An Electromechanical Representation of a Piezoelectric
Crystal Used as a Transducer *

By W. P. MASON

HE equivalent electrical representation of a piezoelectric crystal
when used as an element in an electrical circuit has been discussed

by several investigators,! who have arrived at the circuit shown on
Fig. 1. Apparently, however, no circuit has been evolved for repre-
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Fig. 1—Electrical representation of a piezoelectric crystal.

senting a crystal when it is used as a transducer to couple electrical
circuits to mechanical systems. Since such crystals? are used in loud
speakers, microphones, supersonic radiators, and other apparatus, it is
a matter of importance to obtain such a representation. This paper
discusses such an equivalent circuit and relates the elements to the
mechanical, electrical, and piezoelectric constants of the material.
When used as a purely electrical circuit, this representation reduces to
that of Fig. 1.

When piezoelectric crystals are used to drive external mechanical
systems, the modes of motion most often used are longitudinal vibra-
tions perpendicular or parallel to the applied electric field. Accord-
ingly, the elements of the equivalent network are derived for these cases
only. The network can, however, represent any type of motion driving
a load just as the network of Fig. 1 can represent the crystal for any
type of motion.

Let us consider first the case of a crystal vibrating perpendicularly to
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ELECTRO-MECHANICAL REPRESENTATION OF CRYSTAL 719

the direction of the applied field. Two subdivisions of this case are
usually of interest, the first when the crystal is supported at its center
and drives two symmetrical loads, and the second when the crystal is
supported on one end and drives a load on the other end. The sym-
metrical case is considered first.

By employing the well known analogies between electrical and me-
chanical systems, it is possible to obtain a simple network, expressed in
terms of electrical symbols, which represents the properties of a piezo-
electriccrystal. In thisrepresentation, force is the analogue of voltage,
mechanical displacement of electrical charge, and velocity of electrical
current. When the electrodes are attached to the crystal faces, the
equivalent network of the crystal is shown by Fig. 2, The voltage E
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Fig. 2—Electromechanical representation of a symmetrical
piezoelectric crystal.

is the voltage applied across the plates of the crystal, the force F is
the force applied to each end of the symmetrical crystal, @, is the elec-
trical charge flowing in the wires connected to the crystal and Qs and Qs
are the mechanical displacements of the ends of the crystal which are
equal on account of the symmetry of the crystal.

The constants of the crystal can be evaluated by considering limiting
cases. The capacitance C, is the electrostatic capacitance of the
crystal clamped. The compliance Cg is the mechanical compliance of
the crystal. In c.g.s. electrostatic and mechanical units, these have

the values
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where K is the dielectric constant of the crystal clamped, I, the dimen-
sion of the crystal in centimeters perpendicular to the surfaces of the
electrodes, I, the length of the crystal in the direction of vibration, /; the
length of the third axis, and s the modulus of compliance of the crystal
(the inverse of Young's modulus) along the axis of vibration. The
inductance Lg represents the mass reaction of half the crystal. At low
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frequencies this will be equal to half the mass of the crystal, but at
higher frequencies will be less due to the fact that the crystal does not
move as a whole.* In order to resonate with the compliance Cg at the
mechanical resonance frequency of the crystal, Ly must equal

Ly = 2l @
(s

where p is the density of the crystal. The resistances R shown include
the dissipation due to internal friction, supersonic radiation from the
ends of the crystal, friction at the point of support and all other sources
of dissipation.

If Fyis the force required to keep the crystal from expanding when an
electric charge Q; is applied to the crystal then Cy the mutual capaci-
tance-compliance of the crystal is equal to

Similarly if Eyis the open circuit voltage for a given expansion (Q: + Qs)
of the crystal then

_Qz+Qa
CM—"T“" . 4)

In order to evaluate Cy in terms of the piezo-electric coefficient d, it
is necessary to find the displacement for a free crystal when an electrical
potential is applied to the crystal. Short circuiting the network of
Fig. 2 on the mechanical ends and setting F = 0, we find
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where k is the coefficient of coupling between the electrical and mechan-
ical system is defined by the equation

kE = VCoCg/Cn. (6)
Use is now made of the piezo-electric equation
e=dV, (M

3 Strictly speaking the value of Cg is also a function of frequency, but at the first
resonance it can be shown that it differs from its static value by the factor
8/[x* — k*(x? — 8)] and Lg = ldmkp/4. For a highly coupled crystal, this factor
does not differ much from unity, and hence in the interest of simplicity, the variations
of Cg have been neglected.
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where e is the strain (elongation per unit length) produced in the crystal
by an applied potential gradient V. Comparing (5) with (7) and not-
ing that Q; + Qs = els, and V = E|l., we have on the insertion of the
values for Cp and Cg from (1)

NS
m™
d=1—p" (8)

Solving for k& we find

_1 [Ks[ _ MT+16rd| . , [ir
k= 411'[ 1+ Ks ] INEs ©)

when 167d?/Ks is a small quantity as it is for quartz.

