The Dielectric Properties of Insulating Materials
' By E. J. MURPHY and S. O. MORGAN

This article discusses the variation of dielectric constant and
dielectric loss in the radio and power frequency range with the
object of giving a simple picture of the type of mechanism which
is able to produce anomalous dispersion in this range of frequen-
cies. Some of the general characteristics of anomalous dispersion
can be demonstrated as well on a simple and arbitrary model of the
structure of dielectrics as on the more complex ones which corre-
spond more closely to the actual structure of dielectrics. Such a
derivation is given here in order to indicate the significance of the
different factors which occur in the formule which have been
proposed to account for the variation of dielectric constant and
dielectric loss with frequency. This enables a distinction to be
made conveniently between the general characteristics which are
shared by several types of dielectric polarization and the special
characteristics which are peculiar to a restricted class of polariza-
tions or to a particular kind of polarization.

II. DIELECTRIC POLARIZABILITY AND ANOMALOUS DISPERSION

N a previous paper! the general features of the dependence of
dielectric constant on frequency were indicated schematically for

the entire range extending from the frequencies used in power trans-
mission to those of ultra-violet light. In the range of frequencies
below the infra-red (that is, in the electrical range of frequencies)
anomalous dispersion is the rule, normal dispersion not having been
observed as yet, except for piezo-electric materials, whereas at high
optical frequencies normal dispersion is the predominant feature. In
the intermediate infra-red region it is not surprising to find a behavior
which shows anomalous and normal dispersion in more nearly equal
degrees of prominence.

It will be recalled that anomalous dispersion is the type of frequency-
variation in which the dielectric constant decreases with increasing
frequency, while normal dispersion is the reverse of this, the dielectric
constant or refractive index increasing as the frequency increases.
The use of the term anomalous dispersion to describe the dependence
of dielectric constant on frequency in the radio and power frequency
range is now widespread, and seems quite appropriate, for it brings out
the point that the variation of dielectric constant with frequency in

1 Murphy and Morgan, B. 5. T. J., 16, 493 (1937).
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the radio and power range is in certain respects the same type of
phenomenon as optical anomalous dispersion.

Anomalous dispersion plays a very important part in the behavior
of dielectrics in the electrical range of frequencies. It is seldom possi-
ble to interpret a set of measurements of dielectric constant or other
dielectric properties without encountering some manifestation of
anomalous dispersion or of the other characteristic types of behavior
which follow as corollaries of it.

The two catagories, polarizability and dispersion, include a great
deal of the dielectric behavior of insulating materials. This paper
will deal primarily with anomalous dispersion, but the theory of anom-
alous dispersion is not entirely separable from that of the polarizations
of which it is an attribute, so it will be necessary to discuss at least
briefly the nature of dielectric polarization.

The Relation between Polarizability and Dielectric Constant

For our purposes a dielectric may be thought of as an assemblage of
bound charges, where this term is intended to include the electrons and
positive cores in atoms and molecules, the ions held at lattice points in
ionic crystals and, in general, any assemblage of charged particles which
are so bound together that they are not able to drift from one electrode
to the other under the action of an applied electric field of uniform
intensity. Actual dielectrics, of course, also contain some conduction
electrons or ions which are free to drift through the material and dis-
charge at the electrodes, producing a direct current conductivity.
This conductivity is small at ordinary temperatures in materials
classified as dielectrics.

The positions of these charged particles may be considered to be
determined by an equilibrium of forces. When an electric field is
applied this equilibrium is disturbed and the bound charges are dis-
placed to new positions of equilibrium; then when the applied field is
removed they revert to their initial positions. In the equilibrium
positions which the charges occupy when a constant electric field has
been impressed on the dielectric they have a larger potential energy
than in their initial positions. Moreover, they do not revert instantly
to their initial positions, and when the retardation is due to friction
some of the potential energy of the bound charges is dissipated as
heat in the dielectric.

When an alternating voltage is applied to the dielectric, we may think
of the bound charges as moving back and forth with certain amplitudes,
a different amplitude for each different type of bound charge. When
the applied electric field is of unit intensity, the sum of the product of
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amplitude and charge extended over all of the bound charges in a unit
volume of the material determines the dieleciric constant of the mate-
rial. The energy dissipated as heat by the motions of these bound
charges in the applied electric field represents the dielectric loss per
second, a quantity which is proportional to the a.-c. conductivity
after the d.-c. conductivity has been subtracted from it. The ima-
ginary part of the complex dielectric constant is proportional to the
dielectric loss per cycle.

While the physical meaning of the dielectric constant and dielectric
loss can be conveniently described, as above, in terms of the amplitudes
and energy relationships of bound charges in their motions in an
applied electric field, a more useful basis for the discussion is that
provided by the concept of polarizability. In the present application
the polarizability is equivalent to the product of charge and amplitude,
but it has the advantage of being a quantity which is defined and dis-
cussed in the general theory of electricity as well as in that of dielec-
trics. The dielectric constant is then found to be related closely to
the polarizabilities of the assemblages of charged particles which the
dielectric contains.

The polarization of an assemblage of charges is a quantity defined in
electrostatic theory as the vector sum

p = 2 e (1)

where 's; is the distance of the i*® charge, e;, from a point chosen as
origin, and the summation is extended over all of the charges in the
assemblage, for which e; is a typical charge. (If the assemblage has no
net charge (¥ e; = 0), the origin may be arbitrarily located without
affecting the value of p.)

The polarization is a vector quantity. It can be written as the
product of a scalar quantity p, which represents the magnitude or
electric moment of the polarization and a unit vector p, which gives
the direction of the polarization; thus p = ppi.  As it will not be neces-
sary to distinguish between the properties of isotropic and anisotropic
materials in this article the direction of the polarization need not be
emphasized. The notation will therefore be simplified, in general, by
using the magnitude or scalar part of such vector quantities as the
polarization, the electric field intensity and the displacement of charged
particles.

To illustrate the application of equation (1) let us consider a very
simple configuration consisting of two charges 4 e¢and — e (see Fig. 1).
The vector polarization of this configuration is p = e(s1 — s3) = pp,
where p is the magnitude or electric moment of the polarization and
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P: is a unit vector in the direction of the vector (s; — s;). If now one
of these charges is an electron (e = 4.77 X 1071 e.s.u.) and the other
a unit positive charge and they are separated by a distance of the order
of magnitude of atomic distances (10~® cm.), $ has the value 4.77
X 10~ e.s.u., or 4.77 Debye units. The permanent electric moments
of molecules seldom exceed a few Debye units.

