Entropy
By KARL K. DARROW

ANY of the important ideas of physics are of such recent birth that
if they still seem hard to grasp, it may be contended that the world
has not yet had the time to assimilate them. Of entropy this cannot be
said; with its centenary almost upon us, entropy is ancient compared with
most of the concepts which baffle the student today. Yet an aura of mys-
tery seems to envelop it still, and two other things inseparably joined to it:
the scale of temperature called absolute, and the Second Law of Thermo-
dynamics. One is driven to wonder why the three of them resist the
understanding so tenaciously, and certain reasons are not hard to find.
Thus, to speak of the three as “joined together” is too weak, for it implies
that they can at least be taken in a certain order for didactic purposes, the
student ascending from the one to the next and finally to the last. Actually '
they are much too tightly interlocked for this, a sort of trinity one and in-
divisible, which must be apprehended as a whole if ever to be properly
grasped at all. Again, the Second Law has been expressed in-many different
ways, and it is one of the oddest things in science to see how various authori-
ties can claim that the law is obeyed absolutely without exception, while
they themselves cannot agree how to state it. A further cause of trouble
lies in the unlucky boundary between chemistry and physics, which nowhere
harms these sciences more than in the study of entropy. Like the worst of
the old-fashioned boundaries of Europe, it wanders capriciously across the
natural lines of intercourse and trade, cutting off the traditional chemist
from the origin and development of some of his most valuable ideas, cutting
off the traditional physicist from some of the finest verifications of the
thought of his fore-runners. It will be the principal object of this paper to
dwell on these verifications, abolishing the barrier so far as may be feasible.
First to illustrate how the three ideas are tangled up together, I give one
of the most useful of the definitions of entropy: when a system passes in a
reversible way from one lo another state, al a constant absolute temperature T,
its change of entropy AS is equal to the heat Q which it absorbs, divided by T.
That both the entropy and the absolute temperature have slipped into this
definition is all too obvious; as for the Second Law, it lurks underneath the
phrase “in a reversible way.” Quite evidently we are invited to master all
the three in a single mental operation, but quite as evidently this is impos-
sible. A breach must somehow be made in this hard and unified surface,
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and the best of scaling-ladders appears to be the ideal gas, as everybody
has used it for the purpose.

We therefore receive the definition of the ““ideal gas”: a substance whereof.
(a) the temperature remains unchanged when the gas is given and seizes the
chance of expanding without any hindrance into a vacuous space; and (d)
the pressure varies inversely as the volume, so long as the temperature
remains unchanged. Now rather than being an aid to enter the citadel, this
definition appears to presume that we are in the citadel already, since the
word of “temperature” is all too prominent in it. But the word comes up
only in the phrase “. .. temperature remains unchanged ...”; so nothing
more is implied, than that the onlooker knows how to recognize whether
temperature is changing or staying the same. This ability can be his,
whether or not he knows about the scale called absolute; and so the defini-
tion implies nothing about the scale.

The definition would be an idle collection of words, were there not actual
gases conforming to it so nearly, that at least for a time they may safely be
taken to conform to it exactly. All gases in fact approach conformity, as
the density lessens; and with helium and hydrogen especially, the approach
is already close while the density is still so high that there is no trouble at
all in using them as thermometers. Now, to use an ideal gas as a thermom-
eter means simply this: P being the pressure of the gas and V' its volume and
n the quantity of the gas measured in moles, there is the equation,

PV = nRT (1)

which is a mixture of a new definition and a theorem. The part which is
definition is, that the temperature called absolute is taken to be proportional
to the product PV. The part which is theorem is, that if at the same
temperature we compare the product PV for equal numbers of moles of
various gases, its value is the same. What is denoted by R in equation (1)
is a universal constant. Its value is 1.985 in the customary units, which are
calories per degree per mole. Since now the degree of temperature has
appeared in this discourse, I recall that its value is fixed by the convention
that there are one hundred degrees from the freezing to the boiling point of
water; but on this I need not dwell.

It is tacitly assumed that nothing in this definition will ever clash with
the threefold simultaneous definition of temperature and entropy and
Second Law, should we ever arrive at it. Taking this for granted, and tak-
ing advantage of the breach which has thus been made in the formerly
impenetrable surface of our definition of entropy, we now attack the con-
cepts of “state’” and “reversible way.”

The usual way of dealing with “‘state” is to say that it is determined com-
pletely by any two of the three variables P, V, and T, which are inter-
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connected among themselves by what is called an “equation of state.”
This takes for granted that one knows what kind of substance one is speak-
ing of, how many moles there are of it, and which phase it is in; for the
statement is valid not only for gases but also for liquids, and even (under
certain restrictions) for solids. If two or three phases are coexisting,
precautions must be taken. The statement is not valid for mixtures of
substances which differ; but there is doubt as to just how much it takes to
constitute a difference, and isotopes of a single element are usually consid-
ered to be the same. '

Now let us envisage two states which differ in temperature but are the
same in pressure. P is to stand for the common value of pressure, 7' for
the lower and T for the higher of the temperatures. For the utmost in
simplicity at the beginning, the substance shall be an ideal gas, and more-
over a gas of which the specific heats do not depend upon the temperature;
any noble gas under ordinary conditions approaches very closely to these
stipulations.

One may operate the transition from (P,T,) to (P,T7) in the manner
which follows: Let the gas be heated from Ty to 7% while the volume of its
container remains the same. Its pressure will have gone up meanwhile;
let this situation be remedied by piercing a hole through the container wall,
into an evacuated chamber prepared in advance of just the right dimensions,
so that after the “free expansion” the pressure of the gas will be down again
to P. The temperature will still be 71, for that is one of the qualities of the
ideal gas.

Or one may operate the transition in the manner which follows: Let the
container be made in advance with a movable wall, say a piston-head against
which an outer pressure P—it might be that of the atmosphere—is steadily
pressing. Let the gas be gradually heated: as its temperature rises, the
piston-head glides gradually outward, increasing the volume of the con-
tainer at such a rate that the pressure of the gas always remains the same
and equal to P. The process is to be stopped when the temperature
reaches 7.

