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SECTION 1

INTRODUCTION

HE use of crystals as oscillating elements and as light valves in electric

circuits has given the mathematics of crystalline media an engineering
importance. Soon after the first simple quartz oscillators were made it was
noticed that some ways of cutting the block from the natural crystal gave
lower temperature coefficients of frequency than did other ways. This led
to studies of the change of elastic modulii with direction and temperature
and finally to the discovery that there are directions in quartz for which the
shear modulus does not change with temperature.

Such computations are rather involved, and there is, in the English
language, no general reference book on these new problems. The existing
works were evidently not written with the idea in mind that anyone would
ever actually do much numerical work with directional properties of crystals,
since the methods used are not the best suited to this. The matrix algebra
has the advantages of a symbolic algebra and is also, through the concept of
matrix multiplication, a scheme for computing numerical results.

As the problem of temperature coefficients of frequency involves the
temperature coefficient of expansion, the temperature coefficient of density
and the temperature coefficient of elastic modulii, these problems must be
put into the language of matrix algebra so that they will fit into the general
structure being built for more difficult problems. For this reason, after an
introduction to the idea of linear vector functions, through consideration
of the relation between the electric field and the induction in a crystal, and
a hasty sketch of symmetry types found in crystals, we proceed to the
consideration of stress and strain and their relations to each other.

Following these, we take up piezo electricity and the converse piezo
electric effects; these are important as they tell us the ways a crystal may be
driven. We have not seen anywhere a general proof that the modulii of
the converse effect are the same numbers as the modulii of the direct effect
—to the first order of small quantities, though Lippman predicted the
converse effect and demonstrated its magnitude to be about this; he ap-
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parently didn’t consider the general case of six simultaneous stress com-
ponents, six strain components, three electric field components and three
induction components. The fact that the mentioned relation is true only
to the first order of small quantities seems to have escaped the attention of
some experimenters who have sought to show non-linearity of the piezo-
electric effect by demonstrating non-linearity in the converse effect.

As a basis for light valve problems, we handle the propagation of light
through crystals, then the electro optic effect and the piezo optic effect.

SECTION 2

A Lmnear Vecror FuncTioNn

For almost every physical constant of an isotropic medium a crystalline
medium has several constants. For instance, a piece of glass has a co-
efficient of thermal expansion but a crystal has many coefficients of thermal
expansion, the coefficient depending on direction. It might be thought
that there were no necessary relations between the coefficients in different
directions but there are necessary relations.

As an example of the simplifying relations between the values of physical
constants in different directions let us consider a crystal in an electric field.
Measurements show that the dielectric constant varies with direction in a
crystal. If the field is not in the direction of greatest dielectric constant,
the displacement current might veer over a little, much as a nail tries to
follow the grain of the wood. We shall assume that for any electric field
vector E there corresponds an electric induction vector D which may not
coincide with E. Also we assume that the magnitude of D is proportional
to E, that is, if E results in D, then nE results in nD. Lastly, we assume
that if £, results in Dy, E; in D; . . . and E,, results in Dy, then E; + Ey...
E,, results in Dy + Da + ... D, If these assumptions hold, then as any
arbitrary field E can be expressed as the vector sum of its three components
E,, Es, E; along three arbitrary .unit vectors 1, j, &, the induction vector
resulting from E can be computed from the induction vectors resulting from
E,, E;,and E;. For,let E; result in Dyi + Daj + Dak, E; result in Dyt +
Dwj + Dgpk and By result in Dyt + Dej + Dk, then Ey + Ep + E;=E
results in the induction vector:

D = (ExDy + E:Dys + EsDy)i
+ (E:Dy + EoDn + EDy)j oo (2.1)
+ (EiDsy + E:Dys + EsDg)k

It is seen then, that not more than 9 constants are needed to describe
the dielectric properties of a crystal. The energy required to establish the
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electric field is half the product of the component of the induction in the
direction of the field and the electric field. This is, therefore:

2W = EiDy + E3Du + EiDy + EyEy(Dyy + Dyo) + E3E (Dg + D) +
E\Ey(Dyy + Dyy)

Considering then a condenser made from a unit cube of crystal, the charge
is D and the energy content is . If there is no leakage loss, the charge
that can be drawn from-the condenser is D = (;Lg Whence D, = %V =

1
DnEy + 3(Dya + Da) E; + § (D3 + Dsy) Es.  If, therefore, the induction
is derivable from a potential, Dis = 3 (D2 + Day) or Dys = Dy, Similarly
Dy3 = Dy and Dy = Dy. By a proper choice of axes the remaining six
D’s can be reduced to three. In the case of isotropic dielectrics Dy, = Dy =
Dgz and 4Dy corresponds to k, the dielectric constant.

SECTION 3

THE SYMMETRY OF CRYSTALS °

~ If a crystal has certain sorts of symmetry the number of constants re-
quired to describe each property is materially reduced. = For .this reason
we now turn our attention to a study of symmetry.

In general, plotting a vector property of the medium for a crystal gives a
complicated surface which we shall call a property surface. Each property
surface of a homogeneous isotropic medium is a sphere.

Because of the orderly arrangement of matter in a crystal, the property
surfaces of crystalline media are commonly symmetrical. If a casting of a
property surface were made it might fit into its mold in several positions.
A property surface for quartz for example, if lifted from its mold and rotated
through a third of a turn about the proper axis, would fit back into the mold.
That is, quartz has a three fold axis. The natural requirement that mole-
cules be laid down in a way economical of space limits the kinds of symmetry
possuble for crystals to axes of two fold (binary) symmetry, of three fold
(trigonal), of four fold and of six fold symmetry, planes of reflection symme-
try and combinations of axis-reflection symmetry, besides a simple sym-
metry through a center. From these elements it is possible to divide all
possible property surfaces into 32 classes. No other classes built from these
elements- could be self-consistent. . ‘

A diagram study will prove this point. On a sphere let us mark axes of -
two fold symmetry by means of a solid boat shaped figure, three fold with a
solid triangle, four fold with a square, six fold with a hexagon, planes of
symmetry with a solid line (great circle) and combination axis reflection,
by means of similar hollow figures. Finally, we shall project the sphere
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and markings onto a plane through the center. Figures 1 to 32 is a set of
such diagrams. Fig. 23 for instance shows a six fold axis. Fig. 1 represents
a medium with no symmetry whatever. The cross represents a typical
vector property, the vector piercing the sphere above the projection sheet.
Tf the vector pierced below the sheet it would be marked with a circle. The
dashed circle of Fig. 23 indicates the boundary of the sphere without im-
plying it to be a plane of symmetry. The presence of six fold symmetry
requires the typical vector to be shown in six places. If an axis of two fold
symmetry is added at right angles to the six fold axis, it must appear six
times and the typical vector must now appear twelve times, six times above
and six times below the projection sheet. Continuing in this way we shall
find the self-consistent classes of symmetry to be the 32 shown in the dia-
grams. Often the symmetry of a crystal class is expressed by means of a
formula. A center of symmetry is symbolized by the letter C, a binary
axis by A3, a trigonal axis by As, a ternary axis by 44, a six fold axis by As,
a plane of reflection by P, and a combination rotation reflection by the
‘combination symbols ®; or . In this way the symmetry formula of
quartz for example, is 34,-As.

SECTION 4

MATRIX ALGEERA
'In the solution of problems of crystal physics we are involved in the
handling of many sets of linear simultaneous equations. As the matrix
algebra lessens the work involved in handling sets of linear simultaneous
equations we turn now to a study of matrix algebra.
Several independent variables xy, 23 . . . a, are linearly related to several
other independent variables y1, ¥z . . . ¥m as ‘

M = aun ~+ axs + ... G1n%n

gy = ama + ...

........................

or briefly ‘
y;=2a;,~x,~ I=1,2-m.............(41)
=1 :
In most all such equations as (4.1) the variable to be summed over appears
twice in the subscripts of one side. As a convention we agree to omit the
summation sign and sum wherever subscripts are repeated.
Thus: y; = ai;x; is to be summed over j
again, if x; = bz the z’s being a third set of variables we have:

yi = @iz to be summed over j and &.
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We can think of this as a special multiplication of hyperquantities a, &

and z. If we define

we may go from the y’s to the z’s directly thru y; = caz. We can now
consider the ‘table”

andg ...ad,
asy ...
Aml + « « Qmn /|

as being the quantity @, and the table

as the quantity b.