Let us now apply the definition contained in equation (1) to a
dielectric material. In the first place it indicates that if we know the
effective positions of the electrons and other charged particles which
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Fig. 1—The calculation of the polarization vector by the general method for a very
simple configuration.

contribute to the structure of the material we can always, in principle,
calculate the polarization of the body as a whole or any part of it.
Actually the calculation of the polarization of a body as a whole or
that of unit volume in it is in general a complicated matter involving
statistical considerations, but there are special cases in which the result
is rather obvious. For example, in a gas or liquid if all orientations of
the molecules are equally probable in the absence of an applied field,
the value obtained by taking the time-average of the summation indi-
cated by (1) is zero. Equation (1) would also give the value zero when
applied to all of the ions in a c.c. of a solution because any arbitrarily
chosen small volume in the liquid would be as likely to contain a posi-
tive ion as a negative ion.
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In some crystalline materials equation (1) gives the value zero be-
cause there is a suitable symmetry in the configuration of charged
particles in the unit cell; for other solids equation (1) gives a finite value
for the unit cell, but zero when applied to a volume of the material
large enough to contain a great many crystallites with random orienta-
tions; however, there are some macroscopic crystals which have per-
manent polarizations. A solid material consisting of polar crystallites
with random orientations is analogous, as far as equation (1) is con-
cerned, to a liquid or gas containing polar molecules having random
orientations; the polarization of the material as a whole is zero in

"either case.
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Fig. 2—A dielectric in a condenser. The circles joined by a bar represent ‘‘bound
charges” of various kinds, including atoms and molecules.

Let us now consider a dielectric of any kind occupying the space
between two plane, parallel condenser plates of great enough area and
small enough separation that the electric field between the plates when
they are charged may be considered to be directed normally to them
(cf. Fig. 2). Consider the space between the plates of the condenser
to be divided into small cubes of the same size, the purpose of this
imaginary division of the dielectric being merely to obtain a representa-
tive specimen of the dielectric material. If the cube size is too small
the instantaneous value of p obtained by applying equation (1) to all
of the particles in a cube will vary appreciably from one cube to another;
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but we can then increase the size of the cubes until p is the same for
each cube to a close enough approximation. The polarization in each
cube is then representative of that of the dielectric as a whole,? and by
dividing Y e; s; for a typical cube by the volume of the cube we obtain
the polarization per unit volume, which for the present will be designated
as P. This quantity is a statistical mean value involving a summation
over a large number of particles; its value depends not only on the
structure of the material but upon the effect of thermal motions on the
mean positions and orientations of the molecules or other elementary
particles in the material. One of the most interesting points in dielec-
tric theory is the consideration—pointed out by Debye and at the
basis of his theory of polar molecules—that for some types of structure
the mean positions of the particles from which P is calculated are
unaffected by changes in the amplitude of thermal motions while for
another type of structure (consisting of polar molecules free to assume
many or at least several orientations) an increase of temperature de-
creases P, because the randomness of the orientations of the polar
molecules is increased.

For many materials P is zero when no electric field is applied, and
assumes a finite value only when an electric field is applied, though as
has been indicated, some crystalline materials have a finite value of P
even in the absence of an applied electric field. In either case, how-
ever, the application of an electric field causes the bound charges
within the dielectric to be shifted in general to new equilibrium posi-
tions, corresponding to the slight change in the system of forces acting
upon them, and if the material did not have a polarization before the
application of the field, it assumes one; if it did, it assumes a different
value of P. The value of P when an electric field E is applied will be
designated as Ppg, and that when no field is applied by P,. Then
Py — Py is the polarization per unit volume induced by an applied
field E. As the dielectric constant of a material depends upon the
magnitude of the polarization induced in it by an applied field, and we
are concerned here with dielectric constants, it will be desirable to
simplify the notation by setting Pr — Py = P. This gives P a
slightly different meaning than it had in the earlier part of the dis-
cussion, where it represented the total polarization per unit volume
whatever its origin.

? A detailed consideration of the method of dividing a dielectric up into ele-
mentary volumes in order to compute the mean polarization encounters complications
which need not be discussed here. A critical analysis of the method of computing
the volume density of polarization of a dielectric 1s given by Mason and Weaver,
“The Electromagnetic Field,” Chicago (1929); Chapter III.
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The relation between the applied electric field, E, and the polariza-
tion induced by it per unit volume is given by
1

e —
P=_"E @)

for isotropic materials. The constant (e — 1)/4r is the susceptibility
of the dielectric in e.s.u., and e is the dielectric constant, which is
defined as C/Co, where C is the capacitance of the measuring condenser
while it contains the dielectric and Co is its capacitance when empty.

For some purposes there are advantages in considering the actual
polarization, which is produced by a discontinuous distribution of
charged particles, to be replaced by a vector point function which gives
equivalent external effects. Then a vector P may be considered to be
associated with every point in the space occupied by the dielectric and
the dielectric may be considered to have a continuous volume density
of polarization,® P. In non-isotropic bodies the polarization vector P
induced by an applied field E is not always in the same direction as E,
but is assumed to be a linear vector function ¢ of E (involving, in the
general case, six independent constants), where both E and P are
vector point functions.

In deriving the relationship between the dielectric constant and the
molecular structure of a material it cannot be assumed in general that
the local field which is impressed upon the elementary particles in the
dielectric is simply the field E which can be computed by dividing the
applied voltage V by the distance between the plates of the condenser,
the intensity of the field being assumed to be uniform. For there is an
interaction between the molecules of the dielectric such that each mole-
cule exerts a force on every other molecule. In the absence of an
applied electric field these forces combine with other influences to
create a distribution for which the polarization per unit volume has
the value P, (frequently zero, as has been mentioned). Then when
a field is applied each element of volume in the dielectric is put into a
polarized condition and in general the forces which it exerts upon the
particles in other volume elements changes, because the charges in
each volume element have been displaced to new positions. Conse-
quently, the value assumed by P in a given cube of Fig. 2 will depend
not only upon the direct action of the charges on the plates of the
condenser—which determines the strength of the field E—but also

3 Cf, Mason and Weaver, loc. cit. Chap. IIL
op 3‘2C:i;.SP. Debye, ‘* Polar Molecules,”” Chemical Catalogue Co., New York (1929),
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upon their indirect action through the polarization which they create
in other elements of volume.

The contribution which the polarization of the dielectric makes to
the force upon a charged particle in it has been calculated by Lorentz
to be (4x/3)P, where P is the polarization per unit volume induced by
the applied field. This calculation applies to an array of particles
with cubic symmetry and to isotropic materials.® The infernal or local
field F is then given by

F=E+P. 3)

E may be thought of as the force which has its origin in the direct
interaction between the charges on the plates of the condenser and the
charges in the polarizable complex on which attention has been fixed
(such as one of the cubes of Fig. 2), while the term (47/3)P may be
regarded as an indirect force coming from the other parts of the dielec-
tric by virtue of their polarized state.

