Constant Resistance Networks with Applications to Filter
Groups

By E. L. NORTON

The problem investigated is the determination of two finite
networks such that, when connected in parallel, they will have a
constant resistance at all frequencies. The admittance of any
network may be written as the ratio of two polynomials in fre-
quency. A network to be one of a constant resistance pair must
have certain restrictions imposed on its admittance. In case the
two networks are both filters of negligible dissipation, the expres-
sion for the input conductance of each may be written from a
knowledge of the required loss characteristic.

The poles of the expression for the conductance are then found.
They will be identical for the two networks. The networks are
then built up by synthesis from those poles of the conductance
which have negative real parts, these corresponding to real network
elements.

The methods which have been developed for this last process
are described in detail.

NE of the most useful principles available to the network design
engineer is that of constant resistance networks. The use of
these networks is widespread in the telephone system for purposes of
loss equalization and distortion correction, where they have the
advantage of providing a means for altering the transmission properties
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Fig. 1—The three fundamental forms of constant resistance networks.

of a circuit without affecting its impedance.! The three usual types
of constant resistance networks are shown in Fig. 1, where, in all
cases, Z1Zs = R?, a relationship which is always possible to fulfill if

1 “Distortion Correction in Electrical Circuits with Constant Resistance Recurrent
Networks,” Otto J. Zobel, Bell Sys. Tech. Jour., July 1928,
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Z; and Z; are built up of resistive and reactive elements in the usual
way.

The lattice type will not be considered here. The first step in
extending the other two is shown in Fig. 2, where the networks shown
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Fig. 2—The first step in extending the fundamental forms of the constant
resistance networks.

have a constant resistance if Z1Z; = R%. The networks have now
taken on the form of two half-section filters in parallel or series,
provided that Z; and Z; are purely reactive. This suggests the
possibility of an extension to more complicated configurations having
the general properties of wave filters with constant resistance. Since
the shunt and series types are analytically the same, only the former
will be considered in detail.
Use will be made of the following theorem:

Any finite network of linear elements having a constant conductance at
all frequencies, and no purely reactive shunt across its terminals, has
zero suscepiance.

The admittance may be written ?

Ao+ AN+ --- + 4,.A™
By + B\ + - -+ + B’

Y(\) =

where A = i(w/we) and m is equal to or one greater or one less than .
wp is a constant which fixes the frequency scale. If the real part of
Y is to be a constant other than zero, 4, cannot be zero and m must
be equal to or greater than n. If there is no purely reactive shunt
across the terminals, By cannot be zero and m cannot be greater than .
The expression for the admittance may then be written

1 +A1k+ e +A”An.
14+ BA+ --- + B\
2 See ‘‘Synthesis of a Finite Two Terminal Network Whose Driving Point Im-

pedance is a Prescribed Function of Frequency,” Otto Brune, M. I. T. Journal of
Mathematics and Physics, vol. 10, 1931.

Y(\) =G
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By elementary methods it may be shown that if the real part of
this expression is constant for all real frequencies then 4, = By,

. A, = B, and the imaginary part is zero. All other possibilities
involve special relations between the B’s, which correspond to a ¥(A)
with poles on the imaginary axis. This has been excluded by the
condition of no purely reactive shunt across the terminals. The
study of networks of constant admittance may then be restricted to
the study of the conditions for constant conductance.

We will consider, then, the problem of designing two passive net-
works of linear elements such that, when connected in parallel, they
will have constant conductance. The value of the constant con-
ductance may be taken as unity without loss of generality.

The conductance of a finite network may be written as a ratio of
two polynomials in frequency. Its value must always be positive for
real frequencies, and for the case under consideration it may never
exceed unity, since otherwise the conductance of the second network
to make up the constant resistance pair would be required to be
negative. The expression for the conductance of the first network
may be written in the form

1
G =1T7m Ty’ (1)
where A may be i(w/wy) as above, or it may be taken as any imaginary
function of frequency which may be realized by the impedance of a
reactive network, and F(\) is the ratio of two polynomials in even
powers of . By subtracting G from unity the required expression
for G; may be obtained:

_.._—1 -
1
1 +m‘

Gy = (2)

An investigation of general networks of an arbitrary number of
resistance and reactance elements fulfilling the relations (1) and (2)
would take the present investigation too far from its main objective.
If the networks are to have the general properties of wave filters with
a minimum of loss in a band, they may be restricted to reactive net-
works having a single resistance. Furthermore, both resistances may
be taken as unity, for, in cases where this is not necessary, a trans-
formation to some other value may be made after the design is com-
pleted on the unit resistance basis. We assume, too, that when
A =0, FA) = 0and G = 1, G = 0. This implies the proper choice
of the expression for A.
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With a voltage E, applied to the common terminals the power
absorbed by the first network is E2G; and by the second is EGs.
Since in both cases the power delivered to the network must be
absorbed in the single resistance, the two insertion losses are given by

