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STEADY STATE SOLUTIONS OF TRANSMISSION
LINE EQUATIONS
S. O. Rice

Methods of obtaining the steady state voltages and currents in a
uniform transmission line consisting of several parallel wires are described
in Part I. This line may or may not be acted upon by an externally
impressed field distributed along its length. A square matrix I', whichisa
generalization of the propagation constant v for a single circuit, is intro-
duced. Matrix expressions obtained for the voltages and currents in-
volve T in much the same way as the corresponding single circuit expres-
sions involve . In Part II similar methods are described for obtaining
the voltages and currents in a transmission line composed of a number of
multi-terminal symmetrical sections connected in tandem. Expressions
for the voltages and currents in a line composed of unsymmetrical sections
are also given. These sections may or may not contain generators,

HE transmission lines considered here are of two kinds, namely the

uniform transmission line, and the transmission line consisting of a
number of identical sections connected in tandem. The problem discussed
is that of determining the steady state electrical behavior of these lines
when the terminal conditions are given. Often there arises the problem
of determining the currents induced in a uniform transmission line by an
arbitrary impressed field of some fixed frequency or of determining the cur-
rents produced by generators placed in the branches of the sections if the
line is of the second kind. This is the type of problem with which we shall
be particularly concerned.

In dealing with the uniform transmission line it is found convenient to
introduce a matrix T', which is a generalization of the propagation constant y
for a single wire with ground return, or for a single circuit. This enables us
to obtain matrix expressions for the currents and voltages which are similar
in form to the single circuit expressions.

A similar situation exists for the transmission line composed of a number
of symmetrical sections. However, when the sections are unsymmetrical
the corresponding procedure does not appear to yield a corresponding sim-
plification and the formulas are considerably more complicated than in the
symmetrical case.

This paper is divided into two parts corresponding to the two kinds of
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transmission lines. The first part discusses the uniform line. After a
statement of the transmission equations in matrix form, expressions for the
voltages and currents are given. Two methods of evaluating these ex-
pressions are described. The first is based upon a property possessed by
many transmission systems, namely that the various modes of propagation
have nearly the same speed. The second method is based upon equations
which may be obtained by the formal application of a theorem due to
Sylvester. The first part concludes with the proof that these two methods
lead to the correct results.

After a short introduction the second part discusses the difference equa-
tions which govern the transmission in a line composed of multi-terminal
sections. The sections may contain generators. Expressions for the volt-
ages and currents in a symmetrical section line, i.e. a line whose sections are
symmetrical, are stated and proved in much the same order as the corre-
sponding expressions for the uniform line. A discussion of the unsymmetri-
cal section line concludes the second part.

A sketch of the solution of the uniform transmission line equations by
the classical method is given in Appendix I. In Appendices IT and III
methods are described for solving the symmetrical section line difference
equations. These methods are similar to the one of Appendix I. The
method of Appendix ITI uses section constants which may be obtained from
measurements made at one end of a typical section.

Part 1
UntrorM TrRANSMISSION LINES

1.1 Differential Equations

For the sake of convenience in writing down equations we shall assume
that the particular line under consideration consists of three parallel wires
with ground return, or of three parallel circuits, denoted by the subscripts
a, b, and ¢ respectively. The differential equations for this line in an arbi-
trary impressed field are’

@ = _Zaaia - Zubib - Zac'ic + la(x)

dx

db‘b . . .

T = ~Zeie — Zuis — Zicic + Iy(x) (1.1)
We i — Zayip — Zewio + L&)

d—x- = cala b b cele e\ %

1 These equations are given in substance by J. R. Carson and R. S. Hoyt, B.S.T.J.,
Vol. 6, pp. 495-545 (1927). Equations (1.2) are equivalent to their equation (90) and
equations (1.1) may be obtained by combining their equations (83), (84), and (94). We
shall use the term “impressed field” to mean a field distributed along the line. According
to our convention there is no impressed field when the line is energized only at the terminals.
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and

di,

= _Yﬂﬂﬂﬂ - Yab'ub - Yacﬂc + ta(x)

dx

fi;b = —Viate — Yty — Viete +th(x) (12)
di,

5o = _Ycavn - chﬂb - Yr:c'uc + tc(x)

dx

where Zas = Zua, Vay = Via, etc. If we are dealing with three parallel
wires la(x), Iu(x), I.(x) are the longitudinal components of the electric force
of the impressed field at the wire surfaces; fq(x), f(x), £.(x) are specified
by the admittance of the direct leakage paths and the values of the im-
pressed potentials at the wires. If there are no direct leakage paths the
t's are zero.

In order to put these equations in matrix form? we introduce the column
matrices

Vo i L.(x) tax)
v=|w|, i=[d0|, &)=L =) =]|6E] (13)
Ve 'l.c l.-.-(x) tc(x)

and the symmetrical square matrices

Zaa Zub Zac Yua Yab Yac
Z =2 Zn Zn V=|Va Vo Vi (1.4)
Zcu Zcb ch Yca ch Fcc

The equations (1.1) and (1.2) may now be written as
dv
dx
di
dx

= —Zi + I(x)
(1.5)
— Vv + i(x)

Il

and these are the equations to be solved.

When there is no impressed field equations (1.5) give
d*v
da?
d'i
da?

* Cf. L. A. Pipes, Phil. Mag., Vol. 24 (1937), p. 97.

= ZVv
(1.6)
= YVZi
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and the analogy with the one circuit case leads us to put
=2V, T =+/2ZY (1.7)

where T' is a square matrix representing a generalization of the propagation
constant. Putting aside for the moment the question of interpreting the
square root, we note that interchanging the rows and columns in I* = Z Y
gives

M=V7Z=YZ T =472 (1.8)

where the primes denote transposition. ¥’ and Z’ are equal to ¥ and Z
respectively because of their symmetry. We thus expect I to be associated
with the propagation of i in the same way that I' is associated with the
propagation of 2.
1.2 Statement of Results for an Infinite Line—No Impressed Field

It is shown that when there is no impressed field the voltages and currents
at any point x in a transmission line extending from x = 0 to x = = are
given by

o(x) = e *To(o) = e T 7,i(0)
i(®) = ¢ 'i(o) (1.9)
v(x) = Zoi(x)

where ¢ *" is the square matrix defined by the convergent series of matrices®

_:cl‘+x21‘2_x31‘3
2t 3

—zT =7

+ .. (1.10)

¢
and ¢ *" is the transposed of ¢ 7. I denotes the unit matrix. Z, is a
square matrix and is called the characteristic impedance matrix:

Zo=T"'Z=TI" (1.11)

Additional expressions of the same type for Z, are given by equations
(1.45). The matrix ¢ =" Z,, being of the nature of a transfer impedance,
is symmetrical.

The matrices ¢ =" and Z, may be computed in several ways, the choice
depending upon the circumstances. The first method to be described 1is
useful when x is not too large and when the propagation constants of the
various modes of propagation are nearly equal to each other. In the case
of open-wire lines these propagation constants are grouped around the
value jw/v where v is of the order of 180,000 miles per second. The second
method may be used for all cases, including those for which the series in

3 Frazer, Duncan and Collar, “Elementary Matrices,” Cambridge University Press,
§2.5. In the work which follows, this text will be referred to as “F.D.C.”
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the first method converge too slowly to be of value. However, it requires
the solution of an mth degree equation and the determination of the m
modes of propagation where m is the number of circuits. For m = 2
this is no handicap and the method is quite convenient. In this case
the method is closely related to one described by John Riordan in an un-
published memorandum.

First Method: Multiply the matrices Z and V¥ together to obtain ZV.
Choose the number % in

ZV = Iv* + R, (1.12)

where 7 is the unit matrix, so that the elements of R are small in comparison
with 4% For many transmission lines it is possible to do this. I' may be
obtained by using the binomial theorem to expand the square root in the
formula

I'= V/ZV = +(I + v *R), (1.13)

where v is that square root of 4* whose real and imaginary parts are non-
negative. In carrying out the work it is convenient to introduce the matrix
S whose elements are small in comparison with unity.

T =~ +S5) (1.14)

To compute S, first compute the matrix R/2y* and then use the power

series
2 3 4
s= (&) -2ERY LAY -3(R)
242 2 \ 242 2 \2y? 8 \24?

7({R\ 21/ R\
+i() - 5() +

PR . . . . x - .
T'his series will usually converge rapidly. The matrix ¢ © is given b
Yy y g Y

(1.15)

g—zI‘ — ekz‘gfzs (1.16)

2z

% is to be computed from

s S | (25)* ’ '
. =,_%+%%_%¥+“. (1.17)

where z is a number, z = yx, and ¢

¢ " is obtained from ¢ *" by interchanging the rows and columns. The

characteristic impedance matrix may be obtained from (1.11),

£

Z, =TV,

after computing T from S as in (1.14).
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If only ¢ *T is required the following series may be used.
_ 2\ (Rx\" b,(2)
e = (_) s 1.18
;:Z‘u 2y/) p! (1.18)
where R, v, and z have the same meaning as above and the coefficients are
computed from

b,=¢", b(z) = —e ", ba(z) = e_’(l + é)

bpya(s) = by(z) — %P—:_—l bps(2)

O
In the first term of the series (é—?) denotes I.

Second Method: T, ¢ “" and Z, may be regarded as functions of the square
matrix ZV. In order to express these functions in a form suitable for calcu-
lation we apply Sylvester’s theorem®. The characteristic matrix of ZV is

f&?) = 4 — ZV (1.19)

where now 7?2 is regarded as a variable instead of a fixed number as in the
first method. We shall suppose that ZV is a square matrix of order m
and that the roots i, 3, - - - v of the characteristic function, i.e. of the
determinantal equation

[/ | =0, (1.20)

are distinct. Let the matrix F(y2) be the adjoint of f(+*) and denote the
derivative of the characteristic function by

d ‘
oY= ’ (1.21
D 1® = 3 1) | )
Since V1, v, - -+ ¥ are all different | f(v8) | is unequal to zero for r =

1, 2, --- m. Sylvester’s theorem says that if P(ZY) is any polynomial
in ZV then

P(ZY) = 2 NP (1.22)
where P(v?) is a scalar (and thus deviates from our convention that capital
letters denote square matrices). N (v?) is a square matrix:

F(v7)
Nod = PO
| fyD |
When m = 2, N(v3) is equal to I — N(yd).
4F.D.C. §3.9. The « and X of the reference are the ZY and 4?2 of the present section.

(1.23)
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z

Applying (1.22) to T, ¢ *" and Z, even though they are not polynomials
in ZV gives results which may be verified to be true.