These “tables” are called matrices.

Going to eq. (4.2) we see that the quantity ¢ is to be a “table,” the typical
element ¢;; of which is to be gotten by multiplying the ith row of @ by the
jth column of b, term by term thus:

cij = @abi; + @ibo; + . ..

After a little practice it becomes almost automatic to form the ijth term
of the product of two matrices by letting the index finger of the left hand
follow across the ith row of the left matrix while the right index finger
follows down the jth column of the right matrix. The fingers step along in
synchronism and at each pause the quantities under the two fingers are
multiplied and the product added algebraically to the accumulated sum.

The algebra of these special multiplications is not commutable, i.e.
ab # ba.

Eq. (4.1) can be considered as a special case of eq. (4.2), in which the
matrices x and y have one column only. In this manner a vector with

X1
components a1 a» x3 can be considered as the matrix | ay
X3

If eq. (4.1) has the same number of a’s as y’s we may solve (by means of
determinants) for the x’s in terms of the y’s. We would then get a new set
of equations

-1
Yi = @ij Y5
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The significance of the ¢ is that the matrix product of aand a” 'isa matrix
with ones on the major diagonal and all other terms zero. Whenever the
product of two square matrices gives such a matrix (known as the idem-
factor, I) they are said to be reciprocal. Only square matrices have
reciprocals. Multiplying any matrix by the idemfactor leaves the matrix
unchanged. We might consider, as part of our mathematical short hand,

that eq. (4.1) was solved for x by multiplying through by a’’,as

—1 =1
ay=a ax=1Izx=nx

We must remember that the order must not be disturbed as the quantities
are not commutable, and that only square matrices have reciprocals.

The major diagonal of a square matrix is the set of terms running diagon-
ally from the upper left to the lower right.

A symmetrical matrix has any term M;; = M;

An anti-symmetric or skew symmetric matrix has any term M; = — M
for i # j.

Rotation Theory

The matrix algebra can be used to express a vector as a function of another
vector, that is to handle such relations as exist between E and P of section 2.

There is another important aspect of matrix multiplication, that of trans-
forming a function from one set of axes to another. Let us assume that the
new set of unit axes, x1 x2 and x5 are merely the old ones rotated through
angle ¢ about some axis 4 which is a unit vector passing through the origin.
From Fig. 33 we see that in the expression:

1 ! !
2 = au¥1 + anxs + an¥s

the aiy’s are the cosines of the angles between x; and the three quantmes
xj. Conversely they are the cosines of the angles between the x;’s and .
Consequently, if the primed unit vectors are given in terms of the unprimed
ones by the three equations

’
¥y = @i%g
then the unprimed «’s are given in terms of the primed ones by the ex-
pression:
’
X = Gji%i
This reversible relationship is well depicted by the table:
, X1 Xo X3
X1 an G2 Q13

1

X2 an az axg
’

X3 as az 33
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In this direction cosine table we can “look up” the components of any unit
vector in terms of the other system.
. The matrix a;; is merely the matrix a;; with rows and columns inter-

changed. a;;is called the conjugate of a;;. We shall denote the conjugate
of any matrix M by M..

Obviously V" is the vector sum of the 3 components (on the new system)
of each of its 3 components on the old system.
anVi+ anVa+ anaVs
(Whoew = [ a7V 4 ovevreninnn

’
X3

Fig. 33—The direction cosines of X; on X'y X’ X's.

If the expression giving the components of ¥ on the new system is de-
noted by V'’ we may write

Vi=aV
conversely V=a'V

Since x; is of unit length, the sum of the squares of its three components
(on the primed system) is unity.

That is aﬂ -} afg + afs =1
similarly an A amtak=1....... .. . . . .. . ... (4.3)
and f1§1 + d§2 + 633 =1

Now a. can be considered as a rotation similar to the rotation . Con-
sequently their product aaz. is a similar rotation. Let us consider this
product.
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The squares of its terms must sum to zero, row by row as in (4.3)

anay2013 @11a21031 1.
A21092093 dy12022d32 | = . 1 .
31032033 13023033 R |

Because of the relations a3 + a4t als = 1, etc., we see that the terms of
the third matrix are zero for all terms not on the major diagonal. There-
fore, aa. is an idemfactor and the reciprocal matrix of ¢ is the same as its
conjugate matrix.

Also «} is of unit length, and the sum of the squares of its components on
the unprimed system is unity. Thus we find:

an + an + ah = 1
dhtahtan=1... .. ........... (4.5)
dfs + Ega -+ ﬂ§3 =1

We now introduce from vector analysis the concept of the scalar product.
The scalar product of two vectors % and v is #, v. It is the product of the
lengths of the two vectors and the cosine of the angle between them.

If we take the scalar product of a; and x» as expressed in the primed
system we have, since they are mutually perpendicular:

an
(an, @12, a13) | a2 | = anan + anawn + apan = 0
a3,

Similarly multiplying xs and 3 scalarly, and a3 and x; we find:

anda + Gpan + aan = 0
do1@31 + 9932 + dogaz — ... (45)
agnan + anawp + apas = 0
. ’ ’ .
If we multiply x; and x, etc. as expressed on the unprimed system we get
the relations:

andi + ange + gz = 0
12413 + a9a(o3 + 30d33 — O......... . ....... (47)
aan + @uan + akan = 0

The vector product of two vectors # and v requires the defining of a

special matrix, the cross matrix.

0 —u Uz
u X = U3 0 —w ... (4.8)
— 1y i 0



MATHEMATICS OF PHYSICAL PROPERTIES OF CRYSTALS 11

We note that this is formed by writing zeros on the major diagonal, then
going back from the lower right corner writing u;, % and u; around the edges.
We then make the lower left term negative, then operate on the opposite
side of the major diagonal so as to make the matrix skew symmetric.

The reciprocal of any matrix m is

o _ M(—1)™

ij =
where M ; is the ji minor of |m |.

The cross matrix has no reciprocal as for it (4.9) becomes indeterminate.
Since the vector product of two vectors # and v is another vector per-
pendicular to both % and v and of a length %o sin (u3) we ma.y write, on the
primed system
x1 X ¥2 = a3 in the form

0 —au a2 a9 — (13022 + G120 as1
gy 0 —an an | = Q13021 — Gudes | = | Qa2
—ai au 0 a23 — Q1281 + anag a3

Matrices including vectors are equal only when their corresponding terms
are equal. Hence, we get the relations

31 = (1223 — G130
Age = Quado1 — Audag . v v v i i i et (4.10)
33 = andes — apdn

Similarly we get the relations:

a1 = Az — (A23ds
12 = Qs — A21d3s
Q13 = amd32 — (203
21 = Q32013 — Q12033
a2 = a33dn — andiz
a2z = Az — d3dn

The 21 relations between the a;;’s allow us to complete the matrix given
four terms.

Several Useful Matrix Relations
6/& X
The del operator is the pseudo vectorV =(8/d a2 |....vvun... .(4.12)
/9 x3



12 BELL SYSTEM TECHNICAL JOURNAL

It transforms upon a rotation of axes as does an ordinary vector:

B v 2 v (4.13)
gradu =V s,amatrix. ................ (4.14)
div # =V.w,ascalar ................. (4.15)
curl u =V Xwu,amatrix................ (4.16)
grad radius vector = Vp = I, the idemfactor........ (4.17)
(@be..) = ...cTbat (4.18)
(abc...)et = .o.Chello- oo (4.19)
an 0 0 0... -1 1/(1.11 0 0
0 ae 0 0...\ = 0 1/am 0
0 0 a3z o a s 0 0 1/(133 """" (420)
szl
(Scalar times matrix) " = (m—an}i. R (%) )
_ scalar
SECTION 5

TarE GEOMETRY OF ROTATIONS

As a first application of the matrix algebra let us compute the ¢ matrix
for a few general rotations. Although we can consider a general rotation
as one of angle ¢ about the unit vector* 4, it is easier to consider a general
rotation as three successive rotations about coordinate axes.

