Steady State Delay as Related to Aperiodic Signals
By R. V. L. HARTLEY

The concepts of phase and envelope delay, as applied to any linear
system, rather than only to a medium, are discussed. Criteria are set
up for the time of occurrence of that part of an aperiodic signal which
corresponds to a small segment of the spectrum. The original spectrum
of the signal gives the time of entry and this spectrum as modified by the
phase characteristic of the system gives the time of exit.

If the amplitude is constant over the segment, it is shown that when
the criterion is the time of maximum envelope of the disturbance, the
aperiodic delay is identical with the envelope delay. When it is the
time of maximum absolute value, the delay depends on the signal spec-
trum, the phase shift of the system, and the envelope delay, but not on
the phase delay.

If the amplitude vaies rapidly with frequency, the component of an
aperiodic disturbance which corresponds to a narrow segment of the
spectrum persists so long that the resulting over-lapping of neighboring
segments makes their interpretation difficult.

N THE earlier applications of steady state theory to transmission prob-
lems the emphasis was placed on the variation of amplitude with fre-
quency. The use of long loaded lines made it necessary to take account
of phase distortion! as well. 'With the development of telephotography and
television?, the phase characteristic was found to provide a useful index for
predicting the overlapping of adjacent picture elements. For these purposes
it has been found convenient to express the phase characteristic in terms of
phase or envelope delay. These may be called “steady state delays’ since
they are defined and measured in terms of sinusoidal disturbances of ad-
justable frequency. However, the signals for which they are intended to
furnish an index are aperiodic in nature. It seemed worthwhile, therefore,
to examine more closely the relations existing between “aperiodic delays,”
defined in terms of such signals, and steady state delays.

Let us first review the development of the concepts of steady state delay.
Early in the study of the propagation of sinusoidal waves a distinction was
made between phase and group velocity. If we fix on a particular distance
of transmission the ratio of this distance to each of these two velocities
may be interpreted as a delay associated with the transmission. In the

! For discussion and references see “Phase Distortion and Phase Distortion Correc-

tion,” S. P. Mead, B. S. T. J., Vol. VII, p. 195, 1928.
2 Symposium on Television, B. S. T. J., Vol. VI, p. 551.
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communication art, these delays have been called phase and envelope delay,
respectively. If the medium exhibits dispersion they vary with frequency.
Let us fix our attention on the conditions throughout the medium at a
particular instant during the transmission of a sinusoidal disturbance. We
may determine the total change of phase in passing from the input to the
output. This may be more than a single cycle. If now we divide this
phase shift by the frequency, expressed in the same angular units, we get
the time which will be required for the phase at the input to progress to
the output, or the phase delay. Also it may readily be shown that the
derivative of this phase shift with respect to frequency is equal to the
envelope delay as defined above in terms of the group velocity. The
simplest treatment of this is based on the consideration of two sinusoidal
waves of equal amplitude and slightly different frequencies.

While these delays can be easily interpreted for most media, difficulties
arise in the case of those substances which exhibit anomalous dispersion.
Here, in the neighborhood of certain frequencies, the phase shift varies
rapidly with frequency, and often appears to be discontinuous. Actually
the apparent discontinuity is a region of very rapid decrease of phase with
frequency, which leads to a negative value of envelope delay. In the same
region the transmission varies rapidly with frequency, and selective reflec-
tion occurs at the entering boundary. This effect can be explained in terms
of resonance in the elements which make up the fine structure of the
medium.

The next step was to dissociate the idea of delay from that of velocity
in a medium, and associate it with a steady state transfer characteristic
between any two points of a linear system. This would permit its appli-
cation to all sorts of complicated networks in which uniform propagation
cannot be readily visualized. Here two types of characteristic are to
be distinguished. One, which is associated with what might be called
“damped” systems, exhibits a reasonably gradual variation of both phase
shift and attenuation with frequency. This is the analog of a medium
having normal dispersion. The other, which is associated with “resonant”
systems, exhibits the phenomena associated with anomalous dispersion.
In the case of filters and hollow wave guides these resonances give rise to
regions of high attenuation and reactive impedance, which are the analogs
of the regions of high absorption and selective reflection at the houndary
of a medium. Inapplying the idea of delay to networks then, we can expect
the results to agree with our intuitions only so long as we keep away from
the critical frequencies of resonant systems.