1

e—&!l — Gl = mm ’ (3)
et =Gy = -1—1 : 4)
TR

Since F(X) must be an even function of A, the poles of (3) may be
written = ¢n == 1d, and (3) is

1 1 me-hr 1 1
— I - - (5)
A+ N — ¢ 1 ANt CmEiduN — C == 1dn

e~ = — D2

if the degree of F()) is 2n. If n is even, the terms A\ + ¢y and A — ¢
are omitted and the product taken from m =1 to m = n/2. The
quantity D? is the denominator of F(A), a polynomial in AZ.

Let 8, be the phase angle between E, and the voltage E; across the
resistance in the first network. The left side of equation (3) may
then be factored in the form e~?% = e~(m+i)g—(x—if)  Similarly half
of the factors on the right belong with e=(+i8) and half with e~(—i8),
Now the terms with poles having a negative real part® must belong
with e~(=+i6) g0 that:

- 1
R+(‘n A""fm:l:'idm
1 1
NFoliTraz F N F 2e0n (6)

e—(a+iB) —

=D

Since XA is an imaginary function of frequency, say A\ = ix, and D is
real if X or x is real, the phase 8, is given by

me=(n—1)/2

= tan—1 > s 2mx
B = tan o + mz; tan PR i (7)
If » is even the expression is
ma=n [2
2Cmx
= -1 7 .
B E: tan~ s (7a)

® These being the factors that correspond to physically realizable network elements,
they belong with the physically realizable factor of the exponent.



182 BELL SYSTEM TECHNICAL JOURNAL

The network can be designed from equation (6) or by making use of
both (3) and (7). Both methods will be illustrated in two types of
networks giving filter characteristics.

FILTERS WITH CHARACTERISTICS SIMILAR TO THE ‘'‘ConsTanT K"
TvYPE OoF FILTER

As the simplest form of F(\) take F(\) = [(A\)/(z)]*». The poles of
(3) are then simply the 2z roots of (— 1)"~!, which may be written
+ cos (mw/n) & isin (mx/n) if # is odd, and = cos [(2m — 1)7/2n]
+ ¢sin [(2m — 1)x/2n] when =z is even. In the first case m varies
between zero and (# — 1)/2 and in the second case between unity
and #/2. For the case of » being odd, equation (6) may then be

written
m=(n—1)/2
e—(+if)) = _1_ I 1 (8)

T2 mm 14X+ 2cos 2T )

where the polynomial D is unity in this case. The last equation
expanded is in the form

entif = 1 4 A\ + AN+ - + A, 9

which is the form for the ratio Fy/E; for the network shown in Fig. 3.
By writing out the ratio Eo/E; for this network and comparing terms
with equation (8) expanded in the form of (9) the values of the a's
may be found to be *

. T
a) = Sin 5—,

2n

- 37rsin T
sin -—sin —
2n"  2n
gy = ———8M,
a1 COS? -

! 2n

(10)

S.n2m —1 sin 2m — 3
! m 2n

am = 1

m —
Gpm—1 COS?

@, = nsin—
L 2n

¢ By the evaluation of the finite sums and products of the trigonometric terms.
No short method has been found for obtaining the results.
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The second network, which when connected in parallel with Fig. 3
will give a constant resistance, is obtained from the first by replacing
A by 1/x. Itisshown in Fig. 4.

These structures have been designed on the basis of A being a pure
imaginary. Note, however, that the two structures will have a
constant resistance provided that A is any function realizable by a
combination of resistances and reactances. Equations (8) and (9)
will still hold but (3) and (7) will no longer be true. Note, too, that
for the simplest case of # = 1 the structures reduce to the usual form
for constant resistance networks as shown in Fig. 1.

an} a3?\ arA
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Fig. 3
an as a
EY A

Fig. 4
Figs. 3—4—A pair of constant resistance networks of ‘‘constant K" configuration.

If X is taken of the form i(f/f,), the structure of Fig. 3 will be made

up of series coils and shunt condensers in the form of a low-pass filter.

The structure of Fig. 4 will be of the form of a high-pass filter with
series condensers and shunt inductances. The loss of the first network

is
mers (i)

f(] )2:1.
e (2)"

f
With f < fy the loss of the first network will be small and the loss of
the second network large. With f > f; the reverse is true. At f = f,
each of the networks takes half of the available power, illustrating a

and of the second

82"2
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necessary property of constant resistance networks of this type, of a
three db loss at the cross-over frequency.