It is assumed in the theory of dielectrics that the structure of mate-
rials is such that P is a linear function of F (or a linear vector function
in the case of anisotropic materials); then

P = kF, (4)
where k is the polarizability per unit volume. It can be seen that

E

F=1—a%

(4a)
where A = 47/3, and consequently that the relation between the
polarizability & and the susceptibility (e — 1)/4r (= K) is

e—1 k

K=—=1—a%

(4b)

whenever (3) is a valid expression for the internal field.

The susceptibility can be calculated without presupposing the
validity of equation (3) for the internal field, while the value of k depends
upon whether (3) or some other expression gives the strength of the internal
field in the dielectric.

If L is the number of molecules per cubic centimeter, k/L(= a) is
the polarizability per molecule. This molecular constant « is called
the polarizability of the molecule. By multiplying a by Avogadro’s
number N, we obtain the polarizability per mole of the dielectric:

5H. A. Lorentz, ‘“The Theory of Electrons,” p. 138, and Notes 54 and 55.
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Na = Nk/L. And if m is the mass of a molecule, Nm = M, where M
is the molecular weight, and Lm = p, where p is the density; so that
N_M

L p
and the polarizability per mol may be written as Mk/p.

From equations (3) and (4) (or 4d) it can be shown that the polariz-
ability is related to the dielectric constant by the familiar relation

3[e—1
k= i [ e 2] ) (5)
which however is only valid when (3) is valid—and for some materials
(3) is apparently not valid.
For gases the term (4x/3)P in (3) is so small as compared with £
that Fis approximately equal to E and

e—1
h=K=5—. (6)

The polarizability and susceptibility are then equal. The physical
reason for this is that the ratio of intermolecular space to the space
occupied by molecules is much larger in a gas than in a solid or liquid
and the direct force exerted by the charges on the condenser plates on
a charged particle in the dielectric is then much greater than the in-
direct force which they exert through the polarization induced in other
molecules.

It is customary to call the quantity (4w/3)% the volume polarization,
and it is often denoted by the letter . The volume polarization may
be thought of as 47/3 times the polarization induced in the dielectric
per unit volume per unit applied field. The convenience of using
(47/3)k instead of k comes from the occurrence of the factor 4x/3 in
the relation (5) between dielectric constant and polarizability.

On dividing equation (5) by the density we obtain a quantity which
is called the mass polarization, as it is 4x/3 times the polarizability

per gram:
1 -1 4 k
_[e ]:E‘l’;. 0

And on multiplying (7) by the molecular weight of the material we
obtain

M[e—-l]_ﬂr.M 4r kN 41rNa. (8)

2 le¥r2| 3 7"‘:??
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The quantity (4r/3) N« is the molar polarization, N being the polariz-
ability per mole.®

Equation (8), and also (7), expresses the Clausius-Mosotti relation
when « is considered to be a constant characteristic of the individual
molecule and independent of density. The function of € on the left-
hand side of (8) is independent of density whenever « is independent of
density.

The following relation, analogous to that of Clausius and Mosotti
but expressed in terms of the refractive index », was derived by Lorentz
and by Lorenz:

Mn—1 4z

? m = ? Na. (80)
The left-hand member of this equation is called the molar refraction.
Equations (8) and (8a) are equivalent because of the general relation
between refractive index and dielectric constant (#* = ¢), but owing
to the fact that refractive indices are measured at optical frequencies
the molar refraction contains only the electronic part of the total molar
polarization of the material. Subtracting the molar refraction from
the total molar polarization, is one of the methods of determining the
amount of polarization contributed by non-electronic polarizations.

It has been found that the Clausius-Mosotti relation is not equally
satisfactory for all kinds of dielectric polarization. It gives good
results when applied to electronic and atomic polarizations. For
example, in an interesting paper on materials of high dielectric con-
stant, Frank 7 has recently shown that the Clausius-Mosotti-Lorentz-
Lorenz relationship aids materially in explaining the behavior of the
dielectric constants of crystalline materials of high dielectric constant
where the dielectric constant depends upon electronic polarizations.
Where the polarizability of a molecule is the sum of the polarizabilities
of the atoms of which it is composed it is to be expected that if the
relation (5), or (8) or (8a) is valid the sum of the atomic polarizations
would be equal to the molar polarization. Experimental agreement

5 The polarizabilities of non-polar molecules and atoms are usually of the order
of magnitude of 1072 c.c., and the molar polarizations of such substances, conse-
quently, are of the order of magnitude of a few c.c., since the molar polarization is
(4m/3) X 6.06 X 102 times the polarizability of the individual molecule. The
polarizability of a conducting sphere is equal to the cube of its radius. And, as
atomic dimensions are of the order of magnitude of 1078 ¢cm., it is evident that the

olarizabilities of atoms tend to be of a similar order of magnitude to the polarizabil-
ities which would be expected if they behaved as conducting spheres, though there
are large differences in the ratio of polarizability to volume for different atoms. The
molar polarizations of polar molecules are in general larger than those of similar non-
pola{zmlc:gl'e;:ules and may-be a few hundred c.c. (Cf. P. Debye, ‘‘ Polar Molecules,”
pp. 12-19.
“7F. C. Frank, Trans. Faraday Society, 23, (4), 513 (1937).
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with this requirement has been found in optics where the refractive
indices of molecules can be calculated approximately from the molar
refraction (eq. 8z) obtained by adding the atomic refractions.

This additive property of electronic polarizations has been employed
by Frank ® to interpret the tendency of crystalline materials hav-
ing high dielectric constants to be characterized by a high polariz-
ability/volume ratio for the atoms or ions of which they are composed.
This condition would tend to allow the largest number of highly
polarizable particles to be concentrated in a given space, giving, on
the additivity rule, a high molar polarization and a high dielectric
constant.

On the other hand Wyman ° has pointed out that the Clausius-
Mosotti relation is not satisfactory when applied to highly polar liquids,
such as water, and has found that for these substances it appears to
be more satisfactory to consider that the polarization is related to the
dielectric constant by the empirical relation

e+ 1 4?1_-
55 3 F ©)

The calculation of the internal field by Lorentz, which provides the
theoretical basis for equation (8), was made before the theory of polar
molecules had been developed, but equation (8) has since been applied
tentatively to polar molecules. The problem of obtaining an im-
proved relationship between polarizability and dielectric constant for
materials having molecules with permanent electric‘ moments has been
studied in recent years by several investigators.!! The calculation of
the internal field usually involves the assumption that the effect
of the molecules included in a small sphere surrounding the central
molecule on which the force is being calculated is negligible on the
average because of the random motions due to thermal agitation. On
the supposition that such an assumption is not justified in a polar
material because of the interactions of adjacent polar molecules,
Onsager  has obtained a relation between polarizability and dielectric
constant which for high dielectric constants is nearly the same as
Wyman's empirical relation, equation (9). A comprehensive study of
the effects of interaction between the dipoles of polar molecules has

8 Loc. cit.

9 Cf. Wyman, Jour. Amer. Chem. Soc., 56, 539 (1934); 58, 1482 (1936).

10 Cf, Debye, loc. cit., p. 13.

u Cf, Onsager, Jour. Amer. Chem. Soc., 58, 1486 (1936); Van Arkel and Snoek,
Trans. Furaday Soc., 30, 707 (1934); Wyman, Jour. Amer. Chem. Soc., 58, 1482
(1936):LVan Vieck, Jour. Chem. Physics, 5, 320 (1937) and 5, 556 (1937).