A study of Fig. 34 shows that for a counterclockwise rotation ¢ about x,,
the new components of a vector V are:
Vi=Vi
Vi = Vacos¢ + Visin ¢
Vi= —Vasin ¢+ Vscoso

whence V/ = aV where

1 0 0 )
a=1|0 oS¢ Sing)............i..n (5.1)
0 —sing cos¢
* A general rotation of amount ¢ about the unit axis 4 is given by
a=AA.+ (I — AA;) Cos¢p + Sing 4
See Vector Analysis (Gibbs Wilson, Yale Press) pp. 338.



MATHEMATICS OF PHYSICAL PROPERTIES OF CRYSTALS 13

Similarly, for a counterclockwise rotation ¢ about x, we have

cos¢ 0 —sing
a=1{0 1 0 .. (5.2)
sing 0 cos ¢

and for a counterclockwise rotation ¢ about x3:

cos¢ sing 0
a=|—sin¢ cosod O} ................ (5.3)
0 0 1

Fig. 34—The relationship between the components of a vector on one coordinate
system and on another.

In the appendix we give the special transformations corresponding to the
symmetry operations of the 32 crystal classes. If we have three successive
rotations:

2= ax
x” - afxf
. xl” —_ aflxll
the resultant rotation is
xl!l -— allalax
or A =Rx. ... ... ... (5.4)

where R=a"aa. ....................... (5.5)
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The I.R.E. Orientation Angles and the I.R.E. Mairix

The Institute of Radio Engineers has proposed that, for quartz crystals,
all onentatlons be given in terms of three rotations ¢, 8, ¢ about a3, X
and x; respectively, starting with the plate length along x; width along
x2 and thickness along x;. (Here a3 is the z or optic axis, ; is the electric
axis.)

Whence, here:

cosy siny 0 cosf 0 —sinf cos¢ sing 0O
R=|—siny cosy O 0 1 0 —sing cos¢ O
0 0 1 simf 0 cos @ 0 0 1

and carrying out the two matrix multiplications:

X1 X2 X3

cos ¢ cos  cosy sin ¢ cos § cosy —sin 6 cos V) x
—sin ¢ siny ~+cos ¢ sin ¢
—cospcosf singy —singcosf siny ... (5.6)
—sin ¢ cos Y ~+cos ¢ cosy sin 6 sin ¢ xg

cos ¢ sin @ sin ¢ sin 8 cos f ) Xy

If we denote the unit vectors along the length, width and thickness as P1Ps
and P; respectively we have as a matrix defining the plate:

The I.R.E. orientation system is useful to the designer of crystal plates
because his problem is to choose such values of ¢, 6, { as to give the plate
certain physical properties along its length, width and thickness. The man
who cuts the plate has a different problem, that of moving the crystal (and
hence the x; %2 13 axes) about a fixed saw so that the plate cut parallel to the
saw blade is what the designer ordered.

Let us consider such a system as shown in Figs. 37, 38 and 39. In Fig.
38 the crystal stands with its optic axis along Ps, its + electric axis (for
right hand quartz) along P. Since the shop man considers clockwise rota-
tion as positive we now rotate the crystal through angle Us about P; clock-
wise, we then turn the crystal through angle U, clockwise about Py, and
finally, after cutting out a slab of required thickness, we turn it clockwise
through angle U; about P; to cut its length and width.

On the plate axes P; the crystallographic axes x; a3 x3 are now given by
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X3

X2

X

Fig. 35—The initial position (0, 0, 0) for the I.R.E. direction angles.

X3

X2

Xy

Tig. 36—The final position (#, ©, ¥) for the I.R.E. direction angles.

15
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where
cos Uysin U710 i i] (/] cos Uz sin U3 0
y = | —sin U; cos U; 0 0 cos Ussin U, —sin Uz cos U3 0
0 0 1 0 —sin Us cos U, o 0 1
or
(" cos Uy cos Us . cos Uy sin Uy sin U; sin U,
—sin U cos Us sin Uz +sin U; cos Uy cos Us
r = | —sin U, cos Us —sin U, sin Us cos Uy sin U | (5.9)
—cos U; cos U sin U —cos U; cos Us cos Us
L sin Uz sin Ua —sin Uz cos Ua CoSs Uz
L L
Pz —: P2 —
Pa P3
Py
A
+

Py // P —

Fig. 37 Fig. 38

Fig. 37—The (0, 0, 0) position of a shop system of direction angles.
Fig. 38—The second position of a shop system.

From (5.8) we see that P = rx and hence, if this is to be the same plate
the designer specified by P = Rx we must have R = r whence we may
equate the terms of (5.6) and (5.9) to get the relations
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cosUs =cosforlUs= &0

tanUy=coty....... ... . (5.10)
tanUs = cot ¢
or
P —
4
P3
Py
3
+
P

Fig. 39—Cutting the slab and trimming it to the piezoid boundaries.
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Where # is any integer positive or negative, including zero. If we take

U1=\l""90
Uy =8 e (311)
Us=¢+ 9

The matrices are consistent term by term.

SECTION 6

CRYSTALLINE DIELECTRICS

Asa first application of the matrix algebra considered as a linear vector
function let us reconsider the problem of the crystal in an electric field.
The relations of chapter II, equation (1) can be written in the abbreviated
form:

D = D,‘,‘E where D,—, = D..-

in accordance with the system of abbreviations adopted in the appendix.
If we put

4Dy = kys
equation (1) can be written

1

D=XpE . ...
47 _

In order to investigate the effects of crystal symmetry in determining
the least number of dielectric constants that are required for a given class of
symmetry it is desirable to find the electric mductmn D for any system of
axes. Suppose that we choose a system for axes 1, X , xs related to x ,
%z , x3 through the relations:

! ! !

% = anm + a12x$ + Glax:;
'

X = Qa1X1 + a29Xy + [ (62)
I ! !

X3 = amX1 + Gn¥e + anvs

where @y is the cosme of the angle between x; and x1 , arz is the cosine of the
angle between a1 and x; etc.
Equation (6.2) can be abbreviated to

2 = ax

where a is the matrix
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an Gz 43
a = | G2 A a4z
31 G32 d33

Vi

It is shown in the sec. 4 that any vector V = Vz) can be written on the
Vs

new system of axes as V' where V' = aV, conversely V = a 'V';a " is the

matrix reciprocal to @. Since the induction D and the electric field E are

simple vector functions they transform as the vector V, that is:

D=aD ................v... (6.3)
E =aE......................... (6.4)
But by (6.1)
1
D = o EkE
whence:
aD = —1— aka.aE
47
or
- _L ¥l
D yy FE . . (6.5)
if
=akae....................... (6.6)

We see that the form of (6.5) is the same as that of (6.1) for any sét of
axes if (6.6) is used to define the new dielectric matrix &.

To apply this relation (6.6) to a particular crystal let us consider a tetrag-
onal crystal (which has its properties unchanged by a rotation of 90°
about a four fold axis). Let us choose the four fold axis as #3and then rotate
the axis 90° about 3. In this case

0-10 010
a= (1 00]and the reciprocal matrix ¢ = [ —100

0 01 001

whence equation (6.6) becomes:

010\ [hu b b\ /0 —10 b —kn
k’ = —-100 k]z k22 kz;; 1 00 = —klz ku _kal
001/ \k b ke/ \0 01 Fay —ky g
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But because of the symmetry % is unchanged by this transformation,
hence

k=F
Two matrices can be equal only if corresponding terms are equal, hence
by = by, ko= —Fka =0, by = —kg and ks = ka
whence
ko = b = 0.

We are left then, with the dielectric constant matrix for the tetragonal
bisphenoidal class:

kuO 0
k=10 kno
0 0 Ky

Applying other transformations possible for tetragonal crystals gives no
further simplification.

If we go through all the symmetry transformations possible for the 32
classes we find that cubic crystals require but one dielectric constant, hex-
agonal, trigonal and tetragonal crystals require two constants, orthorhombic
monoclinic and triclinic crystals require 3.