VZV = 2 Novdy,
e =TV = 3 NGy
Z,= @'V = X Ny, v
e Z, = 2 Ny yee v

where the summations extend from » = 1 tor = m and v1, v2, +++ ¥m
are the square roots of vf , 72 y e 'yf,. respectively whose real parts are non-
negative. <yi,7v:2, --- Ym are also the propagation constants of the “normal
modes’’ of propagation. Some light is thrown on the physical significance
of the matrix N(y}) by supposing that only the rth normal mode is being
propagated on the transmission line. N(v?) is such that it can be expressed

=
I

(1.24)

as a column matrix times a row matrix. The voltages in circuits 1, 2, .- - m
are proportional to the first, second, --- mth elements, respectively of the
column matrix. The currents in circuits 1, 2, - .. m are proportional to the

corresponding elements in the row matrix.
1.3 Results for Any Uniform Line—No Impressed Field

When the length of the line is finite the voltages and currents may be
expressed as

v(x) = cosh aT’ v(e) — sinh aT" Z,i(0)

(1.25)
i(x) = — sinh aT” Z,"0(0) + cosh aT” i(0)

where Z, and T" have the same meaning as before. The matrices sinh xT'Z,
and sinh I"Z," are symmetrical. The square matrices cosh 4T and sinh aT
are defined by the series

2t LAt
cosh «T' = I+a2! -|-T4'!~ + .

r - (1.26)
sinhxr=“i—! +?‘3—!+

cosh 2" is obtained by interchanging the rows and columns of cosh «T'
and sinh xI” is obtained similarly from sinh aT'. Solving (1.25) for v(e)
and i(o) gives

v(0) = cosh T v(x) + sinh aT' Z,i(x)
i(0) = sinh 2" Z;'v(x) 4 cosh 2T i(x)

As in the case of the infinite line, we have two ways of computing the
coefficients of v(0) and 7(0) in the expressions (1.25) for v(x) and i(x).
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First Method: Choose a number v? and compute the matrices R, §, T, Z,
as described in the first method for the infinite line. The matrix ™" is
given by

e:rl‘ — B'-G‘s
where z = yx and ¢ is computed from the series

z8 __ 2S5 5282
R B

If the elements of zS are so large that the series converges slowly it may be

worthwhile to divide zS by 16, say, compute exp (%) from the series, and

then obtain ¢** by four matrix multiplications. When ¢* is known its
inverse ¢ *° can be computed and ¢ *' obtained from (1.16). The hyper-

bolic functions are given by
cosh 2T = % (¢*T 4 ¢ °1)
sinh al' = & (7 — ¢ *")

(1.27)

which follow from the series definitions of the various matrices.
If only the coefficients in (1.25) are required we may choose ¥* and com-
pute R and powers of the matrix Rx/2y. Then the coefficients in (1.25)

are given by
0 P
cosh al' = 2 (Rx) a5(2)

Il

=0 \2y P!
. = Rx r a 1(5)
sinh 2" Z, = — Las Z 1.28
" Z; (27) ply (1.28)
. vt wm (R ap4a(2)
sinh aIZ,” = ::X-;(E) —W Y

where R’ is the transposed of R, and the scalar coefficient a,(z) is a function
of z = yx given by

a,(z) = coshz a:(z) = sinh 2
as(z) = cosh z — simh 3 (1.29)
1
ap42(2) = a,(2) — 2P:_ ap41(2),

and it is understood that (Rx/2vy)" = I.
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Second Method: Compute the propagation constants vy, y2, -+ ¥Ym
and the square matrices N(y;) given by (1.23) as in the second method for
the infinite line. Then

cosh aT' = = N(y2) cosh »y,
sinh aT' Z, = sinh &' V!
= 2 N(y}) sinh ay, v, ¥ (1.30)
sinh 2T Z;' = sinh 2TV "'V
= 3 Ny Smh Ay
Y

r

where N’(y;) is the transposed of N(vZ), N(»2) being defined by (1.23),
and the summations extend from r = 1 tor = m.

When the transmission line consists of perfectly conducting wires strung
on perfect insulators over a perfectly conducting earth the magnetic and
electrostatic fields are related so as to make Z equal to 73 V! where

Yo = jw/cs

w being 27 times the frequency and ¢ the speed of light.

It is interesting to apply the first method of solution to this line. Even
though the proof of the first method, which is given in §1.10, does not cover
this case there seems to be little doubt that the correct answer is obtained.

We have

ZV =yl
Choosing ¥ = v, gives R = 0 and therefore S = 0. It follows that
I'=n~,Z, =177 =~'Z
cosh al' = cosh (ay,I) = cosh ay, 7
sinh aT' Z, = sinh 2y, v, Z
sinh aI” Z,' = sinh %y, 7.2 "

When these are put into equations (1.25) the expressions for 2(x) and #(x)
in a perfect transmission line are obtained:

sinh 2y, Zi(0)
Yo (1.31)
i(x) = —«, sinh 2v,Z "2(0) + cosh xv,i(0)

v(x) = cosh xy,9(0) —
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1.4 Results for Any Uniform Line—Impressed Field
The differential equations to be satisfied in this case are given by (1.5).
A solution which reduces to v(e) and i(0o) at 2 = O1is

v(x) = cosh aT" v(0) — sinh aT Z,i(o)

+ j: cosh (x — )T I(E) dE — j;z sinh (x — £)I" Z, t(£) dt

. (1.32)
i(x) = —sinh o Z;'2(0) + cosh «I" i(o)

—[mm&—mwm@&+£1mﬁ;am@&

The matrices cosh aT", sinh aT and Z, are the same as the ones discussed in
§1.2 and §1.3. The elements of the integral® of a matrix U (U is not neces-
sarily a square matrix) are given by the integrals of the corresponding
elements of U.

In many cases of practical interest the impressed field varies exponentially
with respect to x. The column matrices /(x) and #(x) may then be ex-
pressed as

Ao Ta
I('\’J) = e_"'ﬂ Ap l('lf) = 6720 Th (133)
A To

where the N’s and 7’s are constants and 0 is the propagation constant of
the impressed field in the direction of the line. The integrations in the
expressions (1.32) may be performed with the result

o(x) = cosh 2T v(0) — sinh aT' Z,i(0)
+ 31— 7D+ 0NN — Z7)
— 3 (e =D (I — 00N+ Zo)

. (1.34)
i(x) = —sinh 2T Z; v(0) + cosh aT" i(0)
F3E - D (@ + o — 23N
— (@ =MD (I — 0D (4 Z5N)
provided that the inverse matrices exist. The matrix (&7 — NI +

6I)"' is the transposed of (" — NI + 0I)"", etc. If one of these
matrices, say I' — 67, has no inverse then it is necessary to evaluate the

s F.D.C. §2.10.
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corresponding integral in some other way. Thus it may be advantageous
to use the formula

_(guxI‘ _ efzﬂf)(l-‘ _ BI)—I — e—zI‘ [ eEI‘—ENdE
0

. . (1.35)
- X X 2
=¢ P|:H+?(F —6[)-}-?(1" — 60" + :|
Two special cases of (1.34) are of interest. When the line is shorted at
both ends, v(0) = v(x) = 0, where x is the line length, and
i(0) = 1 Z," (sinh aD) '[("" — ¢ ™' I)(T 4+ 68D)7'(\ — Z.7)
' — (@ — DI — )7\ + Zo1)]

—zf
i(x) = "T 77" (sinh 2T) [T — &° (T — 01O\ + Z,7)

— (™" = &N + 007"\ — Z,7)]
When the line is terminated in its characteristic impedance at both ends,
v(o) = —Z,i(0), v(x) = Z,(x), and
i(0) = 3 (I — ¢ ™) 4+ 0D (ZN — 1)
i(x) = =3 (™" = DI — o0 (Z, N + 1)
The matrices occurring in the expressions (1.34) for »(x) and i(x) may
be computed by the first or second method described for the uniform line

in the absence of an impressed field. The second method involves the use
of expansions similar to

€T — N + 6D\ — Z,7)

- (Y- 2
"\ v+ Ve

" — e DI + o172\ — 1)

_ oo (€7 — (}: _ )
—ZN(T’)( v+ 0 )wh !

where the summations run from r = 1 to r = m and N"(’yf) is the transposed
of the square matrix N(y}) given by (1.23). In obtaining these expansions
by Sylvester’s theorem, Z, in the first is replaced by I'"'Z and Z," in the
second by IV,

If we assume that an impressed field acts upon the perfect transmission
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line of equations (1.31), we see that #(x) = O because there are no direct
leakage paths. We may also write

(" — N+ 6D = (€1 — ¢ Iy, I + 6I)7"

er-y,, _ e—zﬂ

=% _~° 7
Yo+ 6
From this and similar equations it follows that
v(x) = cosh ay,v(o) — Sm¥7—° Zi(0)
Ty __ b —xYo __ 20
+ l_l:e e” e € ] \
2 Yo+ 8 Yo — 0 (137)
i(x) = —v, sinh v, Z '9(0) + cosh xv,i(0)
Yo er'r., _ eﬁzﬂ 8—:7,, _ e—zﬂ] .
— Yo ZN
2 [ Yo+ 0 Al Yo — 8

1.5 Results for Infinite Uniform Line—Impressed Field

When the line extends from & = 0 tox = = and the impressed field is such
that the voltages and currents remain finite at x = o, the appropriate solu-
tions may be obtained from the results of §1.4 by a limiting process. The
condition that o(x) remain finite suggests that the coefficient of ¢“" be zero
in the expression (1.32) for »(x). This gives a relation between v(0) and
i(0) which must be satisfied:

2(0) = Z,i(0) — fo Tt [1(g) — Z,1(8)) dg (1.38)

If the impressed field varies exponentially with x expression (1.34) gives
20) = Zoi(o) — (T 4 617"\ — Z,7) (1.39)

Expressions for »(x) and i(x) may be obtained by using relations (1.38)
and (1.39) in (1.32) and (1.34) respectively. As these are somewhat
lengthy we shall state only two which follow from (1.39).

o(x) = ¢ T u(o)
+ e ™" = DT + 607N — Z,7)
— (I = 0D)7'(\ + Z,7)]
—al (1.40)
i(x) = Z; ¢ * o)
+ 327 4+ eI + 0D\ — Zor)
— 327 — (T — o)\ (N + Zo7)
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Two similar expressions may be obtained in which the initial current (o)
instead of v(0) appears on the right. If the line is terminated in its char-
acteristic impedance at « = 0, v(0) = — Z,i(0), and the voltages and currents
produced by the impressed field are

2(0) = =3 (T + 601)'(\ — Zo7)
i(0) = 3 Z,M (D + 6D\ — Z.1)

As in §1.4 these expressions may be computed by the first and second
methods described in §1.3. For example, the application of the second
method to the relation (1.39) which must exist between 2(o) and i(¢) in an
infinite line gives

o(0) = i NG [75 i0) = —— (x = fr):l (1.42)

(1.41)

where N(y2) is the square matrix (1.23).
1.6 Oulline of Proofs

The proof of the results which have been stated is divided into three parts.
In the first part it is shown that if " is a matrix such that (a) its square is
ZY and (b) every element in the matrix ¢ *" approaches zero as x — o,
then the expressions for »(x) and #(x) involving I' and Z, satisfy the trans-
mission line equations. In the second part of the proof it is shown that if
certain requirements are met I' as obtained by the first method satisfies the
conditions (a) and (b) and hence the expressions for (%) and i(x) given by
the first method are correct. The third part of the proof discusses a general
procedure which may be used to prove the equations which constitute the
second method.