12 Loc. cit.
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been made by Van Vleck by the methods of statistical mechanics. He
obtains an expression which agrees to a second approximation with
that obtained by Onsager. Thus it seems that for highly polar liquids
the relations between polarization and dielectric constant developed
by Onsager, Wyman and Van Vleck may be more satisfactory than
the Clausius-Mosotti relationship, though for many other materials
the Clausius-Mosotti relationship is apparently valid or approximately
valid.

In deriving expressions for the dependence of dielectric constant on
frequency later in this article the formule obtained will naturally
depend upon which of the equations, (5), (6) or (9), is taken as the
relationship between polarizability and dielectric constant. The
alternative expressions will be listed.

Derivation of a Dispersion Formula

The above-described relations between polarization and dielectric
constant provide the means of obtaining expressions for the variation
of dielectric constant with frequency when we have determined the
dependence of polarizability on frequency. As our object is to exhibit
the general features of anomalous dispersion shared by several par-
ticular types of polarization, it will be sufficient to derive dispersion
formule containing constants the values of which are not specified,
but which have a sufficiently obvious physical significance. The
derivation given will parallel that of Lorentz in deriving a formula for
optical dispersion,!® and in fact is simply a special case of it in which
certain terms are considered to be negligible by comparison with others.

An analogous procedure was used in one of the earliest attempts to
explain anomalous dispersion in the electrical frequency range, the
theory proposed by Drude " in 1898. This theory was based upon the
hypothesis that anomalous dispersion in the electrical frequency range
depends upon a mechanism similar to that to which optical dispersion
was attributed, the difference being that the particles which produce
anomalous dispersion in the electrical frequency range are so large that
some of the terms in the optical dispersion formula can be neglected.
The formule which Drude derived for electrical anomalous dispersion
yield the same form of variation of dielectric constant with frequency
as do the generally accepted theories of the present time, such as the
Debye theory; the differences lie in the expressions given for the con-

13 H, A. Lorentz, ‘' The Theory of Electrons,” Chapter IV. See also Korff and
Breit, Reviews of Modern Physics, 4, 471 (1932), where a review of the classical theory
of optical dispersion is given.

4 P, Drude, Ann. d. Physik, 64, 131 (1898), * Zur Theorie der anomalien elek-
trischen Dispersion."’
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stants in the formulz in terms of properties of the material. Another
adaptation of optical dispersion theory to the explanation of dispersion
in the electrical frequency range was proposed by Décombé !5 in 1912.
He employed the Lorentz electron theory for the dispersion of light as a
basis for the consideration that if the environment of some of the
electrons in dielectrics is suitable their motions in an applied field could
produce anomalous dispersion and dielectric loss in the electric fre-
quency range. A similar simple and arbitrary assumption regarding
the structure of dielectrics will also be employed here. However, it is
not proposed as a theory of dielectric behavior but merely employed as
a comparatively simple means of deriving and discussing relationships
which can be demonstrated as well on a simple and arbitrary model
as on the more complex ones which correspond more closely to the
actual structure of dielectrics. The relation of the constants in the
dispersion formula which will be derived here to the actual structure
of dielectrics will only be indicated in a general qualitative way for the
purpose of illustrating the physical nature of the processes involved;
no attempt will be made to provide expressions for the dispersion
constants in terms of other observable properties of the material.

In Fig. 2, let the applied potential be V, where V may vary in general
in any way with the time, though in the present discussion it will be
considered to vary sinusoidally with the time; the impressed field
strength is then given by E = V/d. As in the more general discussion
which preceded this, it will be assumed that the imaginary cells
pictured in Fig. 2 contain large numbers of polarizable complexes
_ consisting of positive and negative charges in equal numbers held
in position by constitutive forces—the origin of which need not be
specified for our present purposes—such that if they are displaced a
distance s from their initial positions they will experience a force fs,
where f is a constant, tending to restore them to their initial positions;
and that while these charges are in motion as a result of the action of
the impressed field they experience a frictional force 7§, where r is a
constant and § is the velocity in the direction of the impressed field;
and, finally that their motion is also retarded by an inertia reaction
m§, proportional to the mass m and the acceleration & of the particles.

The equation of motion for any typical charge e in a polarizable
complex having the above-described specifications is

) m§ + r§ + fs = eF, (10)
where F is given by equation (3) in materials to which the Lorentz
calculation of the internal field applies, by F == E in the case of gases

15 L, Décombé, Journal de Physique, (5), 3, 315 (1912).
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and by other expressions—which in some cases may approximate
either to F = E or to F = E + (4r/3)P—for still other materials.
The quantities F and s are vectors, but for isotropic materials s is in
the same direction as F.

If, following the method employed by Lorentz, we write an equation
of the form (10) for each charged particle in a physically small volume
& (such as the cubes of Fig. 2), multiply each equation by e, add the
equations for all of the particles in 8, and divide by the volume 3,
we obtain i .

mP 4 rP + fP = ne*F, (11)
where P = (1/6)2es and # is the number of charged particles charac-
terized by the constants m, » and f per unit volume. The volume &
may be considered to be that of one of the cubes in Fig. 2. As indi-
cated earlier it should contain a sufficient number of molecules to give
a good mean value for P, the polarization per unit volume, but at the
same time it should be small enough not to mask significant spatial
variations in P.

When the impressed field E is varying sinusoidally with the time at
the frequency w/2m, the local or internal field F tending to displace
each charged particle in the dielectric will also vary sinusoidally with
the time, though in general out of phase with E, if Fis given by equation
(3), and can be considered to be given by the real part of Feewt. Under
these conditions

P = kFeit
is a solution of equation (10) for the steady state provided that
ne’
k= (irw — ma? £ f)° (12)

k is the polarizability per unit volume and is a complex quantity, since
the term 4rw in the denominator is an imaginary (i = v — 1).

Equations (10), (11) and (12) apply to a dielectric having a single
type of polarization characterized by the constants f, #, m, # and e.
But in general an applied field induces several types of polarization
simultaneously in a dielectric, and if we assume that it induces w
types which are independent of each other, the total polarization per
unit volume is given by

P =kF + kF+ - kF. (13)
The total polarizability is then the sum of the individual polarizabili-
ties, or

w
E=3 k. (14)

=1
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In this discussion it will be sufficient to consider that the different types
of polarization designated by ki, ks « + + k differ from one another only
in having different sets of values for the constants of equation (12),
designated by the subscripts 1,2,3 - -+ w; for example, the character
of the polarizability k. is specified by the set of constants m, 1, f1 and n,.