These, then, are two very different ways of carrying through the transition;
and the reason for bringing them in is to elucidate the words ““in a reversible
- way”’ which occur in the phrase defining entropy. The former way includes
a process which is spontaneous, rapid, turbulent, explosive; nothing can
inhibit it when the piercing of the hole creates the opportunity. The latter
way is gradual, languid, crawling, always on the verge of stopping, would
instantly stop if the inflow of heat should cease, would reverse its trend if
the inflow should be turned into outflow. The former way includes a
process during which the pressure of the gas is ill-defined or not defined at
all, for the gas is spurting through the hole and reverberating in the chamber
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formerly empty. During the entire latter process, if it be gradual enough,
the pressure of the gas is definite, and related to V and T by the equation (1).
The former is an irreversible way of effecting the transition. The latter is
the reversible way of effecting the transition.

As the heat flows into the gas, its entropy mounts up. Since the tem-
perature is meanwhile changing, we must mentally subdivide the incoming
heat into driblets dQ, during the inflow of each of which T remains about the
same. The corresponding driblets of energy are given by dQ/T, the total
change in entropy due to inflow of heat is given by J* dQ/T integrated from
beginning to end of the inflow.! By the former way the integral is
J (C,/T)dT or C, In(Ty/To), by the latter way the integral is J° (Cp/T)dT
or C, In(T1/Ty). The two are not the same. Now we see why the phrase
“in a reversible way”’ was necessary in the definition of change-of-entropy.
But for that phrase or something similar, we should now have no definition.
But having accepted the phrase, we are invited and required to write,

AS = f (C,/T)dT (2)

for all transitions of a single substance within a single phase; AS signifying
the change of entropy, and the use of C, implying that the conditions are
those under which specific heat at constant pressure is properly measured:
the pressure of the substance being definite, nothing turbulent or gusty or
explosive happening within the substance, and an equal pressure bearing
down upon it from the outer world.

We have now the necessary and complete statement for the variation of
entropy with temperature, pressure remaining the same; but it has to be
supplemented with a statement for the dependence of entropy on pressure,
T remaining the same. For this and other purposes, let us return to the
irreversible passage between (P,T9) and (P,T))—the passage, rather, of
which one stage is reversible but the other not. During the reversible
stage, the gain of entropy is S (C,/T)dT. This falls short of the gain of
entropy incurred along the other route as given by (2). However the other
route leads reversibly all the way to the goal, while the reversible part of
this one brings us only a part of the way, leaving us with the irreversible
expansion still before us. By assuming that the remainder of the total gain
of entropy demanded by (2) is made up during the irreversible expansion,
we rescue the concept of entropy. Now to save and establish the concept

1Tt is often said or implied that this formula should not be used unless the process is
fully reversible, in the sense that the inflow of heat dccurs from a reservoir of temperature
identical with that of the gas. As no such precaution is taken when specific heats are
measured, and as measurements of specific heat are commonly used for establishing values
of entropy, I assume that the limitation is needless.
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of entropy, to make it a definite property of the state of a substance, is one
of the offices of the Second Law. -

Tt is therefore a part and a consequence of the Second Law to affirm that
when an ideal gas undergoes a free expansion, it experiences a gain of entropy
despite the fact that it receives no heat from the world without! Nor is the
affirmation confined to ideal gases; it would be true of any substance, though
in general a free expansion would be attended with a change in temperature.
Nothing, therefore, could be more wrong than to repeat our first definition
of change-of-entropy with the words “in a reversible way” left out.

One now begins to see why the concept of entropy is so much harder to
receive than that of energy. Every scientist is accustomed by now to the
“conservation” of energy: whereby it is meant that if the energy of a system
rises or falls by any amount, it is because there has been an inflow or an
efflux of just that amount from or into the outer world. Nothing of the
sort can be said of entropy, of which we have just seen that it may vary even
within a system which is having no transactions at all with the outer world.
One may not speak of the conservation of entropy excepting under the sharp
and severe restriction that all of the processes in the system and in the out-
side world are reversible: and “‘reversible’” must be used in the full sense
adumbrated in a previous footnote, whereby no transfer of heat is reversible
unless the body whence it comes and the body to which it goes are of identi-
cal temperature. Yet nothing of all this contradicts the assertion that
entropy and energy are, both of them, uniquely determined functions of the
state of a system—functions, therefore, of any two of the three variables
Pand V and T, for substances of a single kind in a single phase.

Since the equating of entropy-change to inflow of heat divided by tem-
perature is something that positively must not be done for an irreversible
process, we must seek other ways to assess it.

One such way has already been stated. If it is possible to start from a
particular state, and thence to arrive by reversible ways at both the begin-
ning and the end of the irreversible process in question, all the necessary
knowledge is at hand; for now by integrating dQ/T along the two ways we
find two quantities, of which the difference is the entropy-change desired.

Applied in the special case which we have been considering, this method
has given

AS = (Cp, — Cy) In (T1/T) (3)

not, however, a useful expression as yet, since it contains a quantity (7%)
which does not figure at all in the irreversible process in question—a process
which, T recall, is the free expansion of one mole of ideal gas, at a constant
temperature T3, from a higher pressure and lower volume which we will
denote by P’ and V’, to a lower pressure and a higher volume which we will
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denote by P and V. Remembering (1) the equation of state of the ideal
gas, and applying it to the reversible heating at constant volume which
preceded this expansion, we find

Ty/To = P'/P (4)
and so,
AS = (C, — C,) In (P'/P) (5)

for the entropy-change incurred when one mole of ideal gas expands at
uniform temperature so that its pressure falls from P’ to P. I do not have
to state the temperature, since it has vanished from the equation. I do not
have to say that the expansion is irreversible, for if there be such a thing
as entropy at all, its alteration depends only upon its values in the initial
and in the final state, and not on the manner in which the system has made
the passage from initial to final. I ought, however, to recall that we are
still supposing a gas of which the specific heats do not depend upon tempera-
ture, nor in fact upon any variable whatsoever.