Both the second and the third parts of the proof are based upon the solu-
tion of the transmission line equations which is sketched in Appendix I.
This solution assumes that the propagation constants of the normal modes
of propagation are unequal, and our proofs are limited accordingly. How-
ever, considerations of continuity seem to show that the first method is
valid even when two or more propagation constants are equal. Under the
same circumstances the second method suggests the use of the confluent
form of Sylvester's theorem.’

1.7 Relations Obtained by Considering An Infinite Line

We suppose that we are going to deal with transmission lines possessing
the non-singular, symmetrical impedance and admittance matrices Z and V.
We further suppose that, by some means or other, we have determined a
matrix I' which satisfies the two conditions; (a) the square of I' is

= Zr, (1.43)

X

and (b) every element in the matrix ¢ *" approaches zero as x — o,

¢ F.D.C. §3.10.
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Consider a line extending from x = 0 to x = o, there being no impressed
field. Viewing the line at ¥ = 0 as an n terminal network shows that
there is a symmetrical matrix Z, such that v(o) = Zs(o). Let this be
taken as the definition of the characteristic impedance matrix Z,. We shall
show from the differential equations of the line that

1. The voltages and currents in the infinite line are given by

o(x) = ¢ u(o)

, (1.44)
i(x) = e 'i(o)
2. The matrix Z, satisfies the relations
Zo=TZ=zr'=1r"'=7""1"
(1.45)

Zi=Z7Zr=rZ2'=¥r'=1r""
v(x) = Zgi(x) (1.46)
3. The matrices Z,, Z, and ¥ obey the commutation rules
®()Z, = ZB(I")
®(Z = ZB(T) (1.47)
Ve(T) = $(I")V

where ®(I') is any square matrix, such as ¢ "', representable as a
convergent power series in T' with scalar coefficients. Furthermore,
the matrices ®(I')Z,, ®(I')Z, and ¥&(T") are symmetrical.

The differential equations of the transmission line are

dv . di d*v

— = ——Z — Y" _— = .

dx b @ hoogm s AT (1.48)
the third following from the first two when i is eliminated. That »(x) =
¢ *Tu(0) is a solution of the third equation may be verified by direct substi-
tution and differentiation’. Since this expression for v(x) approaches zero
as x — o and reduces to #(o) at x = 0, it represents the voltages in an
infinite transmission line. Hence the first equation in (1.44) is true. Set-
ting it in the first differential equation of (1.48), putting x = 0, replacing
v(0) by Zi(0), and noting that i(0) may be regarded as an arbitrary column
gives

Iz, =2 (1.49)
Since I' was assumed to be non-singular, Z, is equal to 'z, Zissym-

metrical and the reciprocity theorem for electrical networks requires that Z,
7 The differentiation of the exponential function is discussed in F.D.C. §2.7.
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be symmetrical, hence
Zo =172 = ZI""

The first group of equations in (1.45) follow from this together with the
expression IV for Z obtained from (1.43). The second group in (1.45)
is obtained from the first group.

The commutation rule for Z, is obtained from (1.49) together with the
equation obtained from (1.49) by transposition. Since Z is symmetrical

rz, = zZI', TI'Z,=TZI = ZI"
"z, = ZI"

and the first of equations (1.47) follow from this. The second and third
of equations (1.47) may be obtained similarly from the relations (1.45).
The matrix ®(I")Z, is symmetrical since its transposed is Z, [®(I')]’ and
this is equal to Z,®(I") = ®(I')Z,. A similar argument applies to the
other matrices in (1.47).

The expression for i(x) in (1.44) may be obtained by Maclaurin’s ex-
pansion. Setting ¥ = 0 in the second differential equation of (1.48),

(;-t;)p = —TVu(o) = —YVZ,i(0) = —TI"i(0)

where we have used the equality between the first and last members of the
first equation of (1.45) and where the subscript 0 denotes the value of the
derivative at x = 0. Repeated differentiation gives

d*i dv . 2.
= — —_— = = I"
e Y g YZi 1

da‘i 2 di _ .3 -
(Ez@)o =T (Ec)o = — I"i(o)
and so on. Hence

iw = [1- 0+ i

= ¢ *""i(0)

Equation (1.46) may now be obtained by using the commutation rule
for Z,:
o(x) = e " v(0) = € *' Z,i(o)

= Zoe *"i0) = Zyi(x)

This completes the proof of equations (1.44) to (1.47).
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1.8 Proof of Relations for Any Uniform Line—Impressed Field

Here it is shown that if a matrix I' satisfies the two conditions of §1.7
and if Z, is the characteristic impedance matrix defined there, then the
voltages and currents in any uniform line are given by the expressions (1.32).
If suitable conditions are fulfilled the relation (1.38) between v(0) and i(0)
for an infinite line may be obtained from (1.32).

First of all, o(x) and i(x) reduce to the required values of v(0) and i(0)
at x = 0. All that remains to be shown is that v(x) and i(x) as given by
(1.32) are solutions of the transmission line equations (1.5). By substitut-
ing (1.32) in (1.5) and using the formulas

ad} cosh #T' = I sinh 2T = sinh aT' T’

i sinh #T' = T cosh 2" = cosh aT' T

dx

which follow immediately from the series definitions (1.26) of the hyper-
bolic functions, we obtain two matrix equations corresponding to the two
differential equations. The terms in these equations involving v(0) may
be canceled out provided

I'sinh aT' = Z sinh 2l Z;"
I’ cosh #I" Z,' = ¥ cosh aT"

(1.50)

and these are seen to be true from (1.45) and (1.47). The terms involving
i(0) may be canceled by a similar argument. The terms involving I(x)
may he canceled provided

f: ginh (x — E)T TI(E) dt = fux Z sinh (x — §)T 2, 1(§) d
o

f " cosh (v — BT Z7U(E) d = fu " ¥ cosh (x — BT I(2) de
0

and these are seen to be true when x in (1.50) is replaced by (x — £). The
terms involving #(x) may be similarly canceled. Thus we have verified
that v(x) and i(x) as given by (1.32) are solutions of the transmission line
equation provided that the commutation rules (1.47) and the relations
(1.45) involving Z, of §1.7 are satisfied. This is the case when I' is such
that (a) I'* is equal to ZV and also (b) every element in ¢ '" approaches
ZEro as & — .

In order to establish equation (1.38) for the I" of §1.7 several assumptions
regarding the impressed field are required. Writing the hyperbolic func-
tions in the first of equations (1.32) in exponential form and premultiplying
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both sides by 2¢” " gives
2777o) = [40) = ZuiC0) + [ ) — Zoi) e |
+ ¢ [o(0) + Z,i(0)]
+ o [ ) + Zure) g

When x — « equation (1.38) is obtained provided that the impressed field
and the terminal conditions at the far end are such that (a) v(x) remains
finite, (b) the integral in (1.38) converges, and (c), the last expression on
the right in the equation above approaches zero as x — .
1.9 Derivation of Equations (1.25)

Although equations (1.25) may be obtained by setting I(x) = #x) = 0
in §1.8, it is of some interest to derive them directly. By repeated differ-
entiation of the equations

dv . di
a = _Z?:, E - _Y'U (1,4‘8)

the second, third and higher order derivatives may be obtained. Using
these in Maclaurin’s expansion about x = 0 gives

v(x) = [I+ VA + (ZY) --]w(a)

[ I+ ZY+ (zxr)2 --]Zi(a)
(1.51)
i(x) = |: I —I— YZ + = (YZ) + . ile(o)

+ |:I +5 72 + = (Yz)2 ..]i(a)

These series converge for all values of x and could be used for computation
were it not for the unfortunate fact that in most problems a great many
terms would be required for a satisfactory answer. For the time being,
let T' be any matrix whose square is ZV. The definitions (1.26) of the
hyperbolic functions enable us to write (1.51) as

2(x) = cosh aT v(0) — sinh aI' I'"'Zi(o)

1 (1.52)
i(x) = —sinh 2T T"" Vv(o) + cosh aT (o)

If in addition to being a matrix whose square is ZV, I' is also such that
every element in ¢ *" approaches zero as x — =, then we may use the
relations (1.45) for Z, and obtain (1.25).
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Incidentally, when we put ZV = Iy* 4+ R in (1.51) and rearrange the
terms so as to get a power series in R we get the series (1.28).
1.10  Proof of the First Method

The first method consists essentially of determining I' from the series
expansion of (1.13):

_ s (=9 (=R)"
r= ryﬂ; P (1.53)
where (—3). = (=$)#)3) --- (» — ) when n > O and (—3), = 1, and
then computing Z, and the required exponential and hyperbolic functions
of #I'. From §1.7 and §1.8 it follows that the first method gives the correct
result provided that I' as determined by (1.53) satisfies the conditions:
(a) its square is equal to ZY and (b) every element of ¢ *' approaches zero
as x — o,
These two conditions are satisfied by the matrix

I = PGP (1.54)
where P and G are matrices defined by equations (A1.1) and (A1.3) of Ap-

pendix I, G being a diagonal matrix whose rth element is y,. For from
(A1.9) the square of T' is

= PGP = ZV
Furthermore,

efrf — i (_T)u (PGP—I)n

n

_p i (—T)" P (1.55)
0 :

n
= PM(x)P"

where M(x) is diagonal matrix (A1.5) whose rth element is ¢ Since
the real part of -y, is positive and the elements of P are independent of
it follows that the second condition is satisfied.