(i _f"})
Sm  f
(2-%)

fm f2
and band-elimination flters, respectively. By taking other functions
for A multiple band structures may be designed, subject always to the
limitation that the combined bands of both filters must extend over
the whole frequency range, with a three db loss at each cross-over
point.

The evaluation of the elements is easily done from equations (10).
The impedance denoted by a\, for example, in the low-pass filter
would have the value i(f/fo) sin (x/2n), which is an inductance of a
value (1/27fy)[sin (w/2n)]. For a terminating resistance different from
unity the value of the first inductance is Ly = (Ro/27fo)[sin (x/2n) ]
or in general any inductance is Lm = amLo where Lo = Ro/27fs.
Similarly, any capacitance is Cn = anCo where Co = 1/27foRo. The
corresponding formulas for the second network are C, = Co/an and
Lnm = Lo/am. The same formulas hold for # even; in that case the
networks of Fig. 3 and Fig. 4 would terminate on the right in a shunt
arm with impedances of 1/a\ and A a,, respectively. This is illus-
trated by Fig. 2 for n = 2.

If A is taken of the form the networks become band-pass

FiLTERS WITH CHARACTERISTICS SIMILAR TO THOSE OF THE
“M-pERIVED" TYPE

The networks shown in Fig. 3 and Fig. 4 have the same configuration
and similar characteristics to constant K filters. They are subject to
the same objection of a relatively slow rate of cut-off and an excessive
loss at frequencies remote from the cut-off. A type of characteristic
similar to that obtained with M-derived filters, with points of infinite
loss at finite frequencies, is necessary for an economical design in the
majority of cases.

The loss characteristic of the network is of course fixed by the
function F(\), a ratio of two polynomials in A. It may be written

14+ AN+ -+ + A 22

— 2
FO) =AM gy B

Now the first filter will have infinite loss points when the denominator
is zero, and the second filter when the numerator is zero. If these
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peaks are to occur at real frequencies, F(A) must have poles at
M = —1/S,?and zeros at \* = — P,2. Moreover, since 1/[1 + F(\)]
and 1/[1 + (1/F(\)] must always be positive for real frequencies, the
expression for F(A) when all its zeros and poles occur at real frequencies
must be a perfect square. It may then be written

(P12 + A‘z)? S (Pnl_lz + hﬂ)!

FO) = AN G sap T F Sana

In order to get an idea of the significance of the expression, let

= 1(f/fo) and restrict the P's and the S’s to values less than unity.
The first network will then have zero loss points at f = 0 and f = P.fc
and infinite loss points at f = f/S, and f = ©. The second network
will have infinite loss points when the loss of the first is zero, and zero
loss points when the loss of the first is infinite. The first network is
therefore a low-pass filter and the second a high-pass filter.

The following work is considerably simplified if S,, = P,. This
implies that the characteristic of the second filter is the same function
of 1/x that the first is of A. If the cross-over point is fixed at A2 = — 1,
the value of 4, is — 1 and in order to write equation (6) or (7), it is
necessary to find those zeros with a negative real part of

1 — % (Plz + )\2)2 P (PZ("__”[E + X2)2
(1 4 P22 (1 4 PPaonypeh?)?
_ (P 4 A2 - (P24 -
— [1 NG Ay ][1 S e ]

Now since the zeros of the second factor on the right are the negatives
of the zeros of the first factor, it will be sufficient to find all of the
zeros of the first factor and reverse the signs when necessary to secure
negative real parts. Consider, then, the equation

(Pl.2 + )\2) Tt (Pz(a—])ﬂ + Re)

! +h(1 + P\ oo - (1 4 P2laony M) =

One rootis A = — 1. It may be shown further that the magnitude
of all of the roots is unity. Writing A = pe as a root, the magnitude
of the typical product term (P? 4 A?)/(1 + P?\?) may be written

(h-r)(-4)

1 \2
— ) — 44in?
(Pp-I—F) 4 sin?

P4
1 4 P2A?

2

=14+
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Now since the denominator of the expression on ‘the right is always
positive, and all of the P’s are less than unity, the magnitude of each
of the product terms is greater than unity if p is greater than unity
and less than unity if p is less than unity. Since, however, the magni-
tude of the complete product must be unity, the value of p must
be unity.

After dividing through by the factor 1 + A, the remaining function
is a reciprocal equation in A and may be written as an equation in
p = A+ (1/A). Since the magnitudes of the roots in X are all unity,
the roots in p must all be real and be in the region — 2, + 2.