As the triclinic class has no fixed axes or planes of symmetry the reduction
of its 6 constants to 3 is not so obvious. It may be seen by expanding into
ordinary xyz coordinates, that pskp = 1 is the equation of an ellipSOid (o
is the radius vector) where the six &’s are the coefficients of &, 9, 5%, ys,
zx and xy respectively. If we choose the coordinate axes along the axes of
the ellipsoid the yz, zx and xy terms drop out and only three k’s are needed.
With triclinic crystals then, if we determine the axes of the ellipsoid, then
choose the coordinate axes along them, only three dielectric constants are
needed to completely specify the polarization in terms of the electric field.
The determination of the ellipsoid axes must be made experimentally as
there are no symmetry elements to guide us. Tt is possible to compute the
positions of the axes from the 6 &’s by solving a cubic equation.

The values of the ’s depend on the frequency of the applied field. In
crystals of low symmetry the ellipsoid axes for different frequencies do not

necessarily coincide.

Another vector quantity of interest is the polarization, P = D — 4—1- E.
™
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Using (1) this becomes

P=%r(k—I)E...................(6.7)

SECTION 7
QuapraTiCc ForMS

Often the elements of a matrix are themselves functions of other quanti-
ties. Inorder to relate the elements of one matrix with those of another by
means of a matrix multiplication, we may make a single column matrix of
each of them. We then wish to know how a transformation of axes changes
the elements of this single column matrix. Consider a symmetrical matrix
b that relates two vectors # and »:

" u = bo.

A transformation of axes, a, changes # and v to #’ and »'. Multiplying ¥ =
bv through by the prefactor ¢ we have

an = abv.
We now replace au by its equivalent a "2’ whence:
uw = aba '

so that
if we define &’ as

To be in accord with common usage we now rearrange b according to the
arbitrary scheme:

bn B,
ben B,
ba| = |Bs
bos

bt .
by Bs

We wish to know what operation to perform on B to get B’ corresponding
tod’. If we expand &’ = aba™' it is easily seen that b’ = aB where
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( a%l 0'32 aﬁa 2a1a13  2a1an  2@na0n )
a4 ah  an  2aman  2amanm  2anax
ﬂ'il agz a§3 2azas; 2ag3a01 2az a3
2131 Qd220d32 (d23d33 deatin 2 s3 Gx0n
a = +ana: Ftasen tands:| . (7.2)
Gs@n @i pdn 12 @33 13 @31 an az
+apar +anas +awnan
d11a21 Q12032 (13023 G120m, G130 Ou G
+apan +anax +apan

\

Because we shall often need to form the & matrix from the a matrix we
need an easily remembered mechanism for doing so. We notice that those
are four kinds of terms in the & matrix and that the four kinds can be sepa-
rated from each other by two center lines, one horizontal, one vertical.
This gives us four squares of nine terms each and we can correlate each term
of any square to a term of the a matrix by means of its position in the square.
The terms of the upper left square are the squares of the corresponding terms
of the @ matrix. To form any term of the lower left square we cover the
corresponding term of the ¢ matrix with our finger and multiply the visible
terms of that column. To form any term of the upper right square we cover
the corresponding a term and write down double the product of the visible
terms of that row. To form any term of the lower right square we find the
corresponding a term, strike out that row and column and ‘write down the
sum of the remaining cross products. A study of the following diagram
will help to remember these rules.

Terms are squares
of corresponding
a terms

" Omission products
doubled

Sum of omission

Omission products cross products

Fig. 40

SECTION 8

CrysTAL ELASTICITY

Stress

Consider a point P in a medium acted on by forces. If a small area is
chosen about P the medium on one side of the area exerts a force on the
medium on the other side. The force will depend on the size of the area and
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on the direction of its normal n. We shall choose a triangular area ds such
that an arbitrarily chosen set of mutually perpendicular unit axes x;, x,,
a3 pass through the vertices of the triangle. Let us consider the conditions
of equilibrium of the tetrahedral element of volume so formed. The areas
normal to a1, ¥, x3 are ds; , dsz , dss , respectively, and the forces per unit
area acting through these faces are:

fu f21 fal
F1 = fu y Fy = f22 ) Fy = fiﬂ
fla fna 33

Any body forces (such as gravity) depend on a higher order of smallness
(that is on the volume rather than on the area) and hence are negligible.
Whence for equilibrium:

Fds = FldS]_ + ng.i'z + Fsts

But
ds, = mds, dss = nods and ds; = nyds
"
where | 72 ) is the normal to the area ds. Whence we may write: F = fn
M3

where f is the matrix

Jufie fis
S for fos
fa1 fa2 fas

For the body to be in rotational equilibrium the tangential forces must
balance, hence fi2 = far, fs = faand fo3 = faz .

Transformation of Axes

A change of axes that transforms vectors through F’ = aF changes F =
futoaF = afa”'an so that if f' = afa”* then F’ = f'n’.

In order to relate the stress to other quantities through a matrix we wish
to convert it into a single column matrix. We put fu = X1, foo = Xo,

faz = X3 ,f23 =f32 =X, ,f:u =f13 = X; andfm =f21 = X .
Changing to the X representation we find

where « is the matrix eq. (7.2).
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Strain Theory

j2!
If the dimensions of a body'change, a point p = | $2 ] is moved to p + o,
3
o1
where ¢, = | 02 ]. A neighboring point p -+ # is moved by an amount
73

Optu given by oppu = (Voo)at + op . The movement of p + u relative to
pisa = oppu — 05 = (Voo)eah.

The 9 components of (Vo). describe the sort of movement in the neighbor-
hood of a point; they are the strain coefficients. If the strain matrix is
e= (Ve.).,a transformation ¥ = ax causes this to become aea. = (2Vo.a.).
and if aV =V’ and ac = ¢’ so that o2, = o, we have ¢ = (V'a,). if

€ = @60o ... (8.2)
When we arrange e as a single column matrix e we shall, following custom,
a i) . .
take e, = a;;z B;a?’ g5 = etc. This has the effect of moving the 2’sof the
3 3

matrix to the conjugate position so that, while x transforms as &’ = aw,
e transforms as ¢ = a; 'e.
We shall take tensions as positive stress elements, and elongations as

positive strain elements. The shear strain, e, = (0,0, 0,0, 0 es) becomes

upon rotating through 45° about w3, e, = B _% 0,0,0, O). This shows

2’7
that to be consistent, a positive shear strain about x; must mean an expan-
sion along the line , = #; and an equal contraction along the line x; = —=, .
A positive shear stress is one that tends to produce a positive shear
strain.
By superposing such strain elements we see that the e matrix (useful in
displacement problems) may be formed from the e matrix (which is useful in

stress strain relation) as
€1, %eﬁ %eﬁ
€ = %85 [ T4 . (83)

1 1
266 264 €3

This slightly awkward relation is used solely to make the “work done in
straining” expressible as

If the ¢’s were taken as equal to the ¢’s the work would be: 2W = Xie +
Xoes + Xaes + 2Xues + 2Xses5 + 2Xees . This would be awkward in some
later problems.
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If the scalar W is to be unaffected by a transformation ¢ we must have
W = e.X unaffected. If we write

W = ea 'aX = eca "X’

we have
W =W=eX
if
€ = e
when
e =az € ... ...(85)

This substantiates our previous statement.

Relation Between Stress and Strain

If the strain in an elastic body is proportioned to the stress we may write:

e = SuXi 4+ SwuXe+ - SuXs

e = SuX;+ -
‘Where the S’s are elastic modulii. In matrix notation:
e=38X ... .. (8.6)
Conversely X = §'e  orif S ' =
X=Ce ......coiiiiiiiiiiiin. (8.7)

The C’s are called elastic constants to distinguish them from the modulii .S.

Ase = SX, a;'e = ;' Sa'aX, and since o 'e = ¢, (the representation
of e on a new axis system related to the old one through the matrix a) and
aX is X', then we may write (a; '¢) = (a7 Sa ") (aX) as:

¢ =5'X' where S’ =oa;'Sat .. ... (8.8)
Similarly operating on X = Ce we find
X'=C'¢ where C'=aCo; ................ (8.9)

The energy required to cause the strain e is

W= f X, de. = %X,.e,. = % SuXoXeo oo (8.10)

whence, if W is a perfect differential,
_aw _ dw
aX,0X, dX,0X,

Sra
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This reduces the constants and modulii to 21 of each.