It will now be shown that PGP~ may be expanded in the series (1.53)

provided that v may be chosen so as to make all of the points {» = Y
v

YT

r = 1,2, .- m,in the complex { plane lie within that loop of the lemniscate
| — 1| = 1 which contains the point { = 1. For then we may write
the rth element in G as a convergent series:

Yr

II
2
S
—
+
2
-]
13- !
2
153
N~—
-

(1.56)
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and PGP~ may be written as a convergent infinite series, the #th term
of which contains the matrix (assuming only three circuits for the sake of
simplicity)
-y 0 o
Pl 0 vz — " 0 Pl=FR", (1.57)
0 0 vi—7

where the equality follows from the definition (1.12) of R and equation
(A1.9) of Appendix I. This series for PGP is exactly the same as the
series (1.53), and this completes the proof of the first method.

The equations (1.18) and (1.28) which are incidental to the first method,
will now be established for the case in which the matrix I' occurring in
them is equal to PGP™'. For then we have equation (1.55) and the
equations

cosh xy; 0 0
cosh aT' = P 0 cosh a2 0 r (1.58)
0 0 cosh avy;

sinh 4T' Z, = sinh aT I Z

where sinh aI' ™' may be expressed in the same fashion as cosh T, the

. . . sinh x )
rth element of the diagonal matrix being T—W’. The elements in the
r
diagonal matrices occurring in these expressions may be expanded in series

by replacing v, by its representation (1.56), assuming 152 — 1/ <1, and
Y

. 8
using

i _ (e (=) /2 )
¢ h ; (_2—) p! T Kp_’(z)

coshAz\/lf_ , = i‘;: (;)” 1% 1/%11,_;(2)

sinhz4/1 +7 _ < (E)plﬁ .
Vit =2\3) 54/ 70

where I, 4(z) and K,_;(z) are Bessel functions of the first and second kinds,
respectively, for imaginary argument. Equations (1.18) and (1.28) are
obtained when equation (1.57) and the Bessel function recurrence relations
are used.

8 These are special cases of formulas given in “Theory of Bessel Functions,” by G. N.
Watson, page 141,
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1.11 Proof of the Second Method

To establish the second method we must prove the various formulas
which are used. These formulas all involve the square matrix N(y;) de-
fined by (1.23).

Since N(y;) is proportional to F(v2) it follows that N (v2) may be ex-
pressed as

Niv?) = popr -+ (1.59)

where p, is the column matrix defined in Appendix I and p, is a row matrix
specified by p, and N (v?). Applying Sylvester’s theorem to the unit
matrix gives

P1
I= EN(’Yf) = EPrPr = [p1, P2, 3l p2:|

ps

where the two matrices on the extreme right are partitioned square matrices.
From the definition of P in Appendix [ it follows that

P1
[PI) P2, P3] = P, p2 | = P (1.60)
P3
These relations enable us to verify the equations (1.24) when I' is equal
to PGP™. Thus for the first of equations (1.24)

1
I‘=PGPQIL__[P1!P2,P3]G P2
P3
‘YlPl_1
= [p1, p2, 3] 'Y”’?J =2 pereor = 2 NoDve
Y3 p3

The second equation of (1.24) follows likewise from the expression (1.55)
for e *"
The third equation of (1.24) follows at once from the first when we use

(1.45), Z, = I'V"'. The fourth equation is obtained by writing
e 'z, = PM(x)P' PGPV}
= PM(x)GP'Y!
and proceeding as in the case of the first equation.
All of the other equations connected with the second method may be
proved in a similar way. Incidentally, the formulas obtained by the second

method are closely related to the “special form of solution” described in
§6.5 of F.D.C.
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Part II

TrANsMISSION LINES CoOMPOSED OF MULTI-TERMINAL SECTIONS

2.1 Introductory

Some transmission systems may be regarded as consisting of a number
of identical sections connected in tandem. The question of determining
the steady state electrical behavior of such a system from a knowledge
of the properties of a single section will be considered here.

Each section will have a certain number, say m -+ 1, terminals on its
left end and an equal number on the right. The case in which there are
only two terminals (m = 1) has been completely worked out, and some
studies of more general cases have been made. The ones which most nearly
approach the point of view of the present paper are those due to S. Koizumi®,

In the present work difference equations are used to solve the general
case in much the same manner as they have been used in studying the
two-terminal case. This approach differs from that used by Koizumi and
throws additional light on the problem.

In several lists of formulas, particularly in Appendix IV, I have included
a number of results due to Koizumi for the sake of completeness.

2.2 Transmission Equations for a Typical Section

We consider the equations connecting the input and output currents and
voltages for the nth section which is shown in Fig. 1. The directions which
are assumed for positive current flow are indicated by arrows. The leads
marked O play a special role in that all the voltages are

— . —
{y(n) == == L (n+1)
—_— , —
i2(n) [ =l (p+l)

i |

i vi(n) vi(n+1) E

! vz (n) vz (N+1) -
im (n) : tm(n+1)

vni(m vm(n+1)
|
— - o o
Frc. 1

measured with respect to them, and the currents which they carry are the
sum of the currents flowing into or out of the remaining terminals at the
end under consideration. Inapplications to transmission lines the terminals
0 would correspond to the ground or the cable sheath.

The currents and voltages shown in Fig. 1 are related by a number of

9 Archiv fiir Electrotechnik, Vol. 33, pp. 171-188, 609-622 (1939). See also a paper
by M. G. Malti and S. E. Warschawski, Trans. A.LLE.E., Vol. 56, pp. 153-158 (1937).
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sets of 2m linear equations which may be conveniently written in matrix
form. One such set is
v(n) = Zui(n) — Zpi(n + 1) + 1°(n)
vin + 1) = Zni(n) — Zwi(n + 1) 4+ u°(n)

Zw, Z1a, Zay, Za are square matrices of order m whose elements are im-
pedances. o(n) and i(n) are the column matrices

‘})1(1@) —‘ 41(n)
(1) 1a(n)
= i(n .

(2.1)

v(n) = : :
|_zr,,.-(ﬂ-)J im(.u)

The column matrices °(») and #°(n) arise from generators which may
be acting within the nth section. If both ends of the section are open
circuited so that i(n) = i(n + 1) = 0 the equations show that v(#) =
°(n), v(n + 1) = #°(n). Consequently, 2°(n) and #°(n) give the open
circuit voltages produced on the left and right ends of the nth section by
the internal generators. If the section is a passive network then 1°(n) =
#°(n) = 0 and they do not appear in the equations. The subscripts on
the square matrices, the Z’s, are chosen so as to preserve the analogy for
the simple case m = 1, where the left and right ends of the section are
denoted by the subscripts 1 and 2, respectively.

Solving the equation (1.1) for i(») and i(n + 1) gives

I‘(ﬂ‘) = I"nﬂ(ﬂr) -+ 1’122'(” + 1) =+ i°(n)
—iln + 1) = Vop(n) + YVau(n + 1) — 7°(n)

where the elements of the ¥’s are admittances and i°(n), j°(n) are the
currents produced by the internal sources when the terminals on the right
and left are short-circuited so that v(n) = v(n + 1) = 0.

A third set of equations is

v(n) = Av(n + 1) + Bi(n + 1) — Bj°(n)

(2.2)

(2.3
i(n) = Co(n + 1) + Di(n 4+ 1) — Cu®(n)
Solving these equations for v(z + 1) and i(» + 1) gives
v(n + 1) = D'v(n) — B'i(n) + B'i®(n)
(2.4

itn + 1) = —Clo(n) + A'i(n) + C'0°(n)

There are a great many relations between the square matrices appearing
in the equations (2.1) to (2.4). These are discussed in Appendix IV.
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For symmetrical sections Vo = Vo, Voo = Vi, Zoy = Zioy Zon = Zy
and equations (2.1) and (2.2) become
v(n) = Zui(n) — Zwi(n 4+ 1) + 1°(n)
vin + 1) = Zyi(n) — Zui(n + 1) + u°(n)
i(n) = Vion) + View(n 4+ 1) 4 i°(n)
—i(n + 1) = Viw(n) + Vuv(n + 1) — 7°(n)
Eliminating #(#) from (2.5) and »(#) from (2.6) and using, from .(A-}.-l-),
A=7Zuln = — YF;‘ Y1 leads to the difference equations
vn + 1) + v(n — 1) — 249(n) = B[i°(n) — °(n — 1)] (2.7)
i(n 4+ 1) + i(n — 1) — 24%(n) = Cls°(n) — u°(n — 1)]  (2.8)
Since we also have B’ = B, C' = C, D' = A for symmetrical sections
equations (2.4) become
oin + 1) = Av(n) — Bi(n) + Bi®(n)
in+ 1) = —Cov(n) + A'i(n) + Ci°(n)

We assume that the distribution of the sources in the branches of a sym-

metrical network need not be symmetrical with respect to the two ends,

even though the impedances of the branches are.

2.3 Statement of Results for Infinite Symmetrical Section Line—Passive
When the sections are passive the equations to be solved are, from (2.9),

o(n + 1) = Av(n) — Bi(n)
i(n + 1) = —Co(n) + A'i(n)
If the line extends from #» = 0 to » = <« the solution is
v(n) = ¢ ""v(o)
i(n) = ¢ ""'i(0) (2.11)
v(n) = Zi(n)
where the matrix ¢ " is such that (a) the equation
e e =24 (2.12)

is satisfied, e being the inverse of ¢ ', and (b) all the elements of the matrix
¢ " approach zero as # — . In dealing with sections we shall never
have occasion to consider I' itself but only its exponential and associated
functions. The characteristic impedance matrix Z, is defined by the rela-
tion between the initial currents and voltages in an infinite line

(o) = Zyi(o) (2.13)

(2.5)

(2.6)

(2.9)

(2.10)
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A formal solution of (2.12) may be obtained by writing it as
coshT = 4 (2.14)
Then ‘
¢’ =coshl —sinhT
A — (A2—D' =4 — (BO)}

where the square root is to be chosen so that condition (b) for ¢ " is satis-
fied. The characteristic impedance matrix Z, is given by equations (2.34)
of which the following two are representative.