The degree of the polynomial in p is (» — 1)/2. It may be shown
further that if ( — 1)/2 is even there are an equal number of positive
and negative real roots, if the degree is odd there is one more positive
than negative root.

The equations in p for various values of (n — 1)/2 are

”21=1, p—(1—3)=0
= 2, Pz—(l—za)P—(l—El+Ez)=0
=3, pP— (1 —Zp? — (2 — Z1+ Zy)p
+ (1 =214+22—2) =0
=4, pt—=(1—=2Z9p* = 3 — Z1+ Zyp
+ (2 — 2+ 23 — 2Z)p
Sl =S4 3 — 2+ 2 =0,

where the =’s are the symmetric functions of the P%s, that is,

=P+ P24 - Planp,
Iy = PEP2 + - 4+ PrasypPoonpe.

The equations in p may also be written in trigonometric form as
follows:

n—1 ' 3 0
7 =1, COSEB-[—ElCOSE—O
5 3 0
= 2, cos§9—|—22cos»2—6+21cos§=0
=3, coszﬂ—f—2;cos§0+21c05§9+22c059=0
2 2 2 2
=4, c0529+24coszﬂ+Elcos§6+23cos§0
2 2 2 2
(]
+ Zacos- = 0.

2
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These equations include the root at A = — 1 corresponding to
6 = 7. Excluding this they will each have (# — 1)/2 roots between
6 =0 and 8 = =. The roots in p will then be given by p = 2 cos 6.

Equation (7) becomes
(n—1)/2

By =tanlx + Y tan™ 1pjxx2' (11)
1

where the quantities p, are the roots of the above equations, without
regard to sign.
We require also the value of dB;/dx, which may be written

g 1 (n—1)/2 Pm ‘
prial e L ? | _ @ = pd)at (12)
(1 + 2%

A possible configuration for the first network is shown in Fig. 5
and for the second in Fig. 6.

anA an-2A asi ajA

R=I1

Fig. 6

Figs. 5-6—A pair of constant resistance networks of the ' M-derived” configuration.

To find the elements it would be possible to expand the voltage
ratio and solve for the a’s as was done in the constant K illustration.
Another method would be to find the input admittance of the network
from the known input conductance, and find the a's from this ex-
pression. A simpler method, however, takes advantage of the fact
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that each structure is a purely reactive network with the exception of
the terminating resistance and finds the network elements in terms of
the short circuit reactance as measured from the resistance end of
the network.

Use may be made of the following theorem:

With any four-terminal reactive nelwork the reactance measured at
terminals 3—4 with terminals 1-2 shori-circuited is equal to the langent
of the phase shift between a voltage Eq applied to terminals 1-2 and the
resullant voltage E, across a unit resistance connected lo terminals 3—4.

The open-circuit voltage across 3—4 due to E, would be =+ RE,,
where £ is a real quantity, if the network contains only reactances.
By Thévenin's Theorem, then,

+ kE,

Ev=11x

where X is the reactance of the network from terminals 3—4. If §is
the phase shift between E; and E,;, X = tan f.

Since this phase shift is given by (11) the short-circuit reactance is
known. At a value of A = #(1/P;) or x = 1/P,, the impedance of the
first shunt arm from the right of Fig. 5 is zero, so that the reactance
of the filter is simply the reactance of the arm a;\, which gives the
value of a, directly as

a; = Py(tan By,

where (tan B;); denotes the value of tan g, when x = 1/P.. The
reactance of the network after subtracting ax is tan 8, — Pi(tan Bi).x.
At values of x very close to 1/P; this is the reactance of the first shunt

arm, or
d{,, 1
a(ﬂx ;)

1 ="

d
T (tan 8 — aix)

where, after differentiation, x = 1/P,. Carrying through the differ-

entiation,
2P;®

(1 4 tan?Bih (%%)1 —a

as =

Similar formulas may be found for the rest of the elements. If Xn
denotes the reactance starting with the series arm anA or with the
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shunt arm (Pn;2°A? 4+ 1)/amA, then for m odd, that is, for a series
element,
1
am = P Xom r=a0"
s ( P(m+1)/2)
and for a shunt arm, m even,

1_ 1 dXe (1
Am - 2Pm,'22 dx - Pm[?

When m = n, or for the last series arm, a special relation is necessary,
readily obtained by the limiting value of reactance as x approaches
zero. This gives

(@ +az+ - + an)x = (1 + Zpa)x
or ! '

aGn=14Zpy —(ar+as+ -+ + an2).

