Some Analyses of Wave Shapes Used in Harmonic Producers
By F. R. STANSEL

Analyses by Fourier's Series have been made of waves consisting of
sinusoidal, rectangular and trapezoidal pulses and also waves of the type
found in multivibrator circuits. The method of increasing harmonic
content by modulating a wave with a submultiple is treated mathe-
matically.

THE heterodyne method of frequency comparison requires, except in

the case of the comparison of nearly identical frequencies, the genera-
tion of harmonics of either the unknown, or of the standard frequency or -
of both. These harmonics may be generated directly in the modulator
which produces the difference frequency, or “beat note”, or may be gener-
ated in an entirely separate circuit before the frequency is applied to the
modulator. An example of the latter is the multivibrator circuit often used
in connection with a frequency standard to produce a series of harmonics of
this standard frequency.

The design of harmonic generators for frequency measuring equipment
presents a different problem from the design of equipment for producing a
single harmonic such as doubler or tripler stage in a radio transmitter. In
the latter case the amplitude of the one harmonic and the efficiency are of
primary importance. In frequency measuring equipment, although a large
amplitude of each harmonic is desirable, it is of greater importance that each
harmonic within the range to be used, which may be up to the 100th or 150th
harmonic or even higher, be present and that the amplitude of nearby
harmonics be of the same order of magnitude. Unless the latter conditions
are met, there is a danger that the beats obtained with a weak harmonic
will either be entirely overlooked or mistaken for a higher order modulation
product.

The generation of harmonics is usually accomplished by the distortion of
the wave shape in some nonlinear circuit element such as a vacuum tube.
One such harmonic generator consists of a vacuum tube biased so that there
is no output for a portion of the cycle. The plate current of such a tube may
be approximated by a sine wave shaped pulse such as shown in Fig. 1. Any
such periodic wave can be resolved into its harmonic components! and in
the case of this wave the amplitude of the nth harmonic is found to be

! This and the subsequent analyses were made by application of Fourier's Series. See

I. S. Sokolnikoff and E. S. Sokolnikoff, “Higher Mathematics for Engineers and Physi-
cists,” Chapter VI.
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_ A sin (n — 1)6/2 _ sin (n + 1)b/2
b = nw(l — cosb/2) [ n—1 n+1 ] ()

in which A4 is the amplitude of the pulse and b the pulse width as shown
in Fig. 1,
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Fig. 1—Harmonic content of a wave consisting of sinusoidal pulses
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Fig. 2—Harmonic content of a wave consisting of rectangular pulses

The form of this expression immediately suggests that for some harmonics
the terms

sin (n — 1)b/2 _ sin (n + 1)b/2
n—1 n+1

may become equal to zero causing these harmonics to vanish. That this
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is the case is shown in the curves of Fig. 1 in which the harmonic amplitudes
are plotted against # for pulse widths of 5° 2° and 1°. With a 5° pulse
harmonics in the vicinity of the 105th and again the 150th become negligibly
small. For a shorter pulse width the amplitude of the lower harmonics
decreases but all harmonics up to beyond the 200th are present.

The wave shown in Fig. 1 can only be considered as a first approximation
of the plate current in such a harmonic generator as it implicitly assumes
that the tube is linear to cut-off. More frequently sufficient excitation is
placed on the grid of the tube to saturate it and the resulting current wave
may better be represented by a series of rectangular pulses such as shown

Fig. 3—Oscillograms of the plate current of a vacuum tube showing the transition from
sinusoidal to rectangular pulses as excitation is increased

(a) Excitation 6 volts
(b) Excitation 8 volts
(c) Excitation 10 volts
(d) Excitation 20 volts

in Fig. 2. This transition from sine wave pulses to rectangular pulses as
the grid excitation is increased is shown in the series of oscillographs in Fig. 3.

The analysis of a wave consisting of rectangular pulses such as the one in
Fig. 2 shows the amplitude of the nth harmonic to be

24 . nb
= _S]n_

htn 7

(2)

From this equation it is seen that certain of the harmonics are not present
as the expression (2) becomes equal to zero whenever
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'=-2-g—rm (3)
m=1,234,..-

Thus for a rectangular pulse of 5° (r/36 radians) pulse width the72nd,
144th, 216th, etc. harmonics vanish, and harmonics in the vicinity of these
missing harmonics have lower amplitudes as can be seen from the curves
of Fig. 2.