When the crystal is used as an element in an electrical network, and
allowed to vibrate freely, the force F of Fig. 2 can be set equal to zero
and the network short-circuited. Solving for the impedance on the
electrical side we find

_—Jjd —#) [1 =l +ile(1 — kz)] '

Zo = —247C, T — 7 +7la (10)

where f? = fa2; fi2 = fa2(1 — k) (f1 being the natural mechanical
resonance frequency of the crystal), and ¢ is the ratio of the reactance
of the condenser Cy to the resistance R/2 or

q = 2/2RufsCh. (11)

It is easily shown that the impedance Z. is also the impedance of the
network of Fig. 1 if 4

Ca = Co;

Cp = Cok*/(1 — k%);

Ly = 1/4n%282C,; (12)
Ry = 1/2nf2Cok’.

Hence the representation in Fig. 2 reduces to the well known Fig. 1,
when the crystal is free to vibrate.

A network representing the second case, when one end is supported
with the other end used to drive a load, is shown on Fig. 3. The
method of deriving the constants is the same and all of the constants

4 If account is taken of the variation of Cg and Lg with frequency, the elements are

2
Ci1=0Co; Cp= wﬂgkfpk=} i Lp

Rp = 1/2xf4C.k*q where g =

S S 1
= 324G, " 7RCpfa’
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Fig. 3—Electromechanical representation of a piezoelectric crystal
clamped on one end.

are the same except Lg, which is twice as large since twice the mass is
moved from the clamping position.

When the direction of motion is parallel to the direction of the applied
field, the same networks hold but the elements have different lengths
entering into their determinations. The direction of the applied field
and of the motion is designated by L. The other two axes are still
designated by I and /,. The resulting constants are

_ Kl _ Sk, . Ks
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where Lz, is the mechanical inductance for the symmetrical case (Fig.
2) and Lg, for the dissymmetrical case (Fig. 3).

A simple example of the use of Fig. 2 in determining the effect of a
mechanical load on the impedance of a crystal is the problem of finding
out how much the energy radiated by a crystal to the surrounding air
affects the decrement of a quartz crystal vibrating longitudinally.
When a crystal vibrates, energy is radiated to the surrounding medium
by the motion of the ends of the crystal. If the dimensions of the
ends of the crystal are comparable to a wave-length or greater—which
they will ordinarily be for a crystal vibrating at a high frequency—it
is well known ® that the radiating surface experiences a resistance to

motion equal to
Rr = pab (mechanical ohms) (14)

per square centimeter, where pa is the density of the medium and &
the velocity of propagation. For air Rg is about 41 ohms per square
centimeter. Hence the equivalent circuit for a crystal vibrating in
air is Fig. 2 terminated at the terminals 3-4 and 3-5 by the mechanical

5 See ' Theory of Vibrating Systems and Sound," I. B. Crandall, Chap. 4, D. Van
Nostrand Co.
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resistances -
Ry = 4111, (15)

If all other sources of dissipation were eliminated, the radiation re-
sistance would produce a limiting value for the decrement of a crystal
which may be calculated as follows. From equation (11), the value
of g for the mechanical system is

_ 12y
9= FiReCr ~ dir (16)

on inserting the values of Rz, Cg, and f4 = 1/2l.Vps. Since p = 2.65
and s = 1.27 X 1072 for a perpendicularly cut quartz crystal
g = 2.24 X 104 17

The decrement of a crystal in terms of the circuit of Fig. 1 is

— RB
=L’ (18)
Inserting the values of footnote (4) we find
5= = 1.14 x 1074, (19)
g

Van Dyke ¢ has measured the limiting value of the decrement of a
perpendicularly cut quartz crystal vibrating in air and finds it to be
1.26 X 10~4. Since the residual losses were about 5 per cent of the
radiation losses, this agrees well with the value found in equation (19).

The equivalent circuits of Figs. 2 and 3 may also be used as the
basis of design for mechanical systems, such as loud speakers, micro-
phones and supersonic radiators.

6 Proc. I. R. E., April, 1935.