In the first place it is evident that when the frequency of alternation
of the voltage applied to the dielectric lies in the radio and power range
it is possible to select any number of sets of values of m, 7, f which will
make the terms mo? and rw negligible in comparison with f in the
denominator of (12). Let m, 71, fi be an example of such a set of
constants and let there be ny particles per unit volume to which these
constants apply. Then for this type of polarization equation (12)
reduces to ,

n,e
k= 7 (15)

This type of polarization is independent of frequency and will be
referred to as an instantaneous polarization or an optical polarization.
The main representatives of the instantaneous or optical polarizations
are the electronic and atomic polarizations, which experience dis-
persion in the visible and infra-red but which are independent of fre-
quency in the electrical range, and the contribution of this polariz-
ability to the dielectric constant is therefore frequently calculated from
refractive index measurements.

A second type of polarization results if we assume that the dielectric
we are considering contains a class of particles for which m«? in equation
(12) is negligible by comparison with 7w and with f, but in which rw is
of the same order of magnitude as f in the electrical range of frequencies.
Let ms, 7o, fo be a typical member of this class, the number of such
particles per unit volume of the dielectric being 7. Then for this class
of particles equation (12) becomes

Nnae?
k= G ¥ 70 (16)

This expression represents the type of variation with frequency to
which the name anomalous dispersion is given, and in the preceding
paper the type of polarization which produces it was called an absorp-
tive polarization.

It can readily be seen also that neglecting the m$ term in (10) or
the mP term in (11) leads to the same expression for %, i.e., equation
(16), as does neglecting the mw® term in the denominator of (12).
So for any member, (7, f2, 72), of the class of particles which produces
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anomalous dispersion, equation (10) reduces to
728 + fos = eF (17)
and equation (11) becomes
nP + foP = nyeF. (18)

Décombé’s theory, which has been mentioned earlier, was based upon
an equation equivalent in most respects to (18), while Drude’s expres-
sions for dispersion were obtained by a method equivalent to neglecting
mw? in (12).

Each term in equations (17) and (18) has an evident dynamical
significance. Consequently, a physical picture of the essential nature
of the anomalous dispersion process is given by equations (17) and
(18) even though the values of constants s, fa, n; and e are not specified
in terms of independently measurable properties of the dielectric.
Thus the term fus represents a restoring force tending to return the
particles displaced by the impressed field to their initial positions, the
constant f; acting as a stiffness coefficient; the term 7.4 acts as a fric-
tional force, 7 being a measure of the friction experienced by, for exam-
ple, a moving ion or a rotating polar molecule; and, finally, eF is the
driving force tending to displace a particle of charge e. Evidently
conditions which are sufficient to produce anomalous dispersion exist
whenever the motion of charged particles in an applied field is suffi-
ciently specified by considering the effects of a restoring force pro-
portional to the displacement of the typical particle and of a frictional
force proportional to the velocity of the particle in the direction of
applied field, as in equation (17). Or, putting it in more general terms,
we may say that anomalous dispersion occurs whenever the relation
between the polarization per unit volume and the force due to the
internal electric field is given by an equation which can be reduced to
(18). However, the possibility that anomalous dispersion may also
occur under conditions which cannot be described by equation (18)
is not excluded by the considerations given here.

A third type of polarization which can be obtained by selecting
suitable sets of values for the constants of equation (12) is that in
which none of the terms in the denominator of (12) can be neglected in
the electrical range of frequencies. Let k; be the polarizability for
this type of polarization which can then be represented by affixing the
subscript 3 to the constants m, , f and # of equation (12). This type
of dispersion includes both the normal and the anomalous types but,
as has already been indicated, in the radio and power ranges of fre-
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quency examples of a dispersion of this kind have not as yet been
observed in dielectrics which are not piezo-electric.’® It follows then
that dielectrics behave as though the inertia of the particles which
contribute to dielectric polarization is small enough that the inertia
reaction mw? can be neglected in the electrical frequency range. This
is an empirical result; the possibility of a polarization of the type ks
occurring in the electrical frequency range is not excluded by the
general theory of dispersion. The higher the frequency of an im-
pressed field the greater should be the likelihood of encountering the
type of frequency-variation described by ks (or equation (12)), because
the prominence of the mw? term increases with the square of the
frequency. .
The preceding discussion shows that we can write equation (14)

in the form
k = ki + ka: (19)

where % is the total polarizability, k; is the sum of the instantaneous
polarizabilities and %, the sum of the absorptive polarizabilities, that is,
of the polarizabilities which vary with frequency according to equation
(16). If for simplicity we take the case in which the dielectric has only
one representative of k; and one of k., we obtain by substituting the
values of k; and k. given respectively in (15) and (16),

ne2 Hoe?

It Gre 1 o)

as an expression for the total polarizability.
Defining 7/ by ' = r/f, and dropping the subscripts in (20) to make
the notation simpler, we obtain

k= (20)

ne’ 1
k—ki’i‘T[m]! (21)

which is the total polarizability per unit volume for a dielectric having
two types of polarization, the one represented in (21) by the instan-
taneous polarizability &; and the other by the absorptive polarizability

16 Piezo-electric crystals such as guartz and Rochelle salt form exceptions, but for
them dielectric polarization is coupled to macroscopic mechanical strains in the
material and the mass reactance is due to the flexing or extension of the entire crystal.
The dielectric constant of such a crystal as measured in almost any direction,
shows an increase with increasing frequency, followed by anomalous dispersion. This
is the behavior required by equation (12), or rather by an equation for the dielectric
constant derivable from equation (12). This dispersion, however, depends upon the
size and shape of the crystal, the nature of the electrodes and the manner of supporting
the crystal during the measurements, and the exact interpretation of such measure-
ments is a rather complex procedure. See, for example, W. P. Mason, Proc. I. R. E.,
23, 1252-1263 (1935).
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specified by the second term on the right. The quantity ' is called
the relaxation-time.

On multiplying the left-hand side of equation (21) by (4#/3)(M/p)
and the right-hand side by (4x/3)(N/L) we obtain

4 Mk Ax ki | ne 1
?T—?N[zﬂi(w)]' (22)
which is the molar polarization.

For dielectrics to which the Clausius-Mosotti relation applies,
equation (8) shows that

(22a)

and in fact the expression on the right-hand side of (22a) is frequently

called the molar polarization. Reference to equation (6) shows, how-

ever, that for gases (22a) reduces to the simpler relation.
Ax Mk _ M(c— 1)

3 p p 3

(220)

And for Wyman’s relation between dielectric constant and polariz-
ability, which has been discussed earlier, the molar polarization be-
comes oMb Met1
s €
3o " p 85 (22¢)

Equations (22a), (22b) and (22¢) are not the only relations between
dielectric constant and molar polarization which have been proposed,
but they apparently cover moderately well many of the conditions
met in practice. IFor the right-hand member of equation (22) can be
substituted whichever of the three expressions (22a), (22b), (22¢) seems
the most suitable for the type of dielectric under investigation.