Now we have an expression—equation (5)—for the way in which entropy
changes with pressure at constant temperature, and another—equation
(2)—for the way in which entropy changes with temperature at constant
pressure. We may combine them to get the change of entropy occurring
when the gas proceeds, by whatever route, from an initial state (P, T1) to
a final state (Pp, T2). This is,

Sz - Sl = C:U lﬂ(Tg/T;[) —_ (Cp - Cu) lﬂ(Pg/P1) (6)

which, by stripping off the subscripts 2, and gathering into one term I all
of the terms containing the subscripts 1, may be written,

S=CpinT — (C,— C,)InP+ I )

the expression, for a gas of the special type stated, of entropy as a function
of absolute temperature and of pressure. The quantity 7 is an “‘additive
constant” which will turn out to be one of the major topics of this paper.
All this way we have come without invoking the First Law of thermo-
dynamics, and we might even go further without its aid! But there is no
point in deferring it longer, and I wish to be able to convert (7) into a more
familiar form by replacing (C, — C,) with the constant R of the equation-
of-state of the ideal gas. To do this I return to the irreversible process
which has so long engaged our attention; the free expansion of the gas from
the higher pressure P’ to the lower pressure P, its temperature remaining
the same. T seek a reversible way of conducting the expansion from the
same beginning to the same ending under the same condition of steady
temperature. A reversible way of going between the extremes we have
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indeed already found, but it involves a retracing of our steps: the cooling
of the gas to a lower temperature at a constant volume, followed by the
heating of the gas to the original temperature at the constant pressure.
We wish a forward-going reversible way, and such a one can be found. It
is necessary to have the container built with a frictionless piston-head for
one wall, and, to bear down upon this from without with a pressure always
nicely calculated to be equal to the internal pressure of the gas. If under
this condition the piston-head is gliding slowly outward it will continue so
to glide, and the gas will expand in the gradual, languid, crawling manner,
with its internal pressure always definite—the manner which we call
‘“reversible.” All that is now required is to know the amount of heat
which enters the gas during this process, so that we may divide it by T
and so assess the entropy-change. It is from the First Law that we get
this information.
The First Law is to be spoken in the form

energy-gain = “‘heat in” less “work oul”

and written in the form
AU = AQ — AW (8)

the symbols fitting the words in the way which is obvious.

For an ideal gas, the energy U is independent of pressure or volume, de-
pending on the temperature alone. The reader may or may not take this
as a matter of course, but it will be proved later on. We are considering
an isothermal expansion, and therefore AU is zero, and the problem of
evaluating AQ is that of evaluating AW. Now the “work out”—the work
done by the gas upon the outer world—is equal to the pressure bearing
down upon the piston-head from the outer world, multiplied by the area of
the piston-head and the distance through which it advances. The last two
factors multiplied together give the gain in volume of the gas, AV; and
without a moment’s hesitation one usually puts for the first factor the
symbol P signifying the pressure of the gas. However, it is wise to hesitate
just long enough to realize that by so doing one assumes the reversible
expansion with all the attributes set forth above. For an irreversible
expansion AW would not be equal to PAV, but less. But assuming the
reversible expansion, and remembering that P is not independent of volume
as in these last few lines I have tacitly assumed, we find

AW = fpdv= RTf(l/V)dV

= RT In (V/V') = RT In (P'/P) (9)
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the unprimed symbols referring to the final state of the expanding gas and
the primed symbols to the initial state. Now identifying AW with AQ,
and dividing it by T to get the change-of-entropy, we have for the very
quantity AS which figured in equation (5) a second expression, viz.

AS = RIn(P'/P) (10)

where now R stands in place of (C, — C,). We make the substitution into
(7), and arrive at our next-to-final form for the entropy of the ideal gas of
constant specific heats:

S = C,InT — R InP + I (one mole) (11)

I pause to mention that since for any gas PV/T is measurable and so is
also (C, — C,), the rightness of our assumptions may be tested by ascer-
taining whether for gases nearly ideal, the one—which for an ideal gas is
R—and the other are nearly equal. This is so; and if we wish to pick out
a special one among the assumptions for which this shall constitute a
special test, then we may set down as having been particularly proved the
assertion, that the energy of an ideal gas depends upon its temperature
alone and not upon its pressure nor its volume.

For quite some time I have been referring to a single mole of the gas in
question; but for an odd and probably an unexpected reason, it is going to
be desirable to make an explicit broadening of these equations to the general
case of any number 7 of moles. The broadening required for (11) isso
simple and trite as to seem not worth the doing: we have simply to multiply
every term of (11) by #, and so obtain

S = nC,nT — nR InP + nI (n moles) (12)

But now let us translate this into an expression for S as a function of volume
and temperature, by use of the fact that P is nRT/V, and the further fact
that Ris C, — C,. We come upon the astonishing equation,

S = nCynT + nRInV — nRIn(nR) + nl (13)

astonishing because the terms to the right of #zR InV are not reducible to #
multiplied into a constant, but involve a more intricate function of n.
Perhaps, after all, we ought not to have taken the simple recourse of broad-
ening (12) by multiplying » into every term of (11) including the last one?
Actually it is quite all right; the additive constant in (12) is truly propor-
tionate to the number % of moles; that in (13) is the more intricate function
of n which we have just derived.

In Fig. 1 there is shown a “phase-diagram” appropriate to a substance
of a single kind, capable of existing as a gas and as a liquid and as a solid.
Pressure and temperature are the coordinates along the vertical and hori-
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zontal axes, but no coordinate-scales are shown, and no attempt has been
made to shape the curves in exactly the manner correct for any particular
substance, since all that matters here is the general idea. Envisage any
point (P, T) in the area ‘“‘gas,” lying just off the curve which separates that
area and the other one marked “solid.” This is the point—I will call it
the ‘“‘point of interest”—for which we are to obtain two expressions for
entropy S arising from different sources, and find an important result by
comparing the two so obtained.

One of the two is of course the right-hand member of (12). It may
create surprise that one should be treating the gas as ideal, under condi-
tions where the slightest fall in temperature or rise in pressure would con

LiQuib
50LID

ISOBAR P

(rP.O) |

GAS

Fig. 1

dense it. The approximation, however, may still be a good one, and if it is
not close, the equation of state of the actual gas may be used in place of (1).

To form the other expression, we commence at the point (P, 0) where
the isobar P which traverses the point of interest reaches the vertical axis,
and call the entropy there by the symbol S(P, 0). We proceed along the
isobar toward the point of interest, building up the integral f° (C,/T)dT;
since we remain in the area called ‘“‘solid,” it is C}, of the solid which con-
cerns us, and we may mark it so. Just before the isobar passes over the
curve dividing solid from gas, the entropy arrives at the value

se,0+ [ (/1) ar

but this is not yet the value at the point of interest, for the ‘‘divide” is yet
to be crossed. At the crossing of the divide a certain amount of heat is
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absorbed: denote it by L for one mole. If the crossing of the divide is a
reversible process, the entropy of the substance goes up by L/T as it turns
from solid to gas. '

Is the crossing of the divide a reversible process? It is indeed, and that
is why phase-diagrams are constructed. Think of the substance enclosed
in a container with frictionless piston-head, equal pressures P bearing upon
the piston from the world without and from the substance within, and the
whole affair at temperature 7. If the point defined by P and T lies exactly
on one of the curves which partition the diagram off, then the substance
within the container may be a mixture of the two adjoining phases in any
ratio imaginable. If the piston-head is gliding slowly inward it continues
so to glide, P and T remaining steadily the same while all that there is of
the phase of greater specific-volume? is converted gradually into the other.
If the piston-head is gliding slowly outward it continues so to glide, P and
T remaining constant while the latter phase is converted into the former.
'All of the attributes of the reversible process are here: gradualness, lack
of turbulence and of explosiveness, willingness to go in either sense,
willingness to stand indefinitely still at any partway stage. For ease of
formulation it is the prince of reversible processes, since £ and 1" are both
unchanging while it is going on.?