Z, = (sinh ) 'B = sinh I' ! (2.15)
where sinh T'is given by 2sinh T' = ' — e’

The wide variety of sections makes it appear unlikely that there is a
general method of determining ¢ " analogous to the first method discussed
for the uniform line. However, in some cases rapidly convergent series
for ¢ " and " may be obtained. For example, suppose that the elements
of (2A)7! are small compared to those of 2A. Then, from (2.12),

" = 2A — (2A)! — (2A)7F — 2(2A)F — ...

e = (28) + 24)° + 202A)° + .-
Again, if A2 — I = BC is expressible as Iy* + R where the elements of
R are small in comparison with 42, we have (cf. equations (1.14), (1.15))

r_ R _1(RY
‘ _AJ”[H’EZ 2(272)+"']

T4 R _1(R)\*,
a1 ]

Finally, it follows from a comparison of equations (2.11) and (A2.12) that
a suitable ¢ " is given by

e T = PAPY, T = QAQ™ (2.16)

where P, O and A are the matrices designated by the same symbols in
Appendices 1T and IIL

The formal application of Sylvester’s theorem leads to a method of solving
the symmetrical section line which is analogous to the second method
discussed for the uniform line. Thus, if P(4) is any polynomial in 4, then

P(4) = 3 NGIPG) @.17)
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where P({;) is not a square matrix but a scalar and N({,) is the square
matrix

NG = Eon (2.18)
F(¢) is the adjoint of the characteristic matrix
J§) =Ir — 4 (2.19)
and {1, {2, ++- {w are the roots, assumed to be unequal, of the character-
istic equation
/@) [ =o.

The denominator in the expression for N({,) is the derivative of the char-
acteristic function:

@)1 = [ & 15601]

The formal application of Sylvester’s theorem then gives
cosh T = 4 = IN({)¢x
e’ =4 — (4 =1 =N\
e "' = NN

t=tr

(2.20)

N(gr) 2
=)
where N({,) is given by (2.18), the summations run from » = 1 tor = m,
and A, is related to ¢, through

2, = A+ A M=G—AE o (2.21)

where the sign of the square root is chosen so that |\, | < 1. X, is related
to ¢ ' in the same way that {, is related to cosh T,
24  Resulls for Any Symmetrical Section Line—Passive

The solutions of equations (2.10) which reduce to the given values (o),
i(o) at n = 0 are

v(n) = cosh #I' 9(0) — sinh #l' Z,i(o)
i(n) = —sinh ul" Z," (o) + cosh nI" i(0)

Z, = (sinhT)'B =3

(2.22)

where ¢ " and Z, are the matrices of §2.3. These may be put in slightly
different form by using the relations

sinh #I' Z, = Z, sinh nI"
sinh #I" Z;' = Z;" sinh »T"
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When (2.22) are interpreted by Sylvester’s theorem we obtain

o(n) = EN(,) [%O\:" + A)e(o) — ;‘\:—1——); Bi(o)

T

(2.23)
N
AT =

in) = zzv'(m[  Co(o) + 3O+ a;‘)i(a)]

where N’(¢,) is the transposed of N(f;) and N({,) is given by (2.18) and
the summations run from » = 1 tor = m.
2.5 Results for Amy Symmelrical Section Line—Active

When the sections contain generators the equations to be solved are
those of (2.9). The solutions corresponding to the initial values v(0) and
(o) are, for n = 1,

v(n) = cosh #I' v(o) — sinh nI' Zyi(o)
+ i‘i {cosh (n — p)T" Bi°(p — 1) — sinh (n — p)T Z,Co°(p — 1)}
=

(2.24)
i(n) = —sinh ul" Z; '9(0) 4 cosh uI” i(0)

+ zﬂ: {cosh (n — p)T Cv°(p — 1) — sinh (n — p)I’ Z7' Bi°(p — 1)}

p=1

These may be simplified somewhat by replacing Z,C and Z; 'B by sinh T
and sinh IV, respectively.

The series in the above expressions may be summed when the generators
are such that

°(n) = e %°, i°(n) = e° (2.25)

where 8 is a scalar and i° and 2° are column matrices whose elements are
independent of #. Thus

o(n) = cosh #l' (o) — sinh nI" Z,i(o)

+ 3" — emI)(e" — 1) (Bi® — Z,Cr°)

AT - D — DB 200
i(n) = — sinh nI" Z;'v(0) + cosh nI" i(0)

+ 3 — e — ) — 2 Bi)

+ 3™ — (" — ) O + Z)Bi°)

provided that the inverse matrices exist.
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We may interpret these expressions by Sylvester's theorem. For
example,

) = 35 V) [gor" ) =

— AX
———— Bi(o
A — A ©)

r

IN—e™f . 2BC7J,,)

nd
o 2BCq,
+ %"—4%, (Bz + 2BCt ):l
Ar— e AN — N

where N({,) is given by (2.18).
When the line extends to # = = and the sources and end conditions
satisfy suitable conditions we have the relation

o0) = Zoi(o) — ii:le-ﬂ"wf(p —1) = Z,C%(p — 1)]  (2.28)

When the impressed field is of the form (2.25) this becomes
v(0) = Zi(o) — (" — 1) (Bi® — Z,(1°) (2.29)

provided that the inverse matrix exists. Expressions for v(n) and i(n)
in such an infinite line may be obtained by using (2.28) or (2.29) in (2.24)
or (2.26).

Applying Sylvester’s theorem to (2.29) gives

] . -1 _
oo) = ,.EIN(“( e e ":,)fﬂ) (2.30)

The last term within the braces may be replaced by

2BC+°
e S
2.6 Derivation of the Properties of an Infinite Line

We shall consider a symmetrical section line which is specified by the
equations

on + 1) = Av(n) — Bi(n)
iln+ 1) = —Cuo(n) + A%(n)

From these equations and the relations A* — BC = I, AB = BA', A'C =
CA4 of (A4.6) it follows that

v(in + 1) +v(n — 1) = 249(n)
in 4+ 1)+ i(n — 1) = 24"(n)

(2.10)

(2.31)
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If ¢ ' is a matrix satisfying the conditions of §2.3, namely, (a) ¢ " satisfies
the equation

2coshT = e" +¢ " =24 (2.14)

and (b), every element in ¢ "' approaches zero as n — «, and if Z, is
defined by v(0) and i(o) for an infinite line as in (2.13), then
1. In an infinite line

o(n) = ¢ ""0(0),
itn) = ¢ "i(o),
(n) = Zoi(n) (2.33)
2. The characteristic impedance matrix Z, is given by
Z, = (sinh T)™'B = B(sinh T") " = C”'sinh IV = sinh I'C"
7' = B'sinh T = sinh I B~ = (sinh I")"'C = C(sinh )"

(2.32)

(2.34)

3. The matrices Z,, B and C obey the commutation rules
®(e")Zo = Z,B(e")
®(e")B = Bd(e"") (2.35)
Ca(e") = (e")C

where ®(e") is a square matrix representable as a sum of powers of T
The matrices ®(e") Zo, ®(e") B, and Cd(e") are symmetrical.

To prove these statements we proceed as follows: By direct substitution
into (2.31) it is seen that v(n) = ¢ "Tu(0) is a solution by virtue of condi-
tion (a) satisfied by ¢ T. Since, by condition (b), »(n) —o0as n— o it fol-
lows that v(n) is the voltage in an infinite line. ~Similarly, i(z) = ¢ i(0)
is the current in such a line. Substituting the expressions (2.32) for u(n)
and i(n) into the difference equations (2.10), setting # = 0, using the
definition of Z,, and regarding »(e) and i(0) as arbitrary columns gives

e L = A — BZ; !
T 74 A (2.36)
Applying condition (a) in the form of (2.14) to these equations gives
BZ,' = sinh T, CZ, = sinh I" (2.37)

Since the sections are symmetrical, B and C are symmetrical matrices, and
from the reciprocal theorem for networks it follows that Z, is also sym-
- metrical. These remarks and (2.37) lead to (2.34). Setting the expres-
sions (2.32) for v(n) and i(x) in the second of the difference equations (2.10)
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using the definition of Z,, and regarding i(0) as an arbitrary column gives
e—(n+l)I“ _ _Ce—nI‘Z“+ A;e*nl"'
(A" — e = ce Tz,
Replacing 4’ — ¢ " by CZ,, as follows from the case n = 0, and pre-
multiplying by C™* gives
Ze " = 7,

and this leads to the first of equations (2.35). From (2.34) and the rela-
tions AB = BA’, CA = A'C we have

sinh I' B = B sinh I' cosh ' B = B cosh I
Csinh T = sinh I C CcoshT = cosh IV C
Addition and subtraction leads to
"B = BT CetT = *'C

from which the last two of equations (2.35) follow. Since each of equations
(2.35) expresses the equality of a matrix and its transposed, it follows that
the matrices are symmetrical.

Equation (2.33), which is almost self-evident on physical grounds, fol-
lows from

o(n) = ¢ "To(0) = ¢ ""Z,i(0)
= Z,e ""ilo) = Z,i(n).

2.7 Proof of Relations for Any Symmetrical Section Line

The expressions (2.24) for v(n) and i(») in a line whose sections contain
generators may be verified to satisfy the difference equations (2.9). The
expressions (2.34) for Z, and the commutation rules (2.35) for B and C
are used in the verification. Setting # = 1 in the expressions for () and
i(n) gives the difference equations (2.9) and hence »(n) and i(%) are the
solutions which correspond to the initial values 2(0) and (o).

In order to derive the relation (2.28) between v(o) and i(o) for an infinite
line we put the hyperbolic functions in the expression (2.24) for »(z) in
exponential form and multiply through by 2¢ ™"

2¢" " v(n) = (o) — Z,i(0) + i:le_”[Bf(P = 1) = Z,Co°(p — 1)]
+ ¢ a(0) + Z,i(0)]

+ e 2 e " PBp — 1) + Z,Co%(p — 1))

r=1
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Hence, letting # — < and using condition (b) satisfied by ¢ T, equation
(2.28) is obtained provided that (i) the terminal conditions at the far end
are such that »(n) remains finite, (ii) the sum in (2.28) converges, and (iii)
the expression in the last line in the equation just above approaches zero
asn— ©,

The results obtained by the formal application of Sylvester’s theorem
may be verified by using the results of Appendix IT and writing ¥ (¢r) as
the product of a column matrix and a row matrix. They may also be
verified more directly. For example, setting 7 = 0 in the expressions (2.23)
for o(n) and i(n) in any passive symmetrical section line and using

NG =1, (2.38)

r=1

which follows from Sylvester’s theorem, we see that »(n) and i(n) reduce
to the appropriate values 2(0) and i(0) at # = 0. Substituting v(n) and
i(n) into the difference equations (2.10) and using

BC=4*—1

(It, — A)N() = NI — 4) = 0
BN'(¢) = N(5)B
CN() = N'(0)C,

shows that they are solutions. The second of the relations (2.39) follows
from the fact that N({,) is proportional to the adjoint F(t,) of (7). In
the third and fourth relations

(2.39)

F(¥)
|7 [®

which is in agreement with the definition (2.18) of N({,). To establish
the third relation we start from,"

(I — 4) F()
(c1 — 4) N()

Postmultiplication by B gives
(1 — 4) N(©) B = BIf&) /1F©) [V

N(E) =

Il

7@ |
1@ /11"

We also have

I/ |
I /151"

(1 — AF'()
(t1 — ADN'(F)

I

10 F.D.C. §3.5.



TRANSMISSION LINE EQUATIONS 101

Premultiplication by B and use of BA" = AB gives

(I — A)BN'G) = B /) |/1 /@) |

Hence, the third equation in (2.39) holds except possibly for { = {,, and
from the concept of continuity it holds there also. The fourth equation in
(2.39) may be proved in the same manner.