As the pulse width of a rectangular wave increases, the number of har-
monics which vanish increases. For a pulse width of 90° every fourth
harmonic is missing. For a pulse width of 180° the familiar square wave,
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Fig. 4—Comparison of the harmonic content of waves consisting of rectangular and o
trapezoidal pulses

every even harmonic vanishes and the wave contains only odd harmonics.
As the pulse width is increased beyond 180° the number of harmonics in-
creases and it can be shown that a wave having a pulse width greater than
180° will have the same harmonic content? as a wave of pulse width (360°—
b). Thus for a large harmonic content it is desirable to have a wave having
either extremely narrow pulses or pulses lasting nearly 360°.

True rectangular pulses are never obtained in practice. One common
type of distortion in such pulses when obtained by the “limiter” action of a
vacuum tube consists in the pulses having sloping rather than vertical sides.
The sloping sides arise from the fact that the pulses are essentially sine waves

2 This statement is correct for absolute magnitude of the harmonics only. Certain of
the harmonics in the two waves will be 180° out of phase.



WAVE SHAPES USED IN HARMONIC PRODUCERS 335

with their tops chopped off. The analysis of a pulse of the dimensions
shown in Fig. 4 shows that the amplitude of the nth harmonics is given by
the expression

44 nb ne
hy = g [cos 7 — cos 5] 4)

In order to show better the relationship between a wave of rectangular
pulses and one of trapezoidal pulses, consider the ratio of the nth harmonic
for these two waves. From (2) and (4)

hn for trap. pulse _ 2(cos #b/2 — cos nc/2)
hn for rect.pulse  u(c — b) sin nb/2

(5)

Substituting ¢ — b = & and expanding cos nc/2 = cos (nb/2 + nd/2),
the right hand side of (5) becomes

2 I:cos nb/2  cos nb/2 cos nd/2
nd | sin nb/2 sin nb/2

+ sin n6/2:| (6)

For small values of #§/2, that is for trapezoidal waves whose base is only
slightly wider than the top, cos #8/2 may be replaced by unity and sin nd/2
by n6/2. The first two terms then cancel and the approximation

I, for trap. pulse

I, for rect. pulse 1 ™

IR

is obtained showing that a slight slope in the sides of the pulse has only a
second order effect on the harmonic content of the wave.

The curve in Fig. 4 shows the harmonic content of a rectangular wave
having a pulse width of 10° compared with that of a trapezoidal wave having
a pulse width of 10° at the top and 11° at the bottom. For lower harmonics
the amplitudes are nearly the same, but in the vicinity of the 36th harmonic
there is an essential difference. For the rectangular pulse, the 36th har-
monic vanishes, while the trapezoidal pulse has a minimum at a somewhat
lower value of n and all harmonics have finite values.® This is shown in
Table 1 which tabulates the amplitude of the harmonics in this case.

A second form of distortion in rectangular pulses is the rounding of the
corners at both the top and the bottoms of the pulse. This type of distor-
tion is more difficult to analyze and while no complete analysis has been
made the effect of such distortion is known to be, in general, to reduce the
amplitude of the higher harmonics.

#In discussing the curves in Fig. 1 thru 5 it must be remembered that while these are

drawn as solid lines, the lines have a meaning only for integral values of n. Fractional
values of n are meaningless,



336 BELL SVSTEM TECHNICAL JOURNAL

From the examination of these cases it is evident that in the design of a
harmonic generator of the type here considered the decision as to the pulse

TABLE 1
HARMONIC CONTENT OF RECTANGULAR AND TRAPEZOIDAL PULSES SHOWN IN FIGURE 4

Harmonic amplitude - hn

Harmonic ~ Pulse height i
Rectangular Trapezoidal
Fundamental .0555 .0581
2 .0554 .0580
3 .0550 .0576
4 .0545 .0570
5 .0540 .0563
10 0488 .0505
15 L0411 L0416
20 L0314 .0307
25 .0209 .0191
30 .01061 .00811
32 .00681 .00411
33 .00501 .00226
34 .00325 .000489
35 .001901 —.001085
36 0 —.00276
37 —.00180 1 —.00412
38 —.00291 | — .00557
40 —.00545 | —.00791
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Tig. 5—Harmonic content of multivibrator wave
(a) Odd harmonics = = 1/2
(b) Even harmonics r = 1/2
(¢) Odd harmonics 7 = 1/10
(d) Even harmonics » = 1/10
(e) All harmonics 7 =0
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width must be based on the type of service to which it is to be put. If only
a few harmonics are required, a considerable gain in the amplitudes of the
harmonics can be obtained by using a wider pulse width. When a wide
range of harmonics is required, the band width must be greatly reduced to
avoid blank intervals in the frequency spectrum.