Accepting then the crossing of the divide as a reversible process, we have
our second expression for the entropy at the point of interest:

s, 1) = S(P,0) + [ Ty T + LT (14)

I pause to quiet the fear that the expression here written down is necessarily
infinite, because of T" standing in the denominator of the integrand on the
right! It is a fact of experience that as T approaches absolute zero, C,
approaches zero for all solids, and with such rapidity that (if extrapolation
is safe) the integrand tends to zero and not to infinity. Now comes the
climax, which consists in equating the right-hand members of (12) and (14).
Referring to a single mole of the substance, and rearranging the terms, we
find:

? Volume per unit mass.

3 Irreversible transitions from “supercooled” liquid to solid may occur. In such a case
the area called “liquid” may be regarded as spreading somewhat over the divide and
overlapping a portion of the area called “solid.” The values of P and T for any point
in this region of overlapping may characterize either a solid or a liquid, though what is
called a “liquid” for this purpose may be so stiff and tough as to deserve and bear the name
of “glass.” If the solid and the liquid are brought into contact the latter may pass into
the former (but never the former into the latter) in a manner so nearly explosive as to be
clearly not reversible. I should be less than frank were I to imply that this is always so.
With the transition from “supersaturated gas” to liquid, the irreversibility is manifest.
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I—S(P,0)=RinP—C"InT + f (C¥/T)dT + L/)T  (15)

All of the terms on the right are measurable quantities, excepting that
€% cannot be followed clear down to the absolute zero, so that the piece
of the integral extending from zero up to a few degrees absolute must
be guessed. Now at the bottom of the accessible temperature-range C, is
already very small, and in most cases the curve of C, versus T seems to be
heading very smoothly toward zero, so that the uncertainty is probably
slight. Surprises in the unreachable range are, however, not inconceivable.

Everyone familiar with entropy will have known in advance, and on
reading equations (12) and (14) will have remembered, that the additive
constants I and S(P,0) are beyond the reach of all experiment, be it
physical or be it chemical. No way can be devised of measuring them, for
in chemistry or in physics it is never the entropy of a system in any one
state which is measured, but only the difference of the entropies in two
different states, and the additive constant is cancelled in the subtraction.
So far as (12) by itself or (14) by itself is concerned, each constant is but a
vain appendage, and to develop a theoretical value of either would be
reasoning in a void. In spite of all this, the difference between 7 and
S(P,0) is within the reach of experiment. This permits of one, or two, or
even of all three of the following situations:

(a) If there is a plausible theory of entropy which leads to a value for 7,
experiment will fix a value for S(P, 0) corresponding to that theory.

(b) If there is a plausible theory of entropy which leads to a value for
S(P,0), experiment will fix a value for I corresponding to that theory.

(¢) If there is a theory which leads to a value for S(P, 0), and there is
another and independent theory which leads to a value for 7, then experi-
ment can tell whether the two are compatible.

The actual situation is most nearly like the last of these three; and from
this viewpoint I will describe it.

Before going on to the theories of I and of S(P, 0) I point out that (15)
is the equation of the vapor-pressure curve; for P and T occur in it as variables,
and it refers explicitly to such paired values of P and T as correspond to
points lying on the divide between solid and gas, and P for any such point
is called the vapor-pressure of the substance for the temperature corre-
sponding. Measurements of vapor-pressure are therefore the ones which
are called to decide on these questions—measurements of vapor-pressure
and of specific heat, and of the heat of vaporization. The last-named, the
quantity L, need be measured at a single temperature only, for there is a
formula which gives its value at any temperature in terms of its value at
any other temperature and the specific heats over the range between.,
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This is often incorporated into (15), and alters its aspect; but until page 71
I will pass over this detail. If the point (P, T') lies beside the liquid-gas
divide, the isobar to which (14) refers will cut both this and the solid-liquid
divide, and traverse the liquid region. Extra terms will then appear in
(14) and in (15), but I leave it to the student to divine them.

TaE THEORY OF THE CONSTANT S)

The theory of the constant Sy is easy to state, provided that no objection
is raised to having it stated in a manner rather too drastic at first, and
waiting for the necessary reservations to be added later.

The constant Sy—the entropy at the absolute zero—is taken to be zero for
every substance of o single kind.

This is a way of putting, and the strongest possible way of putting, what
is known as “Nernst’s Law”’ or ‘“Nernst’s Heat Theorem” or even “the
Third Law of thermodynamics.” Originally expressed in a much milder
form nearly forty years ago, it rapidly progressed to the stringent form
embodied in these words. As I have suggested already, it is a form too
stringent; but the truth lies nearer to it than to the milder phrasings earlier
used, and therefore it is justifiable as a commencement.

Notice to begin with that, in the statement as just given, there is no
allusion to the pressure or the volume. It is therefore asserted that, at the
absolute zero, the entropy of a substance (of a single kind) does not depend
on either. This I implied already in the caption to this section, by dis-
carding the symbol S(2, 0) which had previously served for the additive
constant in (14), and replacing it by So. From the general thermodynamic
equations based on First and Second Laws, it can be shown that if this is
true for any substance in particular, then certain measurable features of that
substance—notably the coefficient of thermal expansion—must be zero at
the absolute zero. Now it does appear to be a general rule that this co-
efficient, and the other features in question, are trending rapidly to zero at
the lower end of the accessible range of temperatures; so this, the mildest
form of the “Third Law,” is well attested.