If in equation (21) w is set equal to zero we obtain the zero-frequency
(or static) polarizability

ko = ki + nét/f (23)
and if w is set equal to infinity we obtain
kco = kt’- (24)
Subtraction gives
ko — ke = neéYf. (25)

Substituting (24) and (25) in (21) gives

ko—kw).

k=km+<m (26)
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The constants #n¢*/f and k; are not present in (26), being replaced by
two special values of the polarizability, the zero-frequency value and
the infinite-frequency value. However, it is not the polarizability
but the dielectric constant which is directly observed in measurements
on dielectrics, so it is desirable to replace ko and ks by their equivalents
in terms of the dielectric constant. But, as the earlier discussion has
indicated, the relation between dielectric constant and polarizability is
different for different types of dielectrics; three alternative expressions
analogous to (22a), (22b) and (22¢) will therefore be derived.

For materials to which equation (22a) (or the equivalent and simpler
relation (5)) applies

o, _3Ja—1 e—17_ 9(eo — €x)
ko km_41r|:£o+2 em+2]”4rr(eo+2)(em+2)’ 21)

where e is the zero-frequency dielectric constant and e, is the infinite-
frequency dielectric constant. Then equation (26) can be replaced by

dr, e —1 so—l_em—l 1
Bk—em+2+|:60+2 em+2]1+'iw1" (28)
By rationalizing and using the second expression given for kg — kw in

equation (27) we can write equation (28) in the alternative form
47rk_ew—1+[ 3(e0 — €) ] 1
- (0 + 2) (e + 2) 1 4+ wir

3 e+ 2
2 3(50 —_— Eoo) . wT’
i [ (e0 + 2)(€x + 2)] T+ o (29)

Equation (29) is the complex polarizability per unit volume multiplied
by the factor 47/3 and expressed in terms of observable values of the
dielectric constant and the relaxation-time r’. The relaxation-time
can also be expressed in terms of the reciprocal of a special value of the
frequency; this permits all of the theoretical constants such as ne?/f
and 7’ to be replaced by certain special values of the dielectric constant
and a critical value of the frequency.

A simpler expression for the polarizability is obtained in the case of
gases, or whenever equation (6) gives the relation between polariz-
ability and dielectric constant. Equation (26) then gives

4k 1 7__ € — €x
T‘E(‘“’ 1+W)' (30)

And for materials to which the relation (cf. equation (9)) proposed by
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Wyman applies the procedure followed above yields

4—?=§%(em+1+ﬁ)- (31)

On multiplying equations (29), (30) and (31) by M/p three alterna-
tive formule for the molar polarization of a dielectric having polariza-
tions of the type specified by equation (21) are obtained; the constants
in these formulza include only special values (e and e,) of the dielectric
constant and the relaxation-time, all of which can be obtained from
dispersion curves.

The quantity k¢ — ke« is a constant of the material, which, as equa-
tion (26) shows, represents the largest value which the absorptive part
of the total polarizability, i.e., the &k, term in (19), can have for a given
material; it may be described as the zero-frequency or static value of
the absorptive part of the polarizability. Evidence as to the nature
of a polarization can be obtained by investigating experimentally the
dependence of (ky — k«)/p on temperature; for example, if the polariza-
tion is due to the changes of orientation of polar molecules according
to the Debye theory this quantity should increase linearly with the
reciprocal of the absolute temperature. It is useful, therefore, to
express (ko — k)/p in terms of observable values of the dielectric
constant so that it may be plotted against temperature. In this con-
nection there is, however, the same complication which has appeared
in other places in this discussion regarding the relation between dielec-
tric constant and polarizability. The three relations which have been
discussed here yield for (kg — k.)/p the following expressions:

3 -1 o T . .
(ko — ka)/p = I [ : 5 :m T ;] (Clausius-Mosotti) (32a)
_ 3 €p — €x
= 4—-‘”( 3 ) (for gases) (32b)
_ 3 e e
= 47!'9( 535 ) (Wyman). (32¢)

The Complex Dieleciric Constant

As the dielectric constant (€) is the quantity directly measured in
experimental investigations it is desirable to determine how it should
vary with frequency for the type of dielectric polarization described in
equation (21) or (29). Solving equation (5) for € we obtain

1+8§k
= (33)

€

=0
1—4§k
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By substituting the expression for 4(x/3)k given in equation (28) into
(33) we obtain

€o €oo '
e B b el

€= —7 . i ’ (34)
wt2  la+2Y
or
€0 .60+ 2 € ,)
1 L &=
Ezeu-I-Z( +zem+2 0 7 (34a)
T (4, 0t2 . ‘
eu+2( em+2“’”’)
Then, by setting
£o+2 r
ém+ZT =, (35)
we obtain
. (1+¢'%“’m)
_ 0
€« 1 +iwr (36)

and transforming this into polar form to facilitate division gives

€ el ) . .
- p'_ii =P gite ey = 21 [COS (o1 — @2) +isin (o1 — rpz)] . (37
€  pe: P2 Pz [

where

po= [I-I-(%“)Ew?r”r. pr = [1 + 7]},

€
¢ = tan™! = wr and ¢ = tan™! wr.
€0

Equation (37) then gives

P e R R W (38)
or
1-= g(‘—“ - 1) wr
f; = %-; 14+ w::2 + l€“+ W (38a)
from which we obtain
= en il —ex)or 39)

E=€m+1+m”r”_ 1 + wir?
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Equation (39) is the complex dieleciric constant expressed in rectangu-
lar form for a dielectric having a polarizability (per unit volume) given
by (21) and in which the internal field (F) is such that the Clausius-
Mosotti relation (equation (8)) applies.

For gases the derivation of the expression for the complex dielectric
constant from that for the polarizability is simpler, though the same
in principle, as the above. From (220) or (6) we see that e = 1 + 47k;
and on substituting (30) for 47k and rationalizing we obtain

€0 — € . (€0 — €w)wr’
e=em-}—1+w2r2—z et (40)

And when the relation between polarizability and dielectric constant
is that proposed by Wyman, cf. (9) or (22¢), we again obtain (40) on
substituting (31) for (4x/3)k in (9) and rationalizing.

It will be noticed that the difference between (40) and (39) is that =’
appears in the former and r in the latter, 7 being given by (35). This
shows that the factor (e + 2)/(es + 2) has its origin in the fact that
for the conditions to which (39) applies F = E + (4x/3)P, while for
the conditions to which (40) applies F = E, or is a linear function of E.
7 is the relaxation-time for the dielectric constant, while 7’ is the re-
laxation-time for the polarizable units in the material; when F = E
these two relaxation-times are equal.