If a transformation is performed that is permitted by the symmetry of
the medium the elastic modulus matrix is unaltered. The monoclinic
If we choose this as x3 and rotate the axes 180°

system has a binary axis.

about this by means of the matrix a

a'Sat = 8.
100 0 00
010 0 00
001 0 00
000—1 00
000 0-10
000 0 01
Su
St
Sis
—Su
Sis

-1
0
0

0 0
—1 0] we have §" =
0 1

S511512515514515516 100 0 00
S51059952352452556| (010 0 00
S5125235535345355 8 001 0 00
S5145255345145455 46 000-=1 00
1555535515555 5 56 000 0-—-10
SIESEBS-?ﬂS#ﬁSWSﬂB 0 0 O 0 0 1
S S —Su =S S
Sea Saz —Sa —Ses S
Siz Saz —Su —Szs S,

—8o —Su Sy Sis —Ss

—Su —Su S S — Sk
S S —Sie —Sss Ses

Equating terms, those whose signs differ in .S and §” must vanish.
Proceeding in this way through the 32 crystal classes we arrive at the
ten following matrices that cover the elastic behaviour of all 32 classes.

Triclinic System

21 modulii
S =
Monoclinic System
x5 axis binary
13 modulii 5 =

Su Sz Sz Su S5 S
S12 Sz Sas Sas Sazs Sas
Sz Sas Saz Sar Sss Sus
S S¢S Su Sas Sas
S S Sss S5 Sss S
Sig S Szs Sas See Ses)

Sn Sz S3 0 0 Spe
Sia Sw Sz 0 0 Sy
Siz So3 S35 0 0 S
0 0 0 SuSis0
0 0 0 SgSi0

(St S S0 0 Ses

The C matrix is
entirely analogous

The C matrix ‘is
entirely analogous
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Phombis System Su S Ss0 0 0

5 modulii 00 0 00 3(511 —Sm)

27

X3 bina.ry Sia S22 S50 -0 0
9 modulii S Ssy So3 S0 0 0 The C matrix is
0 0 0 Syu0 O entirely analogous
0 0 0 0 S0
0 00 0 0 Se)J ..., (8.15)
Tetragonal System Sn SpSs0 0 Sie
x3 a fourfold axis S SuSsz0 0 —Si
(Classes 9, 10, 13) S S Ss0 0 0 The C matrix is
7 modulii 0 0 0 Su0 0 entirely analogous
0 0 0 0 Sy O
Ss —S60 0 0 Ses) ... (8.16)
Tetragonal System SudSeSs0 0 0
x3 a fourfold axis SieSuSs0 0 0
x1 a twofold axis S = Sz S13 S0 0 0 The C matrix is
(Classes 11, 12, 0 0 0 Su0 O entirely analogous
14, 15) 0 0 0 0 Su0
6 modulii 00 0 0 0 Ses) —-oooviinnnn. (8.17)
Trigonal System ) The C matrix
. &y trigonal axis S SeSs Su—Si:0 is analogous
(Classes 16, 17) Sw Su S13 —-5‘14 Szr, 0 EKCEPt that
7 modulii 5= S S Ss 0 0 0 Cig = Ca
- S —S8u 0 Su 0 28y Co = Cu
—Sus Sos 0 0 Su 2514 Cw = 2
0 0 0 2325 2314 Z(Sn —Sm) (Cu —Cm)
| J oo (8.18)
Trigonal System Su S Ss Su 0 0 ] The C matrix
13 trigonal axis S Sn S —Su 0 0 is analogous
a1 binary (Classes S S Sk 0 0 0 except that
18, 20, 21) S = Su —S14 0 .5'44 0 0 Cm = Cn
6 modulii 0 0 0 0 ;5‘44 251 Ces = ‘%
(a.lpha. qua.rtz) 0 0 0 0 2514 2(S|1 -Su) (Cu —C]z)
Jooo (8.19)
Hexagonal System SuSe2S:0 0 0 The C matrix
a3 a sixfold axis S Su S0 0 0 is analogous
x a twofold axis 5= Sz S5 S0 0_0 . e _‘ excePt that
(Classes 19, 22, 0 0 0 Su0 0-- Cas =
23, 24, 25, 26, 27) 0 0 0 0 Su0O_ (Cu _Clz)
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Cubic System (Su Si2 S0 0 0
%1, 2 and a3 S Sy S0 0 0 The C matrix is
fourfold axes S = Si2 S S0 0 O entirely analogous
3 modulii 0 0 0 S40 0

0 0 0 0 Su0

0 0 0 0 0 S oo (8.21)
Isotropic bodies (Sy S2 S20 0 0 The C matrix is
2 modulii SeSu S0 0 0 analogous except

S = S S S0 0 0 that

000 S:00 C: =} (Cu —Cu)

0 0 00 S50

0 0 0 0 0 S8 ...l (8.22)

Sz = 2 (Sn —‘S_u)

Several Elastic Ratios in common use are given here for reference:
Young’'s Modulus: A tension stress X divided by the component of

. . X; .
strain in the direction of X, ¥; = f—‘ . If the coordinate axes are chosen so

that the stress lies along Xy, ¥y = Si . To find the value of ¥ in an arbi-
1

trary direction, (6, ¢) find .S’ for a transformation that puts X’ in the di-
rection (6, ¢)

R
S = a; Sa

Where « is taken as form (21.4). Whence we obtain:

1 44 44 4 222 222 22 4
(Y_ = c15Su + 515052 + 25w + sis262Su + 61625258 + 15152568
X

+ 26151005355 + 2015102525 + 261516252558 + 26151525

+ 2el515251 + 2615505 + 2eisis:0aSu + 26162535

+ 26515581 + 25163555% + 2515062Sm + 261516252585

+ 2616850535 + 261516253525 + 253625352 oot ii it (8.23)

Rigidity Modulus: The shearing stress divided by the component of shear
about the axis of shearing stress. For shear about #;,

e g (8.24)

E =TT 5y

Its value in another directions can be found as ¥y, was above.
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The bulk modulus: The change in volume per unit volume for unit hydro-
static pressure is the bulk modulus, H. For a stress X, = (1,1, 1, 0,0, 0)

e = (Sll+S12+SSI,SIE+S33+S23’SSI+S%+SBE, "')
H = (61 + 2] + €3 = Su+ Szz + S33 + 2312 + 2531 + 2323) ......... (825)
This is obviously independent of the choice of axes.
The Temperature Coefficient of the Elastic Modulii and Constants
If
C=CHth+ W+ + - . (8.26)*
and
S=S++FfHE S PH - (8.27)

(C° and S° denote the values of the C’s and S’s for some standard tempera-
ture £ = 0) then as the transformations are

C'=aCa and S =o;'Sa or

C'=a(C°+ th+ 0 + £ - .

and
S'=o (S°+H+ H +FH -+ ) o™
we see that
C=C" 4+ + (8.28)
S =S8 fH +PHY (8.29)
where
W = ahagete................. ... ... (8.30)
H =o'Ho Vete. .................. (8.31)

That is, the #’s transform as the C’s do, and the H’s transform as the S’s
do. Consequently we may copy their respective forms from the C and S
matrices for any particular crystal class.