Notice then that in the statement as given there is no allusion to phase.
Thus, if any substance can exist, in both the solid and the liquid phase at the
absolute zero, its entropy must be the same in both (if the theorem is true).
If we insist on fluidity as a quality of a liquid, there is evidently just one
such substance—helium, of course. It appears that for this case the
theorem is true.*

4 At the lowest accessible temperatures, the divide between the “liquid” area and the
“golid” area of the phase-diagram is running nearly parallel to the temperature axis,
and heading for the ordinate 25 (in atmospheres) on the pressure-axis. Strict parallelism
of the divide to the temperature-axis, which is probably realized just before the absolute
zero, would imply equality of entropy in the two phases (by one of the thermodynamic
equations hinted at above). Another item of evidence is cited on p. 72.
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There are substances able to exist in two or more crystalline phases: tin
and sulphur are probably the best-known examples. For some of these
it is possible to start with one phase at a temperature extremely low:
warm the substance up to a temperature of “transition,” at which it changes
reversibly into the other phase; and cool the new phase down to the tempera-
ture at which the experimenter started. Let me denote by Si the entropy
at the commencement of this process; by S: the entropy at its finish; by
C,1 and C,s the specific heats of the two phases; by T the temperature of
transition, by L, the heat absorbed during the transition. We have:

Sy — S = f " (C/T) AT + LT, — f " CyTyaT  (16)

According to Nernst’s Theorem, S; and Sy and consequently their difference
should vanish if the extremely low temperature at start and finish were
the absolute zero. We should therefore expect the right-hand member
of this equation to be at any rate extremely small, if the temperature in
question is at the bottom of the accessible range. Such is indeed the case.

It is very evident that the argument just given proves at the very most
that the entropies of the two phases are equal at the absolute zero—not that
either of them has the particular value zero. The like is true for the other
arguments thus far cited; and indeed in the earliest phrasings of the “Third
Law,” no value was assigned to the entropy at the absolute zero—neither
the value zero, nor any other. Why then are we to adopt, and presently
seek to justify, the particular value zero? One part of the answer will be
the climax of this paper. The other derives from the speculations as to
the nature of entropy, which for half a century have been among the most
deeply perpended, the most difficult and the most fruitful of the divisions
of theoretical physics.

There are two words which dominate these speculations: “‘probability”
on the one hand, “disorder” on the other. Both of these are very familiar
words with very familiar meanings, and some tinge of the familiar meaning
is in each case carried over into the technical meaning. The technical
meanings, are, however, abstruse; and cynical though it may sound, there
is no exaggeration in saying that a large part of the speculation consists in
trying to find meanings for the one and the other, which can be fruitfully
used in the study of entropy. “Disorder” is the word which we shall
examine first.

The familiar meaning of the word “disorder” leads straight to one useful
consequence. Of all the possible or conceivable states of matter, the one
which anybody would choose as the least disorderly is the crystalline state.
But moreover, most people would deem the thermal agitation of the atoms
in a crystal as a departure from order; therefore the colder the crystal, the
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closer its approach to perfect order. Perfect order would consist in every
atom located at rest in exactly its proper place in the crystalline lattice.
If such is the state of affairs at the absolute zero, then a crystalline phase
at the absolute zero exhibits perfect order. Now as I have implied without
precisely saying, entropy is taken to be a measure of disorder. If this is
proper, then it is sensible and correct to say that entropy vanishes for the
perfect crystal at the absolute zero. This is a reason, it is in fact ke reason,
for assigning the value zero to the additive constant Sj.

If I were to stop my exposition at this point, it would certainly be an
impressive conclusion, but hardly a just one. 'We cannot solve the mysteries
of entropy in any so simple a way; in fact they have never been completely
solved. Many additions should be made to the foregoing paragraph:
some would help out its evident meaning and some would not. Thus, as it
stands, it certainly implies that a liquid at the absolute zero—helium
offering such a case—must exhibit disorder and therefore have a greater
value of entropy than does the crystalline solid. However, it turns out that
liquid helium near the absolute zero has the same entropy as solid helium
does, and therefore if one value is zero so also must the other be. If instead
of liquid helium I had taken the supercooled and toughened liquid which is
called a “glass’—glycerol or alcohol in the glassy state, for instance—the
result would have been more agreeable. Several of these glasses have been
studied with great care, and the right-hand member of equation (16)
evaluated for them; it turns out that the entropy near the absolute zero is
markedly and indubitably greater for the glass than for the crystal. ‘“Dis-
order” must therefore prevail in the glass, but the result with liquid helium
impedes the physicist froni proclaiming that it is simply the obvious disorder
of the irregular placing of the atoms in the glass. A mixture of two sub-
stances of a single kind, even when this mixture forms a beautiful crystal,
may nevertheless present disorder; for the two kinds of atoms may be
sprinkled in a thoroughly chaotic manner over the available points of the
crystalline lattice. Such a mixture, it has been found, does have an entropy
near the absolute zero which is definitely greater than the sum of the en-
tropies of the two substances when unmixed. But it is also possible for the
mixture of two substances to be orderly, in the usual sense of the word!
Thus in a mixture—‘‘alloy” is the customary word—of equal numbers of
atoms of copper and zinc, the copper atoms may all be found upon one
lattice and the zinc atoms upon another, the two lattices interpenetrating
and interlocking with each other so as to form the lattice of the crystal of
the alloy. This is one of the extreme possibilities: the other is, the en-
tirely chaotic besprinkling of the points of the two lattices with atoms of the
two kinds. Both can be realized, the transition between the two being



ENTROPY 65

known as “the order-disorder transition.” The entropy goes down as the
transition is made from disorder into order.

The conclusion then is, that we may accept entropy as a measure of
disorder and disorder as a way of visualizing entropy, provided that we are
prepared to define “disorder’” in ways which at least in certain striking
cases do not depart impossibly far from its traditional meaning. A conse-
quence of this attitude is, that it is plausible and sensible to attach the
value zero to the constant here called So, the entropy of any substance ofa
single kind in a crystalline phase at the absolute zero. The words “in a
crystalline phase” are a reservation to the original statement. If further
reservations become necessary, they will of course have to be made.

TeE THEORY OF THE CONSTANT [.

To give even an inkling of the theory of the constant 7, it is desirable to
take “probability” as the word for which meanings must be found, not too
distant from the popular meaning and yet fruitful for the study of entropy.
Those who began this process were Gibbs and Boltzmann, working in the
closing years of the nineteenth century. Their ideas have since undergone
many a transformation, usually in the direction of greater adequacy but
also (alas!) in that of greater difficulty. I will follow a route beginning as
Boltzmann’s did, but carried onward in a manner which became possible
about thirty-five years ago, at the time when Nernst’s Heat Theorem was
being established. It does not lead us quite the whole way to the accepted
value of I, so that at the end I shall have to make an extra step without
doing more than to indicate whence its justification comes.