The expression (2.20) for Z, may be obtained by letting # become very
large in the expression (2.23) for v(n). v(e) and (o) must be related so that
o(n) remains finite. Since [ A, | < 1 and the \,’s are unequal the coefficients
of A" must vanish. This requires

2N (¢,)Bi(o)

A — A

N(¢)v(o) =

Summing 7 from 1 to m and using (2.38) gives the required expression for Z, .
2.8 The Unsymmetrical Section Line

The method used here is analogous to those described in Appendices I and
IT for the uniform line and the symmetrical section line. The other methods
apparently do not lead to the simplification which occurs in the symmetrical
case.

Equations (2.2) and (2.1) lead to the difference equations

Viv(n+ 2) + [V 4 Valp(n 4 1) 4+ Vap(n) = —i°(n + 1) + 7°(n) (2.40)
Zypi(n + 2) — [Zu+ Zanliln 4+ 1) + Zuni(n) = v°(n + 1) — 2°(n)  (2.41)
Both of these equations are of the form

Gx(n + 2) + Hx(n + 1) + G'x(n) = g(n) (2.42)

in which G and H are square matrices of order m, H being symmetrical and
G’ being the transposed of G. When the sections are passive equations
(2.40) and (2.41) become

Viwvin + 2) + [V + Valo(n + 1) + Vap(n) = 0 (2.43)
Ziwiln + 2) — [Zu+ Znli(n + 1) 4 Zni(n) =0 (2.44)
In the passive, unsymmetrical case the expressions for »(z) and i(») are
of the form
v(n) = PA"q 4+ PA—"g

~ (2.45)
i(n) = QA"a — QA—™a

Comparison with (A2.8) shows that in the symmetrical case P = P and
= Q. The minus signs over P, Q, and @ indicate that they are associated
with propagation in the negative direction. The propagation constants of
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the m modes of propagation are the same in the positive as in the negative
direction, as indicated by the appearance of A* and A= in (2.45). Cor-
responding to any given propagation constant say A, , there are two modes of
propagation, one in a positive direction and the other in the negative
direction. The distribution of the voltages corresponding to these two
modes are given by the rth columns in P and P, respectively. The fact
that P and P differ shows that the distributions differ according to the
direction of propagation even though the propagation constant is the same.
A is still the diagonal matrix defined in (A2.3) but now the computation of
the elements A, is more difficult than when the section is symmetrical.
They are defined as the roots of the equation

|GN+ I+ G| =0 (2.46)

which are less than unity in absolute value. The second of the equations
(A4.5) shows that the roots of (2.46) are the same whether the Z’s or the
V’s are used in place of G and H. Of course, this is to be expected on
physical grounds. The third of the equations (A4.5) may be used to show
that the roots of (2.46) are also the roots of

azM =1 \B
AC AD —1T

From the form of (2.46) it follows that if A, is a root so is A This fact
may be used to simplify the determination of \, . When the substitution

2wW=r+N, A=r—VpE-1 (A2.4)
is made equation (2.46) may be written as
0=[G+6)+H+ (G -GV —1|
0=[(G+ G+ H|

=0 (2.47)

m(m — 1) determinants each ob-

+ (¢* — 1) times the sum of o

tained by replacing two columns of |(G + G')¢ + H | by the cor-

responding columns of (G — G)

m(m — 1)(m — 2)(m —
41

nants each obtained by replacing four columns of [(G + G') § +

H |by the corresponding columns of (G — G')

3) determi-

+ (¢2 — 1)? times the sum of

+ ..
The last equation is a polynomial of degree m in { which is to be solved
for its roots {1, {2, - -+ {m . For simplicity we assume that these roots are

distinct. A, is then determined from ¢, by the relations (A2.4), the sign
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of the radical being chosen so that | A, | < 1 as in the symmetrical case. In
his second paper Koizumi has given a procedure which amounts to an
alternative method of determining A.

We shall first assume that the Vs are known and that our equations are

Z(ﬂ) = Ylﬂl(ﬂ) + Yu'u‘)(ﬂ ‘f‘ 1)
—i(n 4+ 1) = Vop(n) + Vor(n + 1)

As described above A may be computed from the determinantal equation

(2.48)

|/ [ =0
where f(A) represents the matrix
JA) = Vir + (Yu+ V)h + Ty (2.49)

Let p. be proportional to any non-zero column in F(A,) where F()\) is the
adjoint of f(A) and let 7, be proportional to any non-zero row of F(\,).
Then the matrices P and P in the expressions (2.45) for v(n) and i(n) are
given by

P=[pr,p2, - pul
P=1[p1, P2, - Pul

where $, is the column obtained by transposing the row f, . The matrices
@ and @ are obtained from P and P by means of the equations

Q= VYuP+ VpPA = —VpP — VyuPA™
Q = —VuP — VpPA ! = Vao:P + Vo  PA

which are derived from (2.45) and (2.48).
The properties of the individual columns of P and P lead to the relations

ViePA? + (Vi + V)PA + VP = 0
VuPAT” 4+ (Vi + Vo)PA™ 4 VP = 0

and these guarantee that the difference equations (2.48) will be satisfied
when the expressions (2.45) for »(n) and ¢(») are used.

When the Z’s are known instead of the I”’s the procedure is much the
same. The difference equations are

v(n) Zni(n) — Zyi(n + 1)
v(ﬂ + 1) = Zr“’i(ﬂ) — Zgg?:(‘n + 1)
and the equation to determine the A,’s is

/M| =0

(2.50)

(2.51)

(2.52)

(2.53)
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where now f(\) represents the matrix
f\) = Zu\t — (Zu + Zaa)h + Zn (2.54)

Let g, be proportional to any non-zero column in F(A;) where F (\) is the
adjoint of f(A) and let g be proportional to any non-zero row of F(A;).
The matrices Q and @ in the expressions (2.45) for v(») and i(n) are given by

Q=In,q,: gnl
Q=1[41,q, - nl
where §, is the column obta.ine_d by transposing thg row qi . From (2.45)
and (2.53) equations for P and P in terms of () and ) are obtained:
P= ZuQ— ZuOA = —ZnQ + ZoyQA™
= —ZuQ + ZuQAT = ZnQ — ZuQA

The difference equations (2.53) are satisfied by our expressions for 2(n) and
i(n) by virtue of the relations

Z1w0A2 — (Zu+ Zn)QA + ZuQ =0
ZuQA™ — (Zu+ Zn)QA + Zu@ = 0
which are a consequence of the properties of the individual columns of
( and Q.
If the system extends to n = + % and if the voltages and currents are to

remain finite at # = o the elements of @ must be zero and the expressions
(2.45) for v(n) and #(n) become .

o(n) = PA"a = PA"P "v(0)
i(n) = QA"a = QA"Q7i(o) (2.58)
v(n) = PQ li(n), i(n) = QP 'v(n)

where we have assumed that P* and Q7" exist. We accordingly introduce
the characteristic impedance and admittance matrices Z, and ¥, associated
with propagation in the positive direction, i.e., in the direction of n in-
creasing.

(2.55)

(2.56)

(2.57)

v(n) = Zi(n), i(n) = Yoln), Z,=Y,!
Zy = PO = Zy — ZuQAQ ' = —Zay + ZnQAT'QT (2.59)
Vo= QP ' = V4 VoPAP ' = —Vay — YuPAT' P

Incidentally, since Z, must be a symmetrical matrix the above equations
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show that Z120AQ ™" and Z;QA™'Q™" are symmetrical. Z,and ¥, satisfy the
relations
ZiCZy+ Z,D — AZ,— B =0 V.BY,+ VY, A —-DV,—C=0
(Zas+ Zo)Zis (Zn— Zo) = Zn,  (Vaa+ V)Vid (Viy — Vo) = Yy (2.60)
ZLOAQ™ = PAPT'Z,  V,PAP™' = QAQ'Y,

The characteristic and admittance matrices Z, and ¥, associated with
propagation in the negative direction are introduced in a similar way.

Suppose the system extendsto# = — «. Thena = o0 and
v(n) = PN"a = PA TP (o)
i(h) = QA™"a = —QA"Q7"i(0) (2.61)

on) = —PQ7Ni(n),  i(n) = —QP "v(n)
Hence we write
o(n) = —Zi(n), i(n) = —F¥(n)

=PQ' = —Zu + ZuQAT'Q T = Zu — ZoQAQT? (2.62)

V =QP' = =Yy — VuPA'P™ = Vo + Vo PAP!
Z,and Y, saiisfy the relations
ZLZ, —Z,D+ AZ, — B=0 Y,BY,— Y,4+4+ D¥,—(C =0
(Zu+Z0)20 (Zoe — Z,) = Zna (Yu+ Y)Y (Vo — Y,) =V (2.63)
The fact that Q'(Z, + Z,)Q = P'(V, + Y,)P is a diagonal matrix may
be used as a check on computations.

When the expressions (2.45) for v(n) and i(n) are placed in (2.3), #°(n) and
#°(n) being zero, we obtain the relations

PA\'= AP+ BQ PA= AP — BQ
OA'=CP+DQ QA= —CP + DQ

When the typical section contains generators the difference equation to
be solved is of the form (2.42)

Gx(n + 2) + Hx(n + 1) + G'zx(n) = g(n) (2.42)

This is true for symmetrical as well as unsymmetrical sections, G being a
symmetrical matrix in the former case so that G’ = . The expressions for
v(n) and #(n) are those of (2.45) with the particular solutions added:

v(n) = PA"a + PA™"a + u(n)
i(n) = QA"a — QA"a + j(n)

(2.64)

(2.65)
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where P, P, 0, Q are determined as before and u(x) and j(n) depend upon
the generators.