When the temperature coefficients of the constants or modulii are known
in the form:

Cij=Co (L4 tTey) oo (8.32)
S =St (L4 tTsy) oo (8.33)

* The n of i denotes the nth power of the scalar ¢; the # of /" is merely another matrix,
it does not mean a power.
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we may write:

k;‘f = C?f Tc” ...................... ) (8.34)

Multiplying (5) by (6) we get:
SC = I = §°C° = §°C° + #(S°h + HC®) + £(S°h* + Hh + K'C°) + -+

whence, for this relation to hold for all values of #:

Sh+HC=0..........cocoiiii.. (8.36)
whence
h = —C°HC®
.................... (8.37)
H = —5°58°
also
S+ Hh+HC =0 ................ (8.38)
so that -

B = hS°h — C°H'C®
H' = HC°H — S°K'S°
From these we can compute the /#’s given the H’s and vice versa.

r SECTION 9
TEMPERATURE EXPANSION

The change in the dimensions of a crystal caused by a temperature change
can be considered as a strain. The shift of the terminus of a vector !
relative to its origin is given from the strain matrix e by the equation Al =

tel
Since e is symmetric a proper choice of axes makes it possible to make the

strain per degree a diagonal matrix,
A, 0 O
Al = Al where A=|0 4, O0]).......... (9.1)
' 0 0 A4

As I and Al both transform as vectors, a transformation ¢ causes 4 to
transform as
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The elongation per unit length per degree in the direction (6, ®) is

cos  sin ¢, sin 8 sin ¢, cos ¢ 4, 0 0 cos fsing - -
Aly, = . . . 0 A4, 0 sin @ sing * -
. 0 0 A; cos = ¢
whence _
Alg, = A, cos” fsin’ ¢ + A, sin® §sin” ¢ + A4; COS @i (9.3)

The strain can easily be extended to a function of £ and ¢ as follows:
Al=dAL+EBL ... (9.4)

Applying the prefactor @ to both sides and putting the idemfactor in
between A and / and between B and [ in the form I = a"'a we have:

aAl = t(ada Val + F*(aBa)al or
Al =t A"V 4 Bl where
A" =ada B =aBa ... ... ............ (9.5)

SECTION 10

TEMPERATURE VARIATION OF THE ISOTHERMAL ELASTIC MODULII AND
STRESS VARIATION OF THE TEMPERATURE EXPANSION COEFFICIENTS

We can write the isothermal elastic modulus matrix at temperature
8+ tas

S =S H. (10.1)
and the coefficient of temperature expansion at constant stress X as
A=A+ LX. . .................... .(10.2)

Let us take a unit cube of crystal about the cycle indicated in the table;
starting with the cube in the unstressed unstrained state at absolute tem-
perature 6:

Operation ig‘%‘t‘:&; Change in Strain Temp.
Heat at zerostress. .. ............... 0 tA° ftod+¢
Apply X isothermally................ X (S +tH)X 6+t
CoolatConst. X.................... 0 —(d4° + LX) f+itof
Apply —X isothermally.............. —X —S5X 0

If we sum the strain changes in this cycle to zero we have
H=1L
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so that we may write

This tells us that we may determine the temperature coefficients of the
elastic modulii by measuring the effect of stress on the temperature ex-

pansion coefficients.
In a similar way we find that if the isothermal elastic constant matrix at

temp. 6 -+ £ is:

C'=C"4+th ..................... (10.4)
then the relation between temperature and stress at constant strain e is
X=iIB.........ooo.oiiiii (10.5)

where
B=B"4he ..................... (10.6)

The Difference between the Specific Heats at Constant Stress and Constant
Strain

Writing for the specific heats at constant stress and at constant strain
o? and ¢”, respectively, we can perform the following cycle:

Operation ig]gﬁ?eg; iE%‘:ﬁg‘]’] Temperature Work In Heat Out | Entropy
Heat at zero stress - tA° ftod+¢ 0 —pla? —pla?
. 84 ¢/2
Restore zero strain
. - Q
> — — o — o -] e
isothermally ..... t4 0+t 2AEC'A Q T+
. plo?
Cool at zerostrain , .| — 0 8 + ttab 0 pla® —
o1l

Equating the sum of the entropy changes to zero:

£ > v
Q= (1+ % "1 )pt(a a’)
Equating the work in to the heat out:

(o — o) =§J§Czi°................(10.7)
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Isothermal and Adiabatic Elastic Modulii

Let us take a unit crystal cube at temperature 6, apply any stress X
adiabatically, heat it to bring the temperature back to @ at constant stress
then release it isothermally. The cycle is analyzed in the table:

Operation E_E ,_'E‘ Change in Strain | Temperature Work In Heat Out %’i‘lt;:;z
&

Apply X

adiabati-

cally..... X SaX ftod — ¢ 3 X S X 0 0
Heat to f at - - —tpa?

const. X .| O | #A°+HX) | 08— ttof| tX.(A°+ HX) | —tpao® =12
Remove X .

isother- )

mally ....|—X —SieX ] —4X, S X Q Q/e

Summing the strains to zero:
(8 — §9X = ¢A° + HX)

If we equate the total entropy change to zero we obtain an expression
for Q that can be substituted in the relation “work in = Heat out.” This
gives us:
tzpo"

0

-3 XS — SVX + 1X(4° + HX) = }
and from these two expressions we derive, writing ¢ for §* —S":
= Ez_ (A° + HX)(A° + HX)............. (10.8)
which is, to the first order of the small quantities X: 7

¢ = L AAS42EXAS. ... ... (10.9)
pa

and since X = Ce we have also

Wip (A° + 2HCOA® .. .. ... ...... (10.10)

Whence we see that as the stress approaches zero as a limit ¢ approaches

¢° = L I°A2. 1f we write similarly C'* — C* = ¢ we have multiplying
. po .

5% = 5"+ ¢ by C” = C* + ¢ and dropping higher orders of small quan-

tities:

Y= —CC ¢ C" (10.11)
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For example we have for quartz at 20° Centigrade

(14.4)

14.4

. 7.8

293 X107
o =X 1o |(14.414.47.80 —00
# = resxraxio| o | :
0

L0 )

3.13 3.131.69 000

3.133.131.69 000

1.69 1.69 .907 0 0 0

|1 . ~15
=10 0 0 000 10 and as

0 0 0 000
0 0 0 000

1298 —166 —152 —431 0
—166 1298 —152 431 0
—152 —152 990 0 0
—431 431 O 2005 0
0 0 0 0 2005 862
0 0 0 0 802 2928

whence ¢u = Sij (1 — .00241)
o = Sis (1 — .0189)
¢z = Sis (1 — .0111)
b = S35 (1 — .000917)

(== Nl

§% =107" X

For Rochelle Salt we have:

59.9
38.1
6= 203X107™ |44.8] (59.938.144.8 00 0)
1.79 X 15.5 X 10° | 4
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4690 —795 —2180 0 0 0
—795 3205 1691 0 0 0
A — |T2180 1691 2815 0 0 0 | X107°
500 = 0 0 0 6060 0 0O
0 0 0 0 3060 0
0 0 0 0 0 8020
So that
éu = Sii (1 — .0080) ¢ = Sis (1 — .0305)
¢n = S33 (1 — .0050) ¢ = Sis (1 — .0103)
o = S35 (1 — .0076) ¢ = S35 (1 — .0107)
Gay = S;:
dss = Sis
des = Sig

At the temperature of maximum piezo activity the components of ¢
for Rochelle are smaller by about 3;%,.

SECTION 11
TeE PIEZO-ELECTRIC EFFECT

Some crystals develop an electric charge when subjected to mechanical
stresses. As far as the effect is linear it may be expressed by:

Dy = duX) + dpX, -+ - diXe
Dz = d21X1 + T it ter e e mamaanse s (111)
Dy =duX, 4+ --- dyxXg

or in matrix notation

where the 18 constants d;; are called piezo-electric constants, and D is the
electric induction.