We begin by considering a gas in a container of volume V', in equilibrium
with itself and with the outer world at a temperature . “In equilibrium
with itself” implies first of all that it is evenly spread throughout the
volume of the container—surely one of the earliest of all inbred ideas con-
cerning the behavior of gases. To give a quantitative meaning to this
notion of the gas being evenly spread throughout the container, we imagine
the volume divided into little compartments or cells of equal volume V.
The statement then is that the number of atoms in every cell is the same.
Putting N for the total number of atoms and Nf; for the number in the ith
compartment,

fi = constant = Vo/V (17)

The quantity f; is called the “probability” that an atom chosen at random
shall be in the ith cell—the first occurrence of the word ‘‘probability’” with
a definite meaning in this discourse.

The next step is to define the entropy in the manner which follows:
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a definition which in the case of the even distribution of the gas throughout
the container reduces to this,

S = kN InV — kN InV, (19)

This is of course a tentative definition, to be eschewed if ever it should lead
us into contradiction with the known properties of entropy. As yet it leads
us into none, for the term in Iz V' corresponds to a similar term in the
description of entropy which equation (13) has already supplied. To make
the two agree exactly, we have simply to assign a special value to the factor
k; and as will be seen at once, this value is

E= R/N, (20)

N, standing for the number of atoms per mole, the Avogadro number-
Though % is known as Boltzmann’s constant, this evaluation was beyond
Boltzmann’s powers, for in his time the value of Ny was not known.

The expression (19) contains no allusion to temperature. It is in fact
not the entropy in full which has so far been defined, but only what I may
call the “contribution of volume to entropy.” We have now to account
for the contribution of the kinetic energy of the molecules to the entropy of
the gas. Thus far I have been able to come by adducing the deeply-
inbred conviction that a gas in equilibrium in a container is evenly spread
throughout the container. There is no such widely-held conviction about
the distribution-in-energy of the molecules of the gas; but to everyone who
has studied physics for more than a year or two there will be nothing
surprising in the formula which follows. It must be introduced by asking
the reader to imagine a three-dimensional space, in which the variables
along the three axes are identified not as coordinates in ordinary space,
but as components of momentum pz, py, .. The momentum which is
meant is the momentum of the individual atom, and the axes x, y, z along
which its components are taken are axes of a coordinate frame in ordinary
space—they might be along three edges of the container, for instance. A
point in the “momentum-space” represents an individual atom in respect
of its momentum and therefore in respect of its energy, but not in respect
of its position.

The momentum-space is now to be divided into compartments of equal
volume Hy; but we are not to besprinkle its compartments uniformly with
the dots representing the atoms! Instead, when comparing any two of
the cells, say the ith and the jth, we are to write

fi/fi = exp [—(E: — E;)/kT) (21)
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which reduces to the statement,

fi = Zlexp(— Ei/kT) (22)
Z being a symbol for the sum,

which, incidentally, is known as the “partition-function” or ‘‘state-sum”
of the system—here, of the individual atom of the gas.

In these latest equations, E; stands for the energy-value corresponding
to some point in the ith cell. It is kinetic energy of translatory motion
with which we are concerned; therefore E; is given by the equation

E; = (1/2m)[(p2): + (p2): + (2] (24)

where now the components of momentum are to be evaluated at some
particular point in the ith cell. But at which particular point? And to go
further back, just how are the cells of volume Hy to be designed in the
momentum-space? As cubical blocks with their edges parallel to the
coordinate-axes, or how? There are problems in which definite answers
must be given to these questions, but we shall be able to avoid them. It
will be adequate here to conceive of the cells as cubical blocks and the
value of E; as the average value of the right-hand member of (24) in the ith
cell.

Now we require from (24) the value of Z as defined in (23), to establish
the values of f; as given in (22), to yield finally the value of entropy as given
in (18).

Let us form the integral

f f f exp (—E/ET) dp.dp,dp., E = (1/2m)(p2 + p} + p2)  (25)

the range of integration extending over the whole of momentum-space.
This integral may be described as follows. Let the momentum-space be
divided into cells of unit volume. FEach of these cells of unit volume makes
a contribution

exp(—E/kT)

to the integral, £ standing now for the average value of E in the cell in
question. 'The integral is the sum of all of these contributions. Now let
us inquire how much of a contribution is made by this same cell of unit
volume to the partition-function. This second contribution is made up
of 1/H, terms, one for each of the cells of volume H, which occupy the cell
of unit volume. The values E; corresponding to these cells will not be
exactly equal to the value E corresponding to the entire cell of unit volume;
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but to the degree of approximation which is now being used, the difference
may be neglected. The partition-function is then equal to 1 /H, times the
integral (25). Now the value of the integral (25) is given in all tables of
definite integrals, and in terms of our symbols it amounts to

(2rmkT)¥2

We are now to divide this by Ho, and proceed along the path which has been
indicated.

The procedure is simple and straightforward. Asa byproduct one finds
the result that the energy of the gas—which I have earlier symbolized by
U—is equal to (3/2)kNT. It follows that the specific heat at constant
volume is equal to (3/2)kN, for one mole, to # times this value for # moles
of gas. Utilizing this result, and putting #R for Nk wherever the latter
occurs, one duly arrives at (18) all filled out in the proper way. This
represents the contribution of the temperature to the entropy; now adding
the contribution of the volume from (19), one arrives at the eniropy of n
moles of the gas as funclion of temperature and of volume, as derived by the
statistical method:

(2em)" "

V., + (3/2)nR  (26)

S=uRlnV+nC,InT+ nRlin
This is now to be compared with the equation (13) for entropy as function
of volume and of temperature, embodying the definition of entropy where-
from we started.

So far as the dependence on T and on V is concerned, all is well! And
there seems even to be a prospect of finding a formula for the additive
constant. The prospect, though, is still befogged in two ways: by my lack
of precision till now as to the magnitudes of Vo and Hy, and by the absence
from (26) of any term convertible into the term #R In(nR) which stands
out so prominently in (13).