In computing or measuring the phase shift of a system, at a single fre-
quency, the result is indeterminate so far as the addition of multiples of
2r is concerned. This does not affect the envelope delay, which depends
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only on the derivative, and so this type of delay can be generalized directly
to include the transfer characteristics of arbitrary networks. To give an
exact meaning to phase delay some convention would have to be adopted
for determining what, if any, multiple of 27 is to be added to the computed
phase for the frequency in question. Apparently no such convention has
been agreed upon which is of general application. For damped networks
which transmit frequencies down to zero, it is customary to assume the
phase shift to be zero at zero frequency, and, for higher frequencies, to add
multiples of 2 so that the phase shift varies continuously with frequency.
Tf, then, B is the computed phase shift, between —m and 7, we may repre-
sent the continuously varying phase shift by B + 2mm, where m is the
number of discontinuities in B which have been eliminated in passing from
zero to the frequency in question. The phase delay may then be defined as

= M (1)

w

D,

Any similar convention for resonant systems would be less simple, and
since, as will appear below, phase delay has little bearing on aperiodic
signals, it seems unwise to attempt to formulate such a convention here.
In contrast with steady state delay, let us now examine the delay of an
aperiodic signal. If the signal is transmitted without distortion the con-
cept of delay of the signal as a whole is simple. If, because of distortion,
the sent and received signals are different we may still agree upon some
recognizable feature of each as determining its time of occurrence. If the
distortion is considerable the delay may vary greatly with the distinguishing
characteristic chosen. For example, if it depends on the behavior of com-
ponents of high frequency the delay may be quite different from what it
is if it depends on those of low. In the first case the result would be little
affected if, before transmission, the signal were sent through a high-pass
filter and, in the second, if it went through a low-pass filter. In each case
we measure a delay associated with a disturbance which comprises only
those Fourier components of the signal which occupy a particular limited
range of frequency. We may carry this idea farther and make use of a
very narrow band-pass filter. By varying the mid-frequency of this band
we obtain a delay which is a function of frequency. Its value, at any
frequency, is the delay, as defined by our convention, of a disturbance
which corresponds to that part of the spectrum of the signal which is in
the immediate neighborhood of the frequency in question. Our problem
then is to find recognizable features of a disturbance of this kind such that,
when they are used as criteria of delay, the result can be related directly
to the phase or envelope delay as defined in terms of periodic disturbances.
Compared with the pair of equal sinusoids used in the derivation of
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envelope delay, this disturbance differs in that, in any finite range of fre-
quency, there are an infinity of sinusoids, the amplitudes of which need
not all be the same. For simplicity, we assume the actual filter to be
replaced by an idealized one in which there is no distortion within the band
and no transmission outside it. If the signal as a whole be represented by
a Fourier integral, we may obtain the desired disturbance, for an angular
frequency, wy, by integrating from w; — 8 tow; 4+ 8. The disturbance may
be represented by

wy+d
7(6) = real part of M f e [—a + (ot — 0)]do, @)
@1—

where M is a constant dependent on the magnitude of the signal and «
and @ are functions of frequency and position which describe the spectrum
of the signal at various points in the system.

The first step is to perform the indicated integration and express the
resulting function of time in a convenient form. For this we let

€E= W — wp.
Since we are interested only in small values of € we may replace a by

a = a;—]—a{e,

da ..
where a; and « are the values of & and ™ at w;. Similarly,
w

0= 6,4 e
We define an instant, 7', , by
Te= 6, (3)
and a time, 7, by
r=t—T,. (4)

Substituting these in (2) and performing the integration, we get
sinh (—a + i7)?
(—ai + ir)

f(§) = real part of 2M exp [—a1 + i(wit — (61 — w161)]

If we introduce the angles,
!

—a1
B = arc tan —

and

tanh (— 50.';)

= arc tan
Y tan o7

2
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and take the real part, we get
[(cosh day sin 87)* + (sinh sy cos 87)°)!
)
(aiﬂ + TE)% ‘ _
cos(wir — (6; — w19{) + B =) (5)

Let us consider first the extreme case where the spectrum of the signal is

() = 2M exp (—au
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Fig. 1—Elementary disturbance corresponding to a narrow segment of the spectrum

uniform in amplitude in the neighborhood of wi, so that ay is zero. Then

f() = 28M exp (—an) o cos (wrr — (61 — wifl)). (6)

Here the amplitude includes a constant factor which is proportional to
the bandwidth, 25, and to the magnitude, M exp(—ay), at the frequency,
w1, and a function of time, a plot of which is shown in Fig. 1. This function
consists of a sinusoidal wave of frequency, w1, the amplitude of which varies
with time, the envelope being symmetrical about the instant, T, = o,
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at which it is a maximum. T, the time of maximum envelope, is then a
unique instant which is suitable for defining the time at which the dis-
turbance occurs. It is determined solely by the slope of the phase frequency
curve for the spectrum.

The instant, T'., may be interpreted, in accordance with the principle
of stationary phase, as the one at which the sinusoidal components of (2)
are most nearly in the same phase, and so have the least destructive inter-
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Fig. 2—Graphical representation of the phase of an elementary disturbance
ference. This condition will hold when the instantaneous phase angle is
changing least rapidly with frequency, that is, when

d
— — =1
Jeo (Wt e) ’

from which
t=0,.