On rotating the axes by means of a transformation a, the vector D be-
comes D’ where I’ = aD. The stress transforms as X’ = aX whence D =
dX becomes D' = ada'X' or D' = d'X’ where:

d =ada™ -+ . (11.3)
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If transformations permitted by symmetry are performed, the d matrix
is unchanged. Class 3 has a binary axis only, if we choose this as x; and
perform the transformation

-1 00
a = 0 —1 0] wefind:
0 01

100 0 OO

St 00\ fdudndududide\ (000 000
d= 0—10 day dog dog doy dos ds

0 01/ \do du du dy dss d) |000 7L 00

' ° 000 0-10

000 0O 01

—dn —dp —dy dys dis —dis
d= _d21 —dnp —dza daa das — dos
da s du —das —dss ds

For this to be consistent with the original d matrix the terms with conflicting
signs must vanish.
Applying similar analyses to each of the 32 classes we arrive at the set of

matrices:

Class 1 (asymmetric) du dyz dia du dis dis
No symmetry d = dm dzz dga d24 dzs d26 (11.01)
da ds2 da dy dgs dss
Class 2 (triclinic pinacoidal), center of symmetry d = 0.......... (11.02)
Class 3 (monoclinic sphenoidal 0 0 0 dudis 0\ (sucrose)
g is binary d=|0 0 0 doydy0 (11.03)
dal d:tﬂ das 0 0 daﬁ '
Class 4 (monoclinic domatic) du dip ds 0 0 dis
3 plane is plane of d=|dydnda0 0 ds| (11.04)
symmetry 0 0 0 dudsO
Class 5 (monoclinic prismatic) center of symmetry, d = 0........ (11.05)
Class 6 (Orthorhombic 0 0 0 du0 0\ (Rochelle)
bisphenoidal) d=(0 0 0 0 dys O (11.06)
X1y Yo, X3 bma.ry . 000 00 da(;

Class 7 (Orthorhombic
' Pyramidal) 0 0 0 0 dis0
x3 binary, x; and x d=[0 0 0 du0 0] (11.07)

planes of symmetry dy; dn ds 0 0 0O



MATHEMATICS OF PHYSICAL PROPERTIES OF CRYSTALS 37

Class 8 (Orthorhombic bipyramidal), center of symmetry, d = 0 (11.08)

Class 9 (Tetragonal 0 0 0 dudsO
bisphenoidal) d={0 0 0—dydu0 (11.09)
a3 is quaternary alternating dy —du 0 0 0 dy

pyramidal) 0 0 0 dig —du0

Class 10 (Tetragonal 0 0 0 du ds0)\
d (11.10)
3 is quaternary ds ds dss 0 00

Class 11 (Tetragonal 0 0 0 ds0O O
scalenohedral) d 00 0 0 du (11.11)
x3 quaternary, x; and xs \0 0 0 0 0 ds
binary
Class 12 (Tetragonal 0 0 0 de 0 O
trapezohedral) d=1{0 0 0 —duo (11.12)
x3 quaternary, x; and x» 0 0 0 0 0 0
binary
Class 13 (Tetragonal bipyramidal) center of symmetry,d = 0 (11.13)
Class 14 (Ditetragonal 0 0 0 0 ds0
pyramidal) d 0 0 0 ds0 O (11.14)
X3 quaternary d31 dSl d33 0 0 0

a1 and a, planes of symmetry

Class 15 (Ditetragonal bipyramidal) center of symmetry,d = 0 (11.15)

Class 16 (Trinonal dy —dn 0 du  dis —2da
pyramidal) d = —dm dm 0 d15 —'dlq, "'2d11 (11 16)
a3 trigonal dyy  da dg 0
Class 17 (Trigonal thombohedral) center of symmetry, d = 0 (11.17)
Class 18 (Trigonal) dy —dn 0 dys (Quartz)
trapezohedral) d=1{0 000 —du —Zdu (11.18)
a3 trigonal, «; binary 0 0 00 0
Class 19 (Trigonal bipyramidal) 1 —dy 00 0 —2dyp
a3 trigonal, a3 plane of d = dzz de 000 —Zdu (11.19)
symmetry 0 0 000

xy trigonal, x4, plane of d= dos dos 0 di5 0 line)

Class 20 (Ditrigonal pyramidal) ( 00 0 0 dys '_Zdzz) (tourma-
symmetry dal d31 das 00 (1120)

Class 21 (Ditrigonal scalenohedral) center of symmetry, d = 0 (11.21)
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Class 22 (Ditrigonal

bipyramidal) 1 - du 000 0
a3 trigonal, x; plane of d=1|0 0 000 —2dy (11.22) .
symmetry 0 0 000 O
a2 plane of symmetry
Class 23 (Hexagonal 0 0 0 du dis 0
pyramidal) d=|0 0 0 ds —du 0] (11.23)
Xg Hexagonal d3l dal d33 0 0 0
Class 24 (Hexagonal 0 0 0 du 0 0
trapezohedral) d 0 0 0 0 —dy 0] (11.24)
x3 hexagonal, x; binary 0 0 0 O 0 0
Class 25 (Hexagonal bipyramidal) center of symmetry, d = 0 (11.25)
Class 26 (Dihexagonal 0 0 0 0 ds O
pyramidal) d=(0 0 0 ds 0 0] (11.26)
x3 hexagonal, x; plane dyg du ds 0 0 0
Class 27 (Dihexagonal bipyramidal) center of symmetry, d=0 - (11.27)
Class 28 (Cubic tetrahedral- 0 0 0 du 0
- pentagonal-dedoca- d={0 0 0 0 du 0 (11.28)
hedral) 0o 0 0 0
a1, %2, ¥3 binary
Class 29 (Cubic pentagonal-icositetrahedral) d = 0 (11.29)

Class 30 (Cubic, dyakisdodecahedral) center of symmetry, d = 0 (11.30)

Class 31 (Cubic, hexakis- 0 0 0 du O O
tetrahedral) d 0 0 0 0 du O (11.31)
%1, ¥2, 43 quaternary 0 0 0 0 0 d

alternating
Class 32 (Cubic, hexakis-octahedral) center of symmetry,d = 0 (11.32)

Whenever a center of symmetry exists the piezo-electric property vanishes
since a center of symmetry requires @’ = (—I) dl = —d = —d'. Also
d = 0 for the pentagonal icositetrahedral class.

‘Classes 6, 11, 12, 24, 28 and 31 polarize only by shear.

Classes 1, 3, 4, 7, 10, 14, 16, 20, 23, 26 can be polarized by hydrostatic
pressure. As an example of this let us consider tourmaline (which is ditri-
gonal pyramidal). For hydrostatic pressure, X; = X, = Xy, Xy = X5
= X = 0, whence from the polarization stress matrices we find, D, = 0,
Dy = 0 Dy = (2ds1 + dos) X pressure. As dgy = 0.75 X 108 and dy = 5 8
% 10™* for tourmaline, we get 7.3 abcoulomlos per cm” per dyne per cm’,
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SECTION 12
TaE CONVERSE PIEZO-ELECTRIC EFFECT

A stress X causes an electric induction
D=dX.......................(11.2)

and a strain

If the charge is allowed to leak away a further strain occurs, at constant
stress. This is the strain that would be gotten if the stress were originally
applied with surfaces rendered conducting:

In the first sort of stress, the work per unit volume done on the crystal by
establishing the stress X is:

W =3X.e=3X.SX ................. (8.4)
The energy stored electrically in the medium is:
Weg=2aDk™D ................... (12.2)

while the work done on a conducting crystal is:
W =31X.5°X....................(12.3)

If a crystal be stressed in its insulated state by expenditure of energy W,
the charges then absorbed by an external circuit taking up energy Wz,
the strain changes from e to ¢° at constant stress so that the stresses perform
additional work

Wa= X — ) = Xu(S° — X
and the crystal is left containing energy W°. Whence
We=W-—=Wg+ Wa................. (12.4)
or:
1X,.5°X = 31X,.5X — 2xD .k 'D + X.(S° — S)X
so that:
XA(S° — S)X = 4xDk"'D
If we substitute D = dX we find
X(S° — S)X = 4xXdk"dX
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so that:
S —S=dndkd .. ................. (12.5)
The change in strain caused by rendering the surfaces conducting is:
e —e= (5= SX =4drdk7dX ........... (12.6)

If the crystal be now insulated and the stress removed, an induction of
opposite sign will occur and because of the assumed linear dependence of D
on X the new induction will be equal to the negative of the previous one.
The induction D = —dX indicates an electric field:

E=4xk?'D=4rk™dX .................. (12.7)

Also, the strain will alter by an amount — e/, where, since the action takes
place with non-conducting surfaces:

¢ = SX

This leaves a strain on the crystal, of amount:

From (12.6), (12.7) and (12.8) it follows that:
¢ = dE. (12.9)

As the medium is in just the condition that an electric field E would put the
unstressed medium, (12.9) is the equation of the converse piezo-electric
effect. It is to be noted that the set of constants that relates polarization
and stress is the conjugate of the set that relates electric field and strain.
For convenience in notation the converse effect will be written as

e=gE .. ... ................. (12.10)
where
E=toe (12.11)
Rewriting (13) as o, 'e = (o 'ga")aE we see that
¢ = ¢F
where

g =al’ge . ... (12.12)
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SECTION 13
THE CONVERSE PIEZO-ELECTRIC EFFECT AS A Non-LINEAR FUNCTION

If the strain of a crystal is not strictly a linear function of the electric field
causing it we must relate the components of strain to field terms of the sec-
ond power as well as to first power terms. That is, the equation e = gE
(which gives the strain e in terms of the electric field E through the 18
constants g) must be modified to include terms E;E;. All such terms are
included in the symmetric matrix (E E.).