Here we shall consider only the physically important case in which the
voltages of the generaters in the nth section are proportional to e " where 8
is a constant. In this case g(n) may be expressed as

g(n) = ge™ (2.66)

where g is a column matrix whose elements are independent of #. A
particular solution is obtained by assuming

a(n) = ye ™
Setting this in (2.42) gives
(Ge™ + He '+ Gy =g
Hence a particular solution is
x(n) = (Ge™® + He* + G 'ge ™ (2.67)

This method fails when 8 is equal to one of the roots A1, « -+ Am A e A
In this case, a particular integral may be obtained by a method similar to
one described in §5.11 of F.D.C.

APPENDIX I

CLASSICAL SoLUTION OF UNrroRM TraNsMISSION LINE EQUATIONS

For the sake of convenience we again assume that there are three circuits

in the transmission line. The equations to be solved are:
% - —7i, % — (1.48)

We adopt here the notation associated with equatmns (1.19) and (1 20),
j'('y ) bemg the characteristic matrix of ZV, F(y") the ad]omt of ("), and
v, 4%, v3(m = 3) being the roots, supposed distinct, of | f(-y ] 0. The
propagation constantsyy , vz, vsare those square roots of vt , %3, 73 which in
physical systems have a positive real part

The solution may be constructed” as follows: Let the column p, be
proportional (with any convenient constant of proportlonahty) to any non-
zero column of F( ,.) The non-zero columns of F(vr) are proportional to
each other according to a theorem in matrix algebra. ¥ Construct the
square matrix P from the columns p1, p2, P13

= [p1, P2, P4l (A1.1)

11 The method is that described in F.D.C. §5.7(a) and §5.10
2 FD.C, §3.5 Theorem D.
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and obtain the square matrix Q from P:

Q= Z"'PG = VPG (A1.2)
where G is the diagonal matrix
Y1 0 0
G=[0 v 0 (A1.3)
0 0 v

The voltages and currents at any point x are
(x) = PM(x)a + PM(—x)a
(A1.4)
i(x) = OM(x)a - QM(—=x)a

where @ and 4 are arbitrary column matrices associated with propagation
in the positive and negative directions of x and M(x) is the diagonal matrix

e " 0 0
Mix)=| 0 €™ 0 (A1.5)
0 0 ™

The values of @ and @ are to be determined from the boundary conditions.
When the line extends tox = o«

v(x) = PM(x)P (o) = Zui(x)

. . (A1.6)
i(x) = QM (x)Q "i(0)
where the characteristic impedance matrix Z; is given by
' Zy=PQ' = PGT'P'Z = PGPV
(AL1.7)

_ ZQGHQ_I _ Y—IQGQ—I

Since v = p.e""" and i = ¢.¢""", where ¢, is the rth column of (, are solutions
the differential equations give

(Iys — ZV)p, = 0,  (Ivi — VZ)q. = 0 (A1.8)
and from these it follows that
P'ZVP = Q7'VZ20 = G (A1.9)

The relations (A1.8) may be used to prove the following:

1. The elements in the rth column of Q are proportional to those in the
non-zero rows of F(y?).

2. The matrix P'Q is a diagonal matrix and from this it follows that if ¥
is any diagonal matrix

(PyP™"Y = Qg0 (A1.10)
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3. The characteristic impedance matrix Z satisfies the relation
Z = Wi (A1.11)
4. The inverse matrices P* and Q™" always exist if v1, 72, 3 are distinct.
APPENDIX II

CLASSICAL SOLUTION OF SYMMETRICAL SECTION Line Equations—I

The method of this section is very similar to that of Appendix I. The
equations to be solved are (2.10) or one of the sets

v(n) = Zui(n) — Zypi(n + 1)

vn + 1) = Zypi(n) — Zui(n + 1)
i(n) = Viv(n) + YVio(n + 1)

—i(n 4 1) = Viv(n) + Yie(n + 1)

which are obtained from (2.5) and (2.6). We shall use the notation asso-
ciated with equation (2.19), f(¢) being the characteristic matrix of 4, F(p)
the adjoint of f({), and {1, {2, - -+ {m the roots, assumed unequal, of the

(A2.1)

(A2.2)

characteristic equation | f(f) | = 0. The diagonal matrices A and Z are
defined by
M 0. 0
A=]0 X ,
0 Am (A2.3)
V=1 0 e 0 '
z = 0 Vig-1
0 21
where
- P — 1
=M+N, M= —VE-1= — "F—= (A24)
{ V-1

In general, electrical energy will be dissipated in the typical section and
from the physical significance of \, , as seen from equations (A2.8) below, it
follows that the sign of the radical in (A2.4) may be chosen so that | A, [ < 1.
Since V{2 — 1= — A = 1\ — A, it follows that

z=3AT" = A) (A2.5)

Let the column matrix s, be proportional to any non-zero column in
F(t,) where F(¢) is the adjoint of f({). (It follows from the theory of
matrices that the non-zero columns of F({,) differ from each other only by a
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multiplying factor.) The matrix S is then formed by taking s; to be the
first column, s, the second and so on.

S = [S[, SRR Sm] (AZG)

Similarly let the row matrix #, be proportional to any nonvanishing row of
F({.) and form the matrix T where

T =, la, - ] (A2.7)

in which #, is the column matrix obtained by transposing f, ."*
Solving our difference equations for the passive case by the customary
method gives the expressions

v(n) = PA"a + PA™"a

3 (A2.8)
i(n) = QA"a — QA "a

for the voltages and the currents. P and ( are square matrices and ¢ and a@
are column matrices whose elements are determined by the boundary con-
ditions. @ and & are of the same nature as constants of integration. The
minus sign over @ indicates that it is associated with propagation in the
negative direction, ie., in the direction of #» decreasing.

P and Q may be chosen in a number of ways, each choice requiring
different values of @ and @ to represent the same system. In all cases,
however, the rth column of P may be expressed as «,s, where «, is a scalar
multiplier which may depend uponr. Similarly the rth column of Q may be
expressed as 3./, . When either P or () has been chosen the other one is
fixed since equations (A2.2) and (A2.1) require

Q = YnP + IylgPA = —YuP - ]"mPA—l

B (A2.9)
P=27uQ — ZuQA = —ZuQ + ZuQA
Some useful choices are,
1. P=3S, 0= —VpuSZ = BIS2
2. P=S2 (Q=2ZpS=CS
(A2.10)

3. 0=T, P = ZpTE =C'TE
4. Q=T=Z = —ViT = BT
The particular choice to be made depends upon the system of difference

equations which is being used. In choices 1 and 2, 7" is not required and in
3 and 4, S is not required. However, if both .S and 7" are known some of

13 Methods of determining s, and # are available. A description will be found in
F.D.C. §4.12.
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the matrix multiplication may be avoided. Taking choice 1 as an example,
we may determine the rth row of () from the expression 8,4, . To determine
B, only one element in the rth column of — 11252 need be known, for 8, is
the quotient obtained by dividing this element by the corresponding element
in f,. The product P'Q must be a diagonal matrix, and the same is true of
S'T. This may serve to check computations.

That the expressions for v(n) and i(x) given by (A2.8) and (A2.10) satisfy
the transmission equations (A2.1), (A2.6) and (2.10) may be verified by
direct substitution and use of

SAA+ A" =245 TA+AT)=24'T (A2.11)
These relations follow from the properties of the individual columns of
Sand T.

When the system extends to # = = d must be zero in order that the
voltages and currents may remain finite. This is true because A, is chosen
so that | A, | < 1. From equations (A2.8) it follows that

o(n) = PA"a = PA"P 'v(0)
i(n) = QA"a = QA"Q "i(o) (A2.12)
v(n) = PQ 'i(n) i(n) = QP "u(n)

the reciprocal matrices 0" and P' always exist when the sections are
symmetrical and the roots {1, {2, <+« {m distinct. The last equations in
(A2.12) suggest the introduction of the characteristic impedance and
admittance matrices Z, and ¥, :

o(n) = Zii(n), i(n) = Vo), Zo= ¥ .
Zo = PQ—I — 7y — ZmQAQ—l — —Zu+ ZuQA_lQ_l

= 527'S7'B = 525 Z1,

= ZuTET ' = BTZ'T! (A2.13)
Y, = QP" - Yy + YuPAP_‘ — —Vy — YmPA_lP_‘

= —VpSESt = CcszTS

= T2'T7'C = —T=T 'Yy

Not all of the expressions for Z, and ¥, obtainable from (A2.10) have been
included in (A2.13). Z,and ¥, are symmetrical matrices. Although P and
( are arbitrary to some extent the same is not true of Z, and ¥,. Com-
puted values of Z, and ¥, may be checked by use of the relations

AP — T = (Z,Z3) = (Yu V)
7,2, =B, Y,BY,=C (A2.14)
VoZn = —ViZ,
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Sometimes it is desirable to terminate a line consisting of a finite number
of sections by a network which simulates an infinite line. As is known, the
elements in one such network may be obtained from V,. Every terminal
is joined to every other terminal, including the return terminal (denoted
by the subscript o), by the branches of this network. The admittance of
the branch connecting terminal 7 to terminal , ¢ # 0,7 # 0, is —y;; where
¥;; is the element in the ith row and jth column of ¥,. The admittance
of the branch connecting terminal 7 to terminal o is yi1 4+ yi2 + --- + ya
+ .-« + ¥im, i.e,, it is the sum of all the elements whose first subscript is 1.

APPENDIX III

CLASSICAL SOLUTION OF SYMMETRICAL SECTION LINE EqQuaTioNs—II

When the electrical properties of a typical symmetrical section are to be
determined by measurement, equations (A2.1) and (A2.2) show that Z;;
and ¥1; may be obtained by measurements at one end. In order to obtain
V12 and Z12 measurements have to be made at both ends. Expressions for
v(n) and i(n) will now be given which depend only upon Z;; and Vy; and
hence are useful in case the measurements are restricted to one end.

