wy) in (23) reduces to a value which may be shown to be
equal to the sum of his equations (35) and (36), evaluated for this
type of second-order current.

Another special case is that when the impedances Zi, Z,, and Z, are
all finite but conductive grid current is absent. We then have u,
equal to zero, and R, equal to infinity, and the previous general equa-
tions are simplified correspondingly.

We arrive at the case treated by Peterson-Evans ? by maintaining
the assumption of no conductive grid current but by assuming Z;, Z,,
and Z; to be infinite. For instance, if then 7, and im(w; — ws) are
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evaluated on this basis for a plate impedance Z, equal to a pure
resistance at all frequencies, it can be shown that the currents so
obtained are identical with the corresponding currents given by
equations (4) and (6) in the paper referred to.

Finally, if we assume finite values for Zi, Zs, and Zs, no conductive
grid current, and constant u,, we have the case treated in the previous
paper.®

Tueory ofF Four-ELEcTRODE TUBE CIRCUITS

Circuits with tubes having more than three electrodes can be treated
by a process similar to that adopted above, as will be made clear by
outlining the theory for the four-electrode tube circuit.

The circuit to be considered is shown in Fig. 5 where Z; to Zg are

Fig. 5—Four-electrode vacuum tube and circuit.

impedances which may include inter-electrode admittances. On the
electrodes denoted by a, b, and $ are impressed the variable electro-
motive forces e, €, and e, in series with the impedances Z,, Z3, and
Z,, respectively. The significance of the quantities E,, Ey, €p, Ip, Ino,
i, and the corresponding quantities with indices ¢ and b, is obvious
from the preceding discussion of the three-electrode tube circuit.
Let a, b, and p be the incremental voltages across the impedances Z,,
Zy, and Z,. As before, instantaneous values are implied.
For the currents we get the expansions

ip = Piea + Poey + Piep, + Pie + Psei® + Pee,’
+ Preser + Pseaep + Poere, + - -+

o = Area + Azer + Asep, + Aue® + Ases® + Ao’
+ Aqeqer + Aseaty + Aoere, + - - -

iy = Bie, + Baes + Biey + Baes’ + Biew' + Biey®
+ Bqesty + Bseatp + Boerep, + -+ - |

= (25)
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where
_ oI, _ oI,
=g =g B
_ 19, o,
P“_zaE,,ﬂ'P""aE,,aEb

oI,
oE,

1P3=

and similar expressions hold for the 4- and B-values.
The electrode resistances are by definition

The mu-factors are

Mpa =

Bap =

oL
dE,

al,
OE,
oI,
3E,
arI,
IE,
al,

Ak,
al,

Hop =

Hpy =

9E, _

= 7,

dE,
al,
oF,
oL,
dE,

Hba =

-
-~
-
-~
=
-

P, — 19°I, _ 10,
P UA T 29E2 TP T 29E,
(26)
oI, P — %I,
dEQE,’”°  8EdE,’
al, 1 _al,
aE,’ ro 9k, (27)
dE,,)
dEa Eb- I,p=cnnst.
dL
dEp Ey,, I,=const.
dEb)
dEP E,, I,=const.
} (28)

dE,
dE,

dE,
dE,

dE,
dE,

)E“ s Iy=const.

)Ep , T,=const.

) Ep » Iy=const.
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and the transconductances
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Sw=lotm s, =St
Sty = géi_ W Sus gﬁ - %ﬂ
It can now be shown that
P=te, P=t, P3=rip
Py= =g 3 P L 2P Pa= TR dunPy
R b
s
Py = %,Z”Ep: ‘2&—:3#_& + up’Po
P; = rip g%”: %%: + 2ppitipaPs
= o She g B S Do Py ,
A1=%;, 4y =t Ay =tz
A= — %2 a%_ Aq = —:—‘22“ + QuapAy, Ay = :_ ggu 2y
T ot S
Ae = :: g%ﬂ:-l‘ﬂr—f ?%Eu: + 2pappard s
= e L B s

(29)

(30)

T (31)
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Bl—&ir B2=l'| Bgzﬂ’f
Ty "y 43
S U TR o _ 1 duny
B; 2t BEb' T= s 0F, + 2ppaBs, By = 75 0Es + 2u1Bs
_ 1 a.uba Hba a#ba 9
B, = 2 9. T 21, 0, + wpa*Bs .
r .
s = 1 wen | pep Iy + 2B
2ry 6Ep 2r, OFE, Ko o
— _:L Ay Kop Opsa
Bs 7 O, + r, OF,; + 2.ubpnbaBs
_ 1 dma | wra Opsp
T IE,  n JdE, + 2ubaksBs )

The circuital laws applied to the external network furnish a number

of equations, three of which are

€ = a + e, e =0+ e e = P+ e (33)
Let now
ip = 2ipk Ta = Xftak, T = D Tok
ep = D Ephy s = 2 Cak, e = 2 e (34)
P = 2bu a= 3 a, b= 2 b
We then obtain the equations
rpip[ — €p1 = Hpa€al + HKpb€n1
Talal — €al = Hab€s1 T Mappl (35)
74l — €51 = Mba€al T+ Hbp€pl ’
€ = a1 + ea, e = b1 + e, &= P11+ en

which show that the equivalent circuit for first order effects is that

given in Fig. 6.
We get further for second-order quantities

, (36)

fpf:pe — €p2 = Mpafa2 + Hpb€b2 + pr
Talaz — €z = Mat€tz T Hapepz + 7aM
Tty — €2 = Mba€a2 T+ Hbpep + 7N
0= a; + e, 0 = by + ews,

O=P2+ep2
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Fig. 6—Equivalent circuit—first-order effects.
where
rpL= (Psat®+ Psen®+ Peepi®*+ Preaies + Psearep + Poenien)ry
ralM = (Asean®+4 seot +Acep+Arenen+Asenen+A4 wenep)rat, (37)
roN'= (Biar+Bses +Beep+ Breumen+Bsemen +B 9€b1€p1) 1
which in view of (30), (31) and (32) may be written

oL, = roPo(gotes + i + e + (6““ + o Y et |
+ ?:E ea18p1 + z, emepl ‘
= r,A(ea + paresr + paptp1)® + 5 (a#ﬂb + dab %) [ ]
s (e
N = 7,Bs(useear + €1 + popen)® + 5 (am:l + Hba zﬂ—Eb:) ear® 1
+%<M’ + pop g_;:@) e’ +:—'§58«1€b1 r- (40)
+ (a.ubp + uop aE ) Cat€p -|- eue,,l
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\
From (36) it now follows that the equivalent circuit for second-order
effects for the four-electrode tube circuit is as indicated in Fig. 7.

Z2
1
T -
Z, Zg
~—ig2 —ip2 i_Pa....._
€az ®ba ®p2
ra rb P
oz bi Pz
l A Hba®az
ab®b2
ze | |2, zp | |24 Hpa®az 2, | |zp
o . !bpep2
PP Hpbeb
P 2
rgM rpN rPL

Fig. 7—Equivalent circuit—second-order effects.