For materials of high dielectric constant the factor (&g + 2)/(ex + 2)
produces a considerable difference between r and 7’; for example, for
water or ice r is about 237’. In a recent paper, R. H. Cole ¥ has
shown that when the volumes of certain polar molecules are calculated
from r by means of Debye’s expression for the relaxation-time better
agreement with the volume estimated from van der Waals’ equation is
obtained when Onsager's relation between polarization and dielectric
constant is used instead of the Clausius-Mosotti relation. In par-
ticular, for water the van der Waals coefficient gives 13 X 102 c.c.
for the volume of the molecule, while 7’ gives 0.5 X 10~2% c.c. on the
Clausius-Mosotti relation but 12 X 10~2¢ c.c. on the Onsager relation,
and 4 X 10~% c.c. for a modified Onsager relation. And if Wyman's
relation is used, 7 = 237/, and the volume should be 23 times that
calculated on the basis of the Clausius-Mosotti relationship, or about
11 X 10~ c.c.

Both equation (39) and equation (40) can be expressed in the form

e = ¢ — 1€, (41)
17 R. H. Cole, Jour. Chem. Phys., 6, 385 (1938).
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where
f= eyt (41a)
€ = €x 1+ wzfz’ a
o=l s, (41)

if 7 is considered to be given by

=Eo+2T,
€m+_2 !

when the complex dielectric constant is given by (39), that is when
the Clausius-Mosotti relation applies, and by

when the material is a gas, or when Wyman'’s relation between polariz-
ability and dielectric constant applies.

The real part ¢’ of the complex dielectric constant is usually referred
to simply as the dielectric constant, while the imaginary part e is
frequently called the loss factor.® There are alternative ways of
expressing the same property of the material; for example, the tangent
of the loss angle, €'’/¢’, is frequently used instead of €'

Comparison of Dispersion Formule

Comparison of (39) or (41), (41a), (41b) with equation (69), page 97,
of Debye's “ Polar Molecules’’ shows that the equation for the complex
dielectric constant derived here is identical with that of the Debye
theory (in the present notation 7’ corresponds to 7 in Debye’s book).
This means that any characteristics which can be derived from equa-
tions (41), (41a), (41b) without specifying the values of the constants
€s, € and 7 are common to at least two types of polarization, that is,
to the polarization due to the effect of an applied field on the orientation
of polar molecules according to the Debye theory, and to the polariza-
tion described by equation (18) or equation (21).

The difference between the formulz for dispersion derived here and
those of the Debye theory are best seen by comparing the expressions
which they yield for the molar polarization. On the Debye Theory:

Me—l_‘lea_i_;ﬂ 1
pet+2 3 |3\ + dwr’
18 After a suggestion made by E. T. Hoch, B. S. T. J., November (1922), and by
H. H. Race, Jour. A. I. E. E., 51, 354 (1932).
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The present derivation gives:

ife—l_-fl—TrN E.-_l_n_ez( 1
pe+2 3 | LTL\1T+4wr/)]|

The constant «p has the same significance as k;/L, only the notation
being different; both represent the optical frequency, or “instantane-
ous,” polarizability; u is the permanent electric moment of the molecule,
k Boltzmann's constant and 7" the absolute temperature. The quan-
tity ne*/fL which corresponds to p?/3kT in the Debye formula contains
three constants #, e, and f whose physical significance is indicated only
in a general way (see Appendix). 7’ (or in Debye's notation 7)
is equal to 4mna®/kT in the Debye theory while in the formula derived
here 7' = r/f where r is a frictional coefficient whose physical origin
is not specified. Thus though the formula for molar polarization
derived here is not directly useful as a means of investigating the
molecular (or other) origin of dielectric polarizations, it facilitates
distinguishing those aspects of the Debye formula which are peculiar
to a polarization depending upon changes in the orientation of polar
moletules which are free to assume any (or at least more than one)
orientation from the more general aspects shared by other types of
polarization, such as the one specified by (18) and (21). Thus, the
functions p?/3kT and 4wna®/kT are peculiar to the Debye theory, while
the function (1 + 4wr)~! also appears in the dispersion formula derived
here, as well as in other formulz to be discussed below.

We have seen that the viscous-elastic type of polarization specified by
(18) and (21) produces a complex dielectric constant given by (39), or by
the equivalent equations (41), (41a), (41b), where

7'+ 2) |
T——(Em-l-z) ,

and that the same formule express the complex dielectric constant
on the Debye theory of polar molecules when the constants 7' and
€0 — €o (Or ko — ko), are given the values derived for them on the
Debye theory. Other theories have been proposed to explain the
variation of dielectric constant and dielectric loss with frequency, but
for the most part these have been derived for composite dielectrics,
consisting of two or more layers of different materials, or of small
spheres of one material dispersed or embedded in another material.
These theories also yield formula (41), (41a) and (415) for the complex
dielectric constant, the expressions for 7' and €, — e, being, of course,
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different from those of the Debye theory.! These expressions are
included in Table I.
TABLE 1

CONSTANTS OF THE FORMULA FOR THE CoMPLEX DIELECTRIC CONSTANT
EquaTIoNns (41), (41a) AND (41D)

Type of Polarization € — € T k= fle)
1. Orientation of polar molecules [4m (eo+2)(ewt2) Lp?| (e0+2) 4mna®
(The Debye theory).! Kl 3 ‘3RT|(eat2) ET Eq. (5)
Ly? 4mnad
34 u? 4mrnat
33T & | @)
2. Displacement of changed par- |4 (eo+2)(ewt2) mne*l et+2 r
ticles against elastic restoring (3 ° 3 Flet2f Eq. (5)
forces and viscous frictional net o
forces of undetermined origin, 4r - N - Eq. (6)
" as specified in equation 7. FY f
(Modification of Drude theory.)? T’ T } Eq. (9)
3. Interfacial or ionic polarizations:
(a) Tw(o-laye)r %ie.lectri?-, layer | (e1y2— eay1)? a+te
€1, Y1 eing Ol same 22 PRI
thlickness as layer (e, (ate)(ntra) it
7v3), (Wagner).?
(b) Special case of (a); high- |Ci/Ca RC,
resistance blocking layer
at electrode/dielectric
boundary (Joffé).4
(c) Suspe)ngion ofds_lphexies (Ei', 9p(erya— €av1)® 2eater
1) 1In a mediumnl (ez, Yz/), (2 2
where p<< 1 (Wagner) 5 (2eat+e€1)(2v2t+71) 2yst 71
(Gemant).”
(d) Special case of (c); conduct- |3pe 3e/r
ing spheres in an insulat-
ing medium, where e
= esand v2 <K v (Wag-
ner).?
(e) Special case of (d); con- [3pe 3eb
ducting shells (Miles 2yad
and Robertson).®