The method is based upon the equations

vn + 2) + v(n) = Zulitn) — i(n + 2)]
i+ 2) + i(n) = Vulo(n) — o(n + 2)]

which may be derived from (A2.1) and (A2.2). Combining these equations
leads to

[I - Zn}ru][v(ﬂ + 2) + 1‘(% - 2)] + 2 [I + ZuYu]w(n) =0
[I — ]"11211][1:(11 + 2) + i(n - 2)] + 2 [I + ]"11211]1.(%) =0

The first step in the solution is to solve the equation

(A3.1)

|j.LI —_ Zurn] = 0 (A32)
for its roots p1, ua, - -+ wm which we shall suppose are distinct. The diag-
onal matrices M and M* are defined by
[#1 0 ... 0 -l ‘u‘{ 0 ... 0
0 0 .ug
= M= . (A3.3)

M= . , = -
I_o ...... ,_;,,,J [ I ub

and A is defined as in (A2.3) where A, is given by

- 14+ N
xr = &t— r —3 r .
1/;13 TR l:l - 7\3] (A34)
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The 51gn of u} is chosen so :hat |\, | < 1, and this is the value to be used
in M*. However, there is 2n ambiguity in the sign of A, which is inherent
in this method. A relation between A and M? is

M= (T4 AH(I — A (A3.5)

Let . be proportional to any non-zero column and w, be proportional
to any non-zero row of the matrix adjoint to [u] — ZuV1] and form the
matrices

U = [m y Mg, « o ’?l"m]
W = [wr,ws, «-- -wm]

(cf. equations (A2 6) and (A2.7) for S and T) where w, is the column
obtained from 'w,

The voltages and currents are given, as before, by
v(n) = PA"a + PAT"a
i(n) = OA"a — QA™"a

and there is again a number of ways in which P and Q may be chosen. In
all cases the rth column of P may be expressed as ¢, and the rth column of
Q as B,w,. The equations fixing Q when P is chosen and vice versa are,
from equations (A3.1)

(A2.8)

0= VuPM?
. (A3.6)
P=ZuyQM™

where M} is the inverse of M. Equations (A3.6) may also be obtained

from (A2.10).
Suitable choices for P and () are

1.P=1U, 0=VYuUM?}=z7'UM

2. P=UM, Q=VuU=2Z2UM (As1)
3.

3.0=W, P= Z, WM = YR'wm?

4.0=WM, P=2ZuW=TVaWM

P'Q and U'W must be diagonal matrices. That the expressions for v(n)
and i(n) just derived satisfy the difference equations (A3.1) may be verified
by making use of

UM = ZuVuU, WM = VnZuW (A3.8)

Equations (A3.8) follow from the properties of the individual columns of
U and W. The characteristic impedance and admittance matrices are
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given by
Z,= P07 = Z,0M 0" = PMPTYVT
= UM Uz, = UMUT'YY
= ZuWM W = yowMw!
Vo= QP = YuPM P! = QM0 Z;)!
= VuUM U™ = ZZ'umu™
WMWYy = WMWTZ
The matrices Z, and ¥, may be checked by means of the relations
ZVn=2uY,, ZVuZ,=2Zu, V.ZuV, = Yu (A3.10)
Another set of solutions may be based upon the equations
20(n) = —Zyliln + 1) — i(n — 1)]
2i(n) = Vylo(n + 1) — o(n — 1)]

which are derivable from (A2.1) and (A2.2). Combining these equations
gives, upon using V325 = —BC,

v(n 4 2) — 20(n) + v(n — 2) = 4BCu(n)
i(n + 2) — 2i(n) + i(n — 2) = 4CBi(n)

However, we shall not consider these equations here beyond pointing out
that they lead to

(A3.9)

(A3.11)

(A3.12)

P = Z,.0%, Q = —VpPT
Px* = BCP, 0z* = CBQ
which may also be derived from (A2.10).

APPENDIX IV

RELATIONS BETWEEN THE SQUARE MATRICES OF
A MULTI-TERMINAL SECTION

When the reciprocal theorems of network theory are applied to equations
(2.1) and (2.2) it is found that Zy,, Zss, Y11, Vs are symmetrical and

Zn=Zin, Yu=T1 (A4.1)

i.e,, Zn and Yy are the transposed matrices of Zy» and Vg, respectively.

Solving equations (2.1) for the currents and comparing the result with
(2.2) shows that

ozl -l [50]-- 2Ii)]



174 BELL SYSTEM TECHNICAL JOURNAL

These are partitioned matrices. The square matrices have 2m rows and
columns and the column matrices have 2m elements. The first of these
relations may be written as

Zu Zp|[¥u Ye|_|I O
[Zm Zaz] [Ym Yzz] N I:O I :l (44.2)
where I denotes the unit diagonal matrix of order m. Multiplying the two

matrices on the left together and equating the elements of the product
to the elements on the right gives

ZuVn+ ZplVa =
ZuVi + ZplVe =
ZaVu+ ZeuVu =
ZnVie+ Zp¥a =1
Transposing the matrices in these equations leads to other relations. Thus,
from the first we obtain V11Z1 + V12Za1 = I. These equations also yield
expressions for the ¥’s in terms of the Z’s and vice versa.
A somewhat similar treatment involving equations (2.1) and (2.3) leads

to expressions for the Z’s in terms of 4, B, C and D. The ¥’s may be like-
wise expressed. These relations are given in the following table.

(A4.3)

=

Yiu= DB* Yn = Zn— ZuZniZn
V= C—DB'A=—B" Vi =Zn— ZnZuZn
Yu=—-B" Yo = Zu — ZuZalZn
Vo= B4 Yo = Zas — ZnZiZae
Zu= AC™ Zi = Viu— VuVaVa
Zyw=AC'D—B=C"" 7w =V — VulnVu
Zy = C Zi' = Vi — YuVaVa
Zyw = C'D Zym = Vo — VaVu'Vu
(Ad.4)
A=ZuZy = —VuVn
B = ZuZnZn — Zu=—Ya
C=7Zn=Ye—Vulnln
D= Z3Zn=—Yuln
[A B:If1 _ [ D —B’] AD'—BC' =1 AB' = BA’
C D T l=Cc 4 CD' = DC’ DA’ —CB' =1

(=m0 ]=18 PlLo]
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The following equations in which X is an arbitrary scalar multiplier may
be verified by equating coefficients of powers of A and using the relations
just given.

(Zon — NZ0)(V i+ AV 1) = \Z12 — Zan)(NVa2 + Vi)
A2 = Ny — M+ Zo)) (Vi + AV )
= A1p — Zoo)(ANV 1o + AV 4+ AV + Vo) (A4.5)

—Vu 0 ][N -1 AB [ AV + Ya A
0 Zy AC AD—T | A Ny — Zo

Sometimes it is of interest to obtain the elements of Vy;, say, when
Zu, Zs, Y1, Vi are known. Relations helpful in studying this problem
are

ViZuYiu = VieZyVa, ViZuVn — Vi = VpZnVan
ViVaVa=Vy— Zy Zyw=—ZuViuVm
VmYﬁlYu = Vo — Zz_; Ly = — ’:_21(1’11211 - I)

When the typical section is symmetrical some simplification takes place
and we have

Vii= Voo Zy = Zoa A =D AB = BA’
Vie=Vy Zu=2y B=B  AC =CA
C=C A*~BC=1 (A46)
ZuVu+ ZpVie=1 A'B'A—-C=B"
ZuVi + ZuVy = 0

APPENDIX V
PROPERTIES OF THE MATRIX GA® + H\ 4+ G’

The matrix
JO) = G\ + H\ + G (A5.1)

which entered the discussion of the case of unsymmetrical sections has a
number of interesting properties which are given below. G and H are
square matrices with m rows each, and H is required to be symmetrical.
As before, we shall denote by Ay, «+- A, AT, -+ A’ the 2 m roots of the
determinantal equation

/A [ =0
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and we shall suppose these roots to be distinct. Let the column &, and the
row I, be such that

kd. = F(A;) (A5.2)

where F(\) is the matrix adjoint to f(A), and let the square matrices K and
L be defined by

h
Iy

K =[ki,ko,---knl, L= (A5.3)

In
Comparison of (A5.3) and (2.50) suggests that when G and H are expressed
in terms of the V’s we have the relations

K=P, L-P (A5.4)

The method of choosing the column p, and the row Py shows that they are
related by

pebr = ¥ F(\,)

instead of (AS5.2) where v, may turn out to be any non-zero constant, and
consequently equations (A5.4) are not satisfied in general. Nevertheless K
and L may be regarded as particular choices for P and P’. 1Inthesame way
K and L may be regarded as particular choices for () and Q' when G and H
are expressed in terms of the Z’s.  There is still some arbitrariness connected
with K and L since the product ., is unchanged when the %, is multiplied
by some number and /, is divided by the same number.
The relations which correspond to (2 52) and (2.57) are

GKA* 4+ HEKA + G'A =0

., O (A5.5)
GLA? + HLA™ 4+ G'L' =0

where A is the diagonal matrix whose c'ements are Ay, Az, =+« Am . These
relations are consequences of the properties of k, and /. Two more rela-
tions may be obtained by transposition. From the first of (AS5.5) and the

transposed of the second it follows that
GKAK'+ H+ G'KAT'K " =0 (A5.6)
L7ALG + H+4 L7A7'LG = 0 '

where it is assumed that the reciprocal matrices K and L' exist. Com-
binations similar to KAK ', KAT'K, etc. enter the expressions (2.59)
for Z, and V..
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By differentiating the equation
JE(N) = AN,
where A(A) is the determinant
AN = |/ | = |G\ + HN 4+ G|,
it may be proved that
GEKAK™ + H + L7ALG = L7'EK™"

17-—1 =1, —1 -1 - (A5'7)
G'KA'K'+ H+ L7'\N7'LG' = —L'EK™
in which E is the diagonal matrix
- ()
AQ\) o ... 0
1)
0 AQ)
E =
(1
|0 20w
and
(1) d
a0 = [Zam]
(1)
Since the roots A, are assumed to be distinct, A(X,) # 0.
We also have the equations
KE'L = 'E'K’
(A5.8)

GKAE'L — GL'AT'E'K' = I

The first equation of (AS5.8) shows that KE 'L is a symmetrical matrix.
From this and the second equation it follows that

GKAK™ — GLAT'L'™ = LT'EK™! (A5.9)
From the first of equations (A5.7) and the second of (A5.6)
GKAK™ — LT'AT'LG! = LT'EK! (A5.10)

and the comparison with (A5.9) shows that the matrix GL'A™'L"™" is sym-
metrical. The other matrices of this type are also symmetrical as may now
be seen from equations (AS5.6) and (AS5.7). Results of this sort may be
obtained from physical principles by noting that Z, and ¥, must be sym-
metrical matrices.
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As an example of the application of these formulas we assume that G and
H are expressed in terms of the I’s. Then we may take K and L’ to be
particular choices of P and P and equation (A5.9) becomes

VPAP ' — Vo, PAT'P ' = (P)'EP .
From equations (2.59) and (2.62)
V,+ 7, = VuPAP™ — VuPAT'P™
and hence
P(v,+ ¥V,)P = E.

For the more general choice of P and P allowed in §2.8 the diagonal matrix
E is replaced by a general diagonal matrix. Similarly it follows that

Q'(Z, + Z.)Q

is a diagonal matrix.