A second type of harmonic generator is the multivibrator. The output
wave of such a harmonic generator has a shape similar to that shown in
Fig. 5. The current pulse lasts for a complete 180° rising abruptly to the
peak value, then falling more or less exponentially to a lower value and
finally breaking abruptly to zero. Assuming an exponential decay this
wave will be found to contain the following harmonics

" = ~L4..l— for even harmonics (8)
VnEir? 4 (In 7)2

hn = M for odd harmonics (9)
vV niw? 4+ (In7)?

Except for small values of 7, the (In 7)? term is negligible and these equa-
tions can be written

Al —7)

nw

by = for even harmonics (10)

b, = % for odd harmonics (11)

In all of the above equations 7 = B/A4, the ratio of the amplitude at the
end to the amplitude at the beginning of the pulse.

The curves in Fig. 5 show the harmonic content of such a wave for r = 1
and 7 = 1. Inthe first case the amphtudes of the odd and even harmonics
differ by approximately 9.5 db while in ‘the second case the amplitudes are
not greatly different. The dotted curve shows the limiting condition which
all harmonics approach as = approaches zero, that is as the current at the
end of the pulse approaches zero.

The analysis of such a pulse except assuming a linear rather than ex-
ponential decay yields the following equations

A(l—)

hy = for even harmonics (12)

== 1/ 1+ 92+ — T) for odd harmonics (13)
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As n becomes large the second term under the radical becomes small and
(13) becomes

AQ+7)

nw

Equations (12) and (14) are identical with (10) and (11) showing that in
harmonic generators of this type the harmonic content of the output wave
is primarily a function of the initial and final values of the current rather
than of the shape of the decay curve.

All of the foregoing curves show that the amplitudes of the higher har-
monics are quite small so that in many applications some method of in-
creasing their amplitudes may be required. This can be accomplished by
the use of tuned amplifiers. An alternative method is to modulate a
standard frequency wave with a lower derived frequency.

he = for odd harmonics (14)
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Fig. 6—Frequency spectrum of wave of frequency mf modulated by a series of pulses of
frequency f

Assume a standard frequency of the form
A cos muwt

This wave is completely modulated by a rectangular wave of frequency
w/2r and pulse width . The modulated wave will then be of the form

I = A[1 + Kf(1)] cos mwt (15)
As shown previously the modulating wave is of the form
f@) = K + > 2 sin g cos wl (16)
2r sl HT 2

For 100 per cent modulation K = 1. Since
cos (mwi) + cos (nwt) = % cos (m + n) wt + % cos (m — n) wt  (17)
the modulated wave is
iy = 'ﬂ)cosmmt + Eisin@cos (m + n) wt
2r el T 2

(18)
+ Z sm L cos (m — n) ot

a=1 M
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The frequency spectrum of this wave is shown in Fig. 6. The original
standard frequency mw/2r is present and on either side above and below
w/2m cycles apart are additional components. The rate at which the am-
plitude of these frequencies dies out depends on the modulating pulse width
and is equal to half the amplitude of the corresponding harmeonic in Fig. 2.

If the standard frequency is not a pure wave but contains harmonics
each of these harmonics will be modulated by the rectangular pulses, that is
the function (16). The result will be a series of frequency spectra similar
to the one in Fig. 6, each centered at one of the harmonics of the standard
frequency. By proper choice of the frequency of the modulating wave
these spectra may be made to overlap giving a continuous series of harmonic
of the modulating frequency with much larger amplitudes than can be
obtained from a straightforward harmonic generator. As an example, a
one-megacycle wave heavily modulated with 100 kc was found to give strong
100 kc harmonics up to well over 35 mc.

ACKNOWLEDGMENT

These analyses were originally made in connection with a research pro-
gram at the Polytechnic Institute of Brooklyn. The author wishes to thank
Professor E. Weber of this Institute for verifying the derivation of these
equations.