1 Reference numbers in this table refer to list of references at the end of this paper.

Table I contains a list of expressions which, when substituted for
(eo — €x) and 7in (41a) and (41b), give several formula for the complex
dielectric constant. Included in this list are most of the formule
which have been proposed to explain the simplest type of variation of

19 Cf, Gemant, ' Elektrophysik der Isolierstoffe,” Berlin (1930).
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dielectric constant and loss factor with frequency which is observed in
the different classes of materials to which the various items in the
table refer. In some cases the original formule, as they appear in the
literature, have been expressed in terms which do not show an obvious
equivalence to (41), (41a) and (415), but by re-expressing them in the
form (41) and then determining € and e, by letting @ = 0 and o,
respectively, the list of expressions given in Table I is obtained. It is
interesting that theories based on such widely dissimilar physical
mechanisms as rotating polar molecules (Item 1, Table I) and a block-
ing-layer of high resistance at an electrode/dielectric interface (Item
3(b), Table I) should yield an identical form of variation with frequency:

For the first two polarizations listed in Table I, the alternative
expressions obtained by assuming three alternative relationships be-
tween polarizability and dielectric constant are given. By means of
Table II the quantities (ky — ko) and 7’ can be obtained from (e — €w)

TABLE 11
THE RELATIONSHIP BETWEEN (kg — kw) AND (ep — €x) AND BETWEEN 7' AND 7T
(ko — keo) '
. . . 3 3(e0 — €w) &+ 2
Clausius-Mosotti Relation........ I et et D e
Gases. ..., L. (e0 — €w) T
47
‘W n's Empirical Relation 3 o—
yma pirical Relation ... ir 85 T

and 7 in Table I. The resulting expressions can then be substituted
for (ko — kw) and 7’ in equation (26) yielding expressions for the polariz-
abilities of the different types of polarization listed in Table I. The
molar polarization can then be obtained by multiplying (26) by
(47/3)(M/[p). However, in general it is not likely that any useful
purpose is to be served by calculating the molar polarization for inter-
facial polarizations; a more significant quantity would be the polariza-
tion per conducting particle, when the polarization is of the type (3d),
Table I, and the number of conducting particles per unit volume can
be estimated.

We have pointed out that a number of theories which have been pro-
posed for the explanation of the variation of dielectric constant with
frequency may be expressed in the forms (41e) and (415) when the
expressions listed in Table I are substituted for (e — €.) and 7, but
we have not yet indicated how these formula agree with experimental
data. For such materials as ice (see Fig. 3, for example) and for
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certain alcohols and glycols, the experimental points agree fairly
closely with the curves obtained by plotting equations (41a) and (415)
for a suitable choice of the values of the constants.

But for many other dielectrics, particularly non-homogeneous
systems or disperse systems such as those listed under Item 3, Table I,
the simple dispersion formule (41a) and (41b) often fall very far short
of adequately representing the experimental data. Von Schweidler *°
and Wagner ! have attempted to explain the form of dispersion curves
obtained for such materials by postulating that the polarizations
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Fig. 3—Experimental dispersion curves for ice.

induced in the dielectric have a wide range of relaxation times at any
given temperature, instead of a single relaxation time, as for the
polarizations listed in Table I. A further contribution to the theory
of the distribution of relaxation times has recently been made by
Yager.”? However, in spite of the existence of many materials which
do not show the type of dispersion described by (41a) and (410), the
value of these formula in interpreting experimental data is consider-
able, particularly as applied to pure materials.

Table I emphasizes the point that mere agreement of experimental
data for dielectric constant and dielectric loss with the theoretical

20 £, v. Schweidler, Ann. d. Phys., (4) (24), 711 (1907).

n K. W. Wagner, Archiv f. Elektrotechnik, 2, 371 (1914).
2 W. A, Yager, Physics, 7, 434 (1936).
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curves obtained by plotting (41a) and (418) for suitably adjusted
values of the constants only places the type of mechanism to which
the observed dispersion can be attributed within the rather large
catagory which includes at least the seven types of mechanism listed in
the table. Data showing the dependence of (ko — k.,)/p on temperature
allows a further specialization of the processes which could account
for the observed behavior; and of course a number of possibilities can
be discarded on general grounds of physical improbability . And
finally, agreement of the constants calculated from dielectric measure-
ments with the values calculated from independent estimates of the
sizes and other characteristics of the molecules or other elementary
units which contribute to the polarization provides the most convincing
evidence of the nature of the polarization. Such agreement is fre-
quently obtained in the application of the Debye theory to gases and
liquids.

The characteristics which can be deduced from equations (41a) and
(41b) without substituting for the constants theoretical expressions,
such as those given in Table I, are of considerable value in interpreting
electrical measurements upon dielectrics. It may be convenient to
describe these as the general characteristics of anomalous dispersion,
distinguishing them thereby from the special characteristics peculiar
to particular kinds of dielectric polarization which share the property
of producing anomalous dispersion in the radio and power range of
frequencies.

APPENDIX

The following list contains the definitions of the quantities which
appear in Table I:

€1, €2, Y1, 72 are respectively the dielectric constants and conductivities
of two materials designated by subscripts 1 and 2, the unit
of conductivity being such that y = 367 X 10\, where
A is in (ohm-cm)—L.
€0, € are respectively the dielectric constant at the lower and
upper extremities of dispersion curves; they are called the
zero-frequency (or static) dielectric constant and the
infinite-frequency dielectric constant,
L is the number of molecules per unit volume,
n the viscosity of a liquid containing polar molecules,
k Boltzmann's constant,
T the absolute temperature,
p the permanent electric moment of a polar molecule,
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the radius of a polar molecule, assumed to be spherical,
the radius of a colloidal particle,

the thickness of a conducting skin on the particle of radius b,
a frictional resistance coefficient of unspecified origin,

an elastic restoring force coefficient of unspecified origin,
the number per unit volume of elementary charged particles
subject to certain specified conditions,

the ratio of the volume occupied by the spherical particles
in (3¢, d, e) to the total volume,

C, the capacity of the blocking layer of (3b), Table I,

R the resistance of the dielectric, exclusive of the blocking
layer.

Ry w AR

&

The following list contains the definitions of quantities which appear
in other parts of the article.

w is 27 times the frequency of alternation of the applied field,
V' the applied voltage,
E the intensity of the applied field,
P the polarization per unit volume induced by a field E,
F the internal or local field,
p the density of the dielectric,
M the molecular weight of the material of which the dielectric is
composed,
m the mass of a molecule; in another context, the mass of any charged
particle considered in the discussion,
N is Avogadro’s number, 6.06 X 10%* molecules per mole,
s the displacement of a charged particle from an equilibrium position
by an applied field,
$ the velocity of the charged particle in the applied field,
§ the acceleration of the particle in the applied field.
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