As to Vo and Hy: no assumption shall be made about either by itself,
but it will be assumed that their product is equal to Planck’s constant h
raised to the third power (third power, because of the three dimensions of
space):

VoHo = I 27)

This I will attempt to justify from a fact not even divined when the formula
was made.

To divide the momentum-space into cells of definite size, and to allot
to the partition-function just one term from each cell—this comes to the
same thing as allowing certain discrete momentum-values to the atoms in
question, and denying them all values intermediate to these “permitted”



ENTROPY 69

ones. By using the words “permitted values” I am recalling the quantum-
theory, and it is in fact a part of the quantum-theory which we are now
employing, as betokened already by the entry of the symbol £. It is one
of the oldest parts of the quantum-theory; but the new fact—comparatively
new—is this. Atoms, like all other particles, are attended and governed
by waves. These waves, when with their atoms they exist in a limited
space such as that which the container offers to the gas, are constrained to
what in acoustics is known as “‘resonance.” Not every frequency of vibra-
tion is allowed to the air within an organ-pipe, to the wire of a piano or to
the membrane of a drum, but only such as have wave-lengths fitting neatly
into the compass of the cavity, the wire or the drumhead. The dimensions
of these acoustical resonators control the permitted wave-lengths, and these
in their turn determine the frequencies. In the case which we are now
considering of a container filled with a gas, the dimensions of the container
control the wave-lengths associated with the atoms, which are the wave-
lengths of resonance. These in turn control the momenta of the atoms,
because of the relation between the momentum of a particle and the wave-
length of its associated waves—the “Rule of Correlation”:

p=h/x (28)

To say that the momenta of the atoms are those and only those corre-
sponding to the resonant wave-lengths, and to say that VoHo in (26) is
equal to #*—these are equivalent statements. When the former is accepted,
so perforce is the latter, and the additive constant in (26) is fully determined.
But still it lacks the term —#R in nR or — Nk In Nk which figures in (13)!

To introduce this term into the theory in a way both logical and simple
is not an easy task. The formula at which we are about to arrive is fre-
quently known as the “Sackur-Tetrode formula” after the two physicists
of whom (before the first world war) one was the first to approach and the
other the first to reach it. Sackur assumed outright that VoH, is inversely
proportional to N, while Tetrode subtracted from (26) a term k /n N!—the
exclamation-point here not having its rhetorical meaning, but signifying
that N!is “N factorial,” the product 1-2-3---N. By Stirling’s celebrated
formula,

InN! = Nin(N/e) (29)

an approximation amply valid for such enormous values of ¥ as are normally
here considered. Be it noted that e here stands for the exponential base
and not for the electron-charge (in the latter sense it is never used in this
article).

To make clear the basis for this subtraction of & in N! I should have to
go far into the roots of the conception of entropy as probability. The best
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I can do for the present is to follow Tetrode by saying that he deemed (26)
as it stands to be an overstatement of the entropy, arising because in
advancing from the underlying theory to equation (18) one assumes the
atoms of the gas to be distinguishable, whereas actually for a substance of a
single kind they are indistinguishable. In somewhat the same way one
might overstate the entropy of a crystal by supposing it to be composed of
atoms no two of which were alike, while actually it was a substance of a
single kind. The subtraction of k /# N'! was Tetrode’s manner of correcting
the overstatement. He did better than perhaps he knew, for while his
reasons never commanded universal assent, his choice of a term to be sub-
tracted was ratified first by experiment and then by the “new statistics”
which made their appearance in physics some fifteen years ago.

Returning to (26): writing the last term of the right-hand member as
nR In ¢/, and consolidating it with the third term; introducing Tetrode’s
subtractive term; augmenting this last by a term —#R /n k, and compensat-
ing by adding +#R In k to the third term—doing all this, one finds,

)3,’2 kﬁ,fﬂ eb,'2

ha

(2mm (30)

S=nRmV+nuC,inT — nRIn (nR) + nR In
Now the additive constant is filled out completely, and ready for whatever
test experiment may impose.

To prepare it for the test, we turn back first to equations (12) and (13),
and note that the constant there denoted by #7 is none other than the fourth
term in the right-hand member of (30):

3/2 3.6/2 b5/2
I=RIn M}lﬁk—e (31)

Continuing onward to (15) we are reminded that no theoretical statement
about I is worth anything by itself, since all that data can supply is the
value of the combination (F—S,). A hopeless situation, in appearance!
But now it is high time to hearken to what the data say. The data say,
to begin with:

For many monatomic gases, the right-hand member of equation (15) is equal
to the “statistical” value of I.

This may be taken as meaning two things at once: that (a) the statistical
theory of the entropy of a gas is right, and (b) the entropy of a solid (crystal-
line and of a single kind, for such are these solidified gases) is zero at the
absolute zero. It is taken as meaning these things. It might of course
also be taken as meaning that both statements are wrong by about the same
amount, the errors compensating one another. But so unlikely does it seem
that two such different theories should both be wrong and yet by precisely
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the same amount, that I venture to say that few will be found who are critical
enough to insist on the doubt.

This concordance might be shown by giving actual values of the right-
hand member of (15), for actual gases at one or more points adjoining the
curve which divides solid from gas on the phase-diagram. The usage is,
however, different, and it is of some value to abide by the usage, even
though I am now required to make one more transformation of (15) which
I have hitherto avoided. This involves the auxiliary equation,

dL/dT = C5 — C3* (32)

which makes it possible to calculate L for any temperature, provided it be
measured at any other temperature and the specific heats be known at all
the temperatures in between. We may thus start from any measured value
of L, calculate a value L, appropriate to the absolute zero, and thereafter
we may write the integrals, as always heretofore, extending from zero to T,

L=1IL+ f cpar — [ ¢yt ar (33)

The first of these two integrals is equal for a monatomic gas to (5/2)RT
per mole. Since it is L/T which appears in (15), this entails a term (5/2)R
on the right of that equation. This term neatly blots out the term R In £5/2
which is a portion of our statistical value of I as given in (31), so that after
all the equation is not much worsened in appearance. It has in fact assumed
the form

RinP=—L,/T+ (5/2)Rin T
- f (CY/T) dT + (1/T) f CllaT + 7 (34)

and here J is yet another additive constant—the additive constant of .the
vapor-pressure equation in its commonest form—of which this may be said,

(Zm)sfz k5f2

J=RlIn 7

(35)
if the statistical theory is sound and if in addition the entropy of a crystalline
solid of a single kind at the absolute zero is zero.