The angle, 6, — wfs, in (6), gives the phase of the wave at the instant,
T., when its envelope is a maximum. The interpretation of this angle will
be aided by the geometrical construction of Fig. 2 which is similar to that
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employed for phase and group velocity’. The abscissae are values of w
and the ordinates are values of phase in radians. A portion of the function,
8, in the neighborhood of w; is shown. The distance, OB, is 6: . The slope
of the tangent, CA, to the curve at A is ;. The distance, CB, is wif.
Consequently, OC, or the intercept of this tangent on the phase axis, is
0, — wif . If, as shown in the figure, the absolute value of this intercept
is greater than =, we may transform (6) to a form in which the angle is
less than , by the substitution

¢ = 0, — wbl + 2nm, )
where # is an integer and
le| <.
In Fig. 2, # is 3, and ¢ is the distance DC. (6) then becomes

sin 6t

f(t) = 26M exp (—au) =

cos (w1t — @),

and ¢ is the ordinary phase lag of the sinusoid, relative to an origin of time
given by the instant of maximum envelope.

We may choose as the instant at which the disturbance occurs, not T,
at which the envelope is a maximum, but 7’5, at which the instantaneous
value of the function has its maximum absolute value. Since § is small
compared with w; , this will occur very nearly at the smallest absolute value
of 7 for which cos(wi;r — @) is #=1. This will occur for

T ™
-r=§l, when —2<¢<§,

and for

1'=‘p:bw when —1r<(p<—g or “:<¢<1r.

w 2

From (4), (3) and (7),
_ b + kr

w1

Ta

)
where % is an integer such that

—g<w=m—mﬁ+h<g.

The significance of this can be seen from Fig. 3. Here, in addition to the §
curve of Fig. 2, there are plotted a series of curves whose ordinates differ

3 Lamb, “Hydrodynamics,” Cambridge U. Press 1916, p. 371.
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from it by multiples of #. 1In so far as any one purely sinusoidal component
of the disturbance is concerned, values of phase determined by those curves
which differ by an even multiple of = would be indistinguishable. Those
differing by an odd multiple would represent a reversal of sign. Let us
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Fig. 3—Graphical representation of the time of maximum ahbsolute value

now select that curve for which the tangent at w; intersects the phase axis
nearest the origin, and call it § 4+ kx. Since, for the case drawn,

k
\pc| <7,

= 2n.
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If it were greater we should have
k= 2n 1.

It is then obvious that the time of maximum absolute value, T, is given
by the slope of the line OE. Tt differs from 7 by the difference in slope of
the lines OF and GE.

We have then deduced from the spectrum of the disturbance its time of
occurrence in terms of two definitions of the latter. The next step is to
compare these times for the input and output and determine the corre-
sponding delays. Let us consider first the case where the attenuation is
independent of frequency, so that a, is zero in the output signal also. We
may then confine our attention to the phase, 6. Let us represent its value
at the input by b, and the phase shift of the system by B. Then at the
output 8 will be equal to & + B. If we take the time of occurrence as
determined by the maximum envelope, these times at the input and output
are

Te = b1,
T, = b + Bi.

€1
The delay is then
Da= Tc;"- T£°=B;y

which is by definition the envelope delay of the system.
If we take the time of occurrence based on the maximum absolute value,

we have, at the input,

_ bt ko

w1

T,
where

"E<‘P0=b1—w1bi+koﬂ'<g.

At the output,
— by + B, + (ko + ks)‘n‘

wi

Ta,

where

™

——g<‘I’3=b1+Bl—w1(bI+B;)+(k0+k3)7r<2
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The delay,

Dy = Ta — T,y = 2L FoT

w1
While there is a superficial similarity between this and the phase delay (1),
it is of little real significance; m, in (1), is determined by the aggregate
increase in phase shift with frequency, while %, is determined mainly by the
rate of increase at w;. An example of a situation in which the two delays
are very different, is furnished by a wave guide when the frequency only
just exceeds the cutoff. The phase delay is then almost zero while the rate
of change of phase shift with frequency is very large.

Thus the delay based on maximum absolute value depends on both the
envelope delay and the phase shift of the system, but not on the phase
delay. There remains to examine this dependence in more detail. The
value of k5 depends on the spectrum of the signal as well as the characteristic
of the system. It is of interest to see if it can be replaced by a quantity
derived from the system characteristic alone. The most obvious thing to
try is a delay which is derived from the phase shift of the system in the
same way that the time of absolute maximum is derived from that of the
signal spectrum. This would be

_ Bl+ kz']‘r

w

Ds
where

—g<‘Pz=Bl—w1B;+k2w<g.