To use these relations it is necessary to know the expression for X,,,
the reactance to the left from the successive points in the network.
To determine this in terms of the elements already known use may be
made of the following theorem:

If the impedance looking to the left into a network is Z, the impedance
to the lefl from A, any point within the nelwork is the negalive of the
impedance lo the right from A when the network is terminated on the
right by an impedance — Z.

For example, referring to Fig. 5, to determine a3 it is necessary to
know the reactance to the left starting with a;x. By the theorem
this is

1

X 1

1 — PP ax — tan By

X3 =

and when x = 1/P; we have for a3

1__ e L :
az P — P2 a; — Ps(tan B1)»

The impedance at that end of the filter terminated by the resistance
is of interest. Its value of course depends upon the terminating
impedance at the junction of the two filters, but assuming that this
impedance and the separate terminating resistances are all R,, the
impedance from the load of the first filter is Ry tanh (ap + iB.) if
terminated in a series arm and Ry coth (ap + 48;) if terminated in a
shunt arm. Note that the impedance of the first filter depends upon



190 BELL SYSTEM TECHNICAL JOURNAL

the transfer constant of the second. The impedance from the load
of the second filter depends in the same way upon the transfer constant
of the first. The proof of these relations is based upon both networks
being purely reactive.

APPLICATIONS

The use of the constant resistance pairs of filters is indicated
wherever the impedance at the junction of two filters is of major
importance. Another application which is of some importance is that
of separating the energy in a band of frequencies into two or more
channels, delivering all of the energy into one or the other of the loads.

The method may be extended to more than two networks in parallel
or series to give a constant resistance. For example, the combination

1
G, = - 1 1
D+Em]1+ﬁml
1
G2= B ’
1 1
[1+E®_P+ﬂm]
1
G =TrAmm

will give a constant resistance for the three networks. Designs have
been carried through on this basis where the networks are low-pass,
high-pass and band-pass, respectively. This is one method of avoiding
the limit of three db in the loss of the low-pass and the high-pass
filters at their cross-over point, since in this case the band-pass filter
will take up the power. A second method is to use a pair of low and
high-pass filters, each terminated in another pair with different cross-
over points. This method requires the use of both a low-pass and a
high-pass filter as power absorbing networks but they would be
simple structures and together would require no more elements than
the single band-pass filter in a three-filter combination.

The two methods are illustrated in Fig. 7 and Fig. 8, respectively.
The structures for the second type are given by Fig. 9. Note that
the filters designated L.P. II, L.P. III, H.P. II and H.P. III have
one series arm missing and are apparently terminated at a shunt point
at the load end of the filter. This is a consequence of selecting the
two P's in such a way that the coefficient @, becomes zero, a matter
of no particular difficulty in the case of a two-section filter.
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Fig. 7—A three-filter constant resistance combination.
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Fig. 8—Constant resistance networks used as directional filters.
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It will be found that a filter of several sections of the type described
in this paper will have somewhat less loss in the attenuated band than
the usual type of design. On the other hand the loss in the band will,
in general, be less unless additional elements are used in the standard
type of filter to reduce reflection losses. A design for a pair of constant

i

EE7 ¢

LOW PASS T HIGH PASS 1
LOW PASS TT AND 1T HIGH PASS TI AND I

Fig. 9—The configuration of the filters of Fig. 8.

0. '5‘ 0. '05 0. ‘47 0. '52 0.167 0.172 0.240 0.140
1000 %o 09l %j 126 éo 178 1000
: T T T T T T
STANDARD
7l o.180 0.172 0.170 0.149 0.147 0.141 0.0094

1000 %0 264 %o 182 %o 236
0.416

0.232 0.134 X X X
T 1 1T L T I T
CONSTANT RESISTANCE

Fig. 10—Comparison of the elements of typical standard and constant
resistance filters.

resistance filters having a cross-over frequency of 1000 cycles is
compared with a design for a pair of standard filters in Fig. 10. No
additional elements have been added to the standard type to improve
_the impedance.® The loss characteristics for the two low-pass filters
5 “Impedance Correction of Wave Filters,”" E. B. Payne, and ““A Method of
Impedance Correction,” H. W. Bode, Bell Sys. Tech. Jour., October 1930.

‘* Extensions to the Theory and Design of Electric Wave Filters,” Otto J. Zobel,
Bell Sys. Tech. Jour., April 1931,



are compared in Fig. 11.
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Note that in this case the constant re-

sistance filters have only about sixty per cent of the loss of the standard
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Fig. 11—Loss characteristics obtained by the filters of Fig. 10.
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filters. The difference would not be as great for filters of less sharp

discrimination.