It is evident that if the two presumptions are true, then the remainder
left behind when (3/2) In m is subtracted from the experimental value of J
will have a definite value, the same for all gases. This indicates how the test
is made, or rather how it is set forth in the literature. The remainder,
expressed in units which need not concern us, should be —1.589. Now,
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data are available® for all of the noble gases from helium through xenon;
and I quote the values which they furnish for this “remainder”:

He 1.59 =+ 0.01; Ne {two experiments) 1.56 &= 0.04, 1.59 = 0.01

Ar (two experiments) 1.61 and 1.61 == 0.04;

Kr 1.59 £ 0.02; Xe 1.588
The agreements are remarkably good, and when one remembers the contrast
and the subtlety of the two theories which they ratify conjointly, one deems
them among the most impressive in the whole of physics or of chemistry
either. The result for He implies that Sy = 0 for liguid helium.

There are data available also for the vapors of several metals, though for
these the experimentalist’s task is much harder. It will be seen that in
most of the cases we may again rejoice in agreements, though within a
broader range of experimental unsureness; in a few there is disagreement,
and one can only wonder whether the measurer of vapor-pressure underesti-
mated his possible error. o

Na (two experiments) 1.57 == 0.1 and 1.41 =4 0.03;

K 1.47 + 0.04; Mg. 1.61 £ 0.2; Zn 1.51 = 0.15;

Cd (two experiments) 1.63 = 0.1, 1.51 =+ 0.1; Hg 1.62 + 0.03;

T1 1.40 & 0.3; Pb (two experiments) 1.7 & 0.2, 1.21 =+ 0.26.
So the situation with respect to monatomic gases is satisfactory on the
whole and almost unblemished.® But monatomic gases are but a small
proportion of all vapors: has not the theory something to say as regards
those which are diatomic—such as oxygen, hydrogen, nitrogen, carbon
monoxide—and even those which are polyatomic?

The theory does indeed cover these; and the needed enlargement is simple
to write down, if not always easy to compute. Thus far the partition-
function has contained only the terms supplied by the translatory motions
of the molecules in the container—terms which depend on no other quality
of the molecules than their masses, and for a given mass are the same whether
the molecule is composed of a single atom or of two or of many. Now to
the partition-function so composed are to be added the terms deriving from
the rotation and from the vibrations of the molecules. Each new term is
of the familiar form exp(—E/kT), where now E; is to stand for some
permitted energy-value of rotation or of vibration, and the summation is

6 Data from the collation of Ditchburn and Gilmour (Rev. Mod. Phys. 13, 310, 1941),
except the value for xenon which is from Clusius.

§ Here I must say, evenifonlyinafootnote, that for atoms which haveangular momentum
there is still one more term in the additive constant occurring in the right-hand member of
(30). This term may be loosely described as referring to the “disorder” arising from the
fact that there are two or more different orientations of the angular momentum, between
which the atoms may choose. Its exact value (zero for the inert gases, nRin2 for the
alkali metals) is derived from the spectrum of the atom. Allowance is made for this
term in the computation leading to the value of the “remainder”, and the agreements

here tabulated for Na and K sustain the allowance. A bad disagreement for tungsten
emerges from an early (1924) research by Lange.
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to be carried over all values of E;. There is less of a mental obstacle now
than there was in the “translatory” terms, for the doctrine of discrete per-
mitted energy-values in rotation is among the oldest, while that of discrete
energy-states in vibration is quite the oldest, of the whole of quantum-
theory. To get the energy-values E;, the spectra are consulted. Spectrum
analysis is the most highly-developed of the branches of physics, and the
knowledge of the values of E; which it affords for the better-known of the
diatomic molecules—and even for some few of the triatomic—may be
described as complete, daring as it may sound.

Values of entropy figured by the statistical way which I have been
describing, with additions duly made to the partition-function to allow
for rotation and vibration, are called “spectroscopic” entropy-values by
Giauque and his colleagues of the Berkeley school. As a rule they are
computed for a standard pressure and temperature, often for one atmosphere
and 25°C.; let us call these Py and Ty. Now as a rule the point (P, T%)
does not lie just off the divide which on the phase-diagram separates solid
(or liquid) from gas. One may, however, use (11) for getting the entropy-
difference between (Py, Ts) and any such point (P, T) lying along the
divide on the side corresponding to gas. At the point (P, T) the entropy
may be evaluated by the right-hand member of (14), and to it may then be
added the entropy-difference just mentioned. The sum, computed with the
assumption that Sy is zero, is what Giauque and his school name a “calori-
metric” entropy-value. If the two agree, there is a verification of the
conjoined assumptions that the statistical theory is sound, and that the
crystalline solid at zero absolute has none of that disorder which is the
source of entropy.

I take the following data from Eastman’ of the Berkeley school. Of his
two tables, one comprising gases for which the data are definitely better
known than they are for the rest, I quote this one only. The accuracy of
the calorimetric value “‘is in all cases high, errors being of the order of 0.1
throughout.” The supposed accuracy of the spectroscopic values is in-
dicated by the number of significant figures to which they are carried.

Calor. Specirosc.
N2 45.9 45.788
0, 49.1 49.03
HC1 445 44 .64
HBr 47.6 47 .48
HI 495 49 .4
CO 46.2 47.310
NO 43.0 43.75
H,0 44 .23 45.17
N.0 51.44 52.581
H. 29.7 31.23

7 Chem. Rev. 18, 257 (1936).
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The first five are the stellar examples of concordance, therefore support for
the two conjoined assumptions. In the last five the discrepancy is deemed
to exceed the possibility of doubt, and some explanation ought to be found.

How is one to explain a “calorimetric” value less than the “‘spectroscopic”
—as occurs in all five of these cases? The comparison, I recall, is essentially
between (I—So) and I. Inall of these five cases, / —So turns out to be less
than I; therefore we are tempted to assume a “disorder” in the solid, sub-
sisting even unto the absolute zero. The case of hydrogen is the clearest,
the disorder being traceable in part to the intermingling of two types of
hydrogen molecule known as the “ortho” and the “para” type. In the
other cases, the explanations have a vagueness which suggests that they
are speculative. This is not a very satisfactory statement to end with.
Yet even these discrepancies are so small, that even if there were no closer
agreements one would still feel assured -that the truth is to be found in
some minor alteration of the theory rather in rejecting the theory altogether;
and the five excellent agreements, combined with the excellent agreements
for so many monatomic gases, convert this feeling of assurance into
certitude.