The difference between this and the aperiodic delay based on absolute
value is

Ds - DA = I(kﬂ - k3):
w1

1

= (T + ¥y — W),

w1

Since k; — k3 is either zero or an integer and | ¥y | is less thang , if

T ™
T I T
2< u+‘1’2<2,

DH—DA‘:O.
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It
—r <Y+ T < —g,
DE—DA': -1
Wi
If
™
F< T+ ¥ <
Ds— Da = =
w1

Thus the delay as derived from the system characteristic alone may be
identical with the aperiodic delay based on maximum absolute value or it

may differ from it by :{;g;, that is by half a perilod. Which condition

holds depends on the interrelation of the phase functions which characterize
the signal spectrum at the input and the transmission of the system, and
not on either of these functions alone.

If the attenuation is not uniform, a; cannot be neglected and the expres-
sion for the output signal becomes more complicated. Both the amplitude
and phase in (5) vary with time in a manner which depends on the value
chosen for 6. The expression becomes fairly simple, however, for the case
where a is very large, as in anomalous dispersion and in highly resonant
systems. Then, even when é is small, we may assume that

cosh (da;) =  exp (= dar),
sinh (5ai) = =+ exp (== daur),

according as a; 2 0.
The amplitude factor in (5) then becomes

M exp (—ay = ba1)
(@
Here the exponent is equal to the value of  at that edge of the segment of
the spectrum where the amplitude is greatest. The amplitude is sym-
metrical about = = 0, that is, about ¢ = 6y , at which point it has its maxi-
mum value. Hence the instant of maximum envelope is still given by the
slope of the phase, frequency curve, as when ai is small. However, the
maximum is now extremely flat and its sharpness no longer depends directly
on 8. Over the range of values of = for which 7 << ai?, the amplitude is
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. 1
sensibly constant. When 7 = *af , it is reduced to 75 times its maximum,

For 12 >> a?, it varies inversely as | 7 | .
To investigate the oscillating factor of (5) we note that now

vy = £6r £+ T,

where the sign of ér depends on that of ey and that of g does not. The
oscillating factor then is

cos [(w1 F 8)7 — (61 — w161) — 7],

where
r

n = arctan &' + 7. (8)

T 2
The frequency, (wi F 8), is that of the edge of the segment of the spectrum
where the amplitude is relatively very large. The phase differs from that
for small values of a; by a quantity n which is an ambiguous function of the
time 7. This ambiguity may be removed if we assume that the phase
varies continuously and that, for very small values of 7, the amplitude has
the same sign as the spectrum component corresp?nding to an infinitesimal

. a . .
value of 8. As r increases through zero, arctan —* changes discontinuously
T

™

7 according as a1 S 0. To avoid a similar discontinuity,

from F 1’2_ to +

in 7 we say that the sign of g in (8) is to be taken opposite for positive and

negative values of . If we make it & for r < 0, and F for = > 0, according
asa; = 0, then 7 is zero in the neighborhood of = = 0.  Since the amplitude
factor is always positive, this corresponds to a spectral component of positive

amplitude. If we make the sign of g F for r < 0,and & for r > 0, g

becomes =+ =, which is the equivalent of a negative amplitude. Hence a
knowledge of the spectral component of frequency w; enables us to determine

the sign in (8). For large values of (1), 7 reduces to :I:%.

Here we have assumed the amplitude of the input signal to be independent
of frequency. If this is not the case the same conditions hold at the input
as have just been discussed for the output of a resonant system.

The main conclusion to be drawn from the foregoing is that when the
amplitude is changing rapidly with frequency, the component of an aperiodic
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disturbance which corresponds to a narrow segment of the spectrum persists
for a considerable period so that there is much overlapping of the contribu-
tions of neighboring segments. It is therefore difficult to deduce the nature
of the disturbance at any particular time from any narrow region of its
spectrum. For the same reason it is difficult to associate the delay ex-
perienced by an aperiodic signal with the steady state characteristic of a net-
work when the attenuation of the latter is changing rapidly with frequency.

The net result of our study then is that steady state phase delay has no
direct relation to the particular types of delay of an aperiodic signal which
we have chosen to investigate. When the amplitude does not change
rapidly with frequency, envelope delay is identical with the delay produced
in the maximum value of the envelope of a disturbance corresponding to
that part of the signal spectrum which is in the immediate neighborhood
of the frequency in question. The envelope delay, together with the phase
shift, determines the delay in the maximum absolute value of this dis-
turbance, subject to an uncertainty of half a period. This uncertainty
depends on the particular combination of signal spectrum and system
characteristic.  When the amplitude does change rapidly with frequency,
the envelope delay still gives the delay in the maximum value of the envelope.
However, this maximum is so flat that the interpretation of the results is
very difficult.