A transformation a that replaces E by a.E’ also replaces E. by E.a so
that (E E,) is replaced by (a.E'Ela), that is (E E.) being self-conjugate,
transforms similarly to the stress matrix. We may rearrange this as a one
column matrix similar to the stress matrix X, as follows:

3\

(B2
E}
E} = :

EE) = =F 13.1
(EE.) E,E, (13.1)
E3E,
E\E, )

Y

We may now relate the strain to E and E through the two matrices g
and G:

If transformations permitted by the symmetry of the crystal are per-
formed, g’ must equal g and G’ must equal G, this allows us to simplify the
matrices; g is no different than before and hence vanishes for all types having
centers of symmetry (and for the pentagonal icositetrahedral class).

Rewriting (1) as o;'e = (a7 'ga )aE + o; 'Ga 'aE we see that

e = glEi + G'E

where

g' — ac—lga

G =a'Ga™ (13.3)

The matrix G transforms as the elastic modulii matrix does but G;; #
G;i. Applying G’ = a.Ga we arrive at the set of matrices that follow



42 BELL SYSTEM TECHNICAL JOURNAL

Triclinic (36 consts) Monoclinic (20 consts)
Gun Gr G Gu Gis G GuGre Gz 0 0 Gi
Gy Gu Gaz Gt Gas G Gy Gy Gz 0 0 G
Gal G:'!Z G33 G3( Gaﬁ G3G Gsl 632 Gaﬂ 0 0 G35
Gu Gu G G G5 Ga (134) 0 0 0 GuGg0 (13.5)
Go Goz Gas Gss Ges Ges 0 0 0 GsauGgp0
Ga Ge Ge Go Gos G Go G Gz 0 0 Ggs
Orthorhombic (12 consts) Tetragonal Classes 9, 10, 13)
(10 consts)
GuGuGs0 0 0 Gu GeGs 0 0 Gu
Gz] G22 st 0 0 0 Gu Gll Gm 0 0 _Glﬂ
Gy G G 0 0 O Gun Gy G 0 O 0
0 0 0 Gu0O O (13.6) 0 0 0 GuGs O (13.7)
0 0 0 0 G0 0 0 0 —GiGu O
0 0 0 0 0 Ge Ga—Gg 0 0 O Ges
Tetragonal Classes 11, Trigonal (Classes 16, 17)
12, 14, 15) (7 consts) (10 consts)
GuGe G0 0 0 Gu GuGn Gu—G3x0
GeGnuGus0 0 0 Gz GuGp—Gu G0
000 Guo 0 |B¥| GiGu0 Gu GG (13.9)
000 0 GuO —Gy Gg 0 —Gis GuGa
000 0 0 G 0 0 0 2 26Gu2(Gu—GCa)
Trigonal (Classes 18, 20, 21)
(8 constants)
Gu GuGs Gu 0 0
Guo Gn G —Gu 0 0
Gun GuGm 0 0 0
Gu —Gu 0 Gu 0 0 (13.10)
0 0 0 0 Gy 2Ga
0 0 0 0 2Gu 2(611 "-Gﬂ)
Trigonal (Classes 19, 22)
(6 constants)
Also Hexagonal (Classes 23, 24, 25, 26, 27)
Gu G G0 0 0
G Gu Gz 0 0 0
Gs[ Ga], G.';:; 0 0 0 (13 11)

00 0 GuO 0
00 0 0 GuO
00 0 0 0 2(Gun-—Gu
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Cubic (Classes 28, 29, 30, Isotropic Bodies
31 and 32) (5 Constants) (2 Constants)
G2 Gu G0 0 0 G2 Gu G000
G GaGn 0 0 0 (13.12) Gp G Gn 000 (13.13)
0 0 0 Gu0O O 0O 0 0 GOO '
0 0 0 0 GuO 0 0 0 0GO
0 0 0 0 0 Gau 0O 0 0 000G
G = 2(Guy —Gu)

According to this analysis, all bodies suffer a change in dimensions when
subjected to an electric field. These strains resulting from a field are
generally much smaller than those strains ¢ = gE present only in crystals
lacking a center of symmetry. For example, quartz has a strain of about
6.5 X 107° cms/cm/ab volt. Glass in a field of 1000 practical volts per cm
has a strain of about 4 X 107 in a 100,000 volt field it has 4 X 107
Rubber in the 1000 volt field strains by about 7 X 10"% and in the 100,000
volt field by about 7 X 10~ The 1st order quartz strain in these fields
would be about 2.2 X 107 and 2.2 X 107 respectively.

THE SECOND ORDER PIEZO-ELECTRIC EFFECT

If the induction stress relation is not strictly linear one can assume the
induction to depend also on second order terms of the stress:

D = dX + p (XX,)

where (XX,) is a single column matrix formed from the 21 elements of
XX, and p is a matrix of the 63 elements py,;1 . .. pas3.

Since X transforms as X' = aX’, (XX.) transforms as X'X, = aXX.a..
In the same way that o was formed from a we can form a matrix & that
transforms the single column matrix (XX,) through (XX,)' = &(XX.) .

aD = ada™ X + ap(a) " a(XX,) or
D' = d'X + p'(XX.)
where
d' = ada™ and P = ap(@)”

The first order effect is the same as before. With the relation p’ = ap
(@' we could perform the operations of symmetry permitted by the 32
crystal classes and obtain the reduced matrices. However since & has 484
elements we shall limit ourselves to crystals with centers of symmetry.

As X is unchanged by an inversion through the origin, « is the idemfactor
for this transformation and @ is —1I, also (&) = I. Therefore D' = —D
= D so that D vanishes.
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It is to be noted that although there is a sort of reciprocity between the
first order piezo effect and the converse effect, in that the matrices for one
are the conjugates of the matrices of the other, there is no such reciprocity
in the second order effects: if a center of symmetry exists no polarization
can be brought about by stress either as a first order effect or as a second
order effect; if a center of symmetry exists an electric field can cause a
strain through the second order effect but not through the first order effect.

Dielectric Constants at Constant Stress and al Constant Strain

Let us consider a unit crystal cube, initially unstressed, unstrained and in
zero electric field. We write £” and &” for the dielectric constant matrices
at constant stress and constant strain, respectively, C* as the elastic con-
stant matrix at constant electric field E, C° as the same for zero field. We
study a cycle consisting of a strain caused by application of an electric field
E at zero stress followed by a stress applied at constant E to reduce the
strain to zero and completed by conducting away the electric charges at
zero strain so that the body is left in its original state. The cycle is de-
scribed by the table:

Operation | Change | Change | @ @ e erent | in Field Energy Put In
Apply E ..... 0- | &E 4% k?E EZ EdoE
Apply —c....| —CH.E | —dE | —g= (b — BIE o} Eud CFd,E —

417' E(k* — B)E
Apply —E...| CdE | 0 - % WE —E- 81—1 EJE
whence C = C*; also
B —F =4rdCd,...... ...t (13.14)

SECTION 14
Pyro-ELECTRICITY

1f the electric polarization brought about by heating some kinds of crystals
is simply a function of the uniform temperature change, that is if this
polarization can be produced by taking the whole body quickly from the
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uniform temperature # to the uniform temperature / -+ # the pyro-electric
effect could be described by the equation:

Dy p1
D) =tlp)o (14.1)
D,

where p is the pyro-electric matrix.

This can be approached in another way by considering the polarization
as due to the uniform strain. We may hence write, since X = Ce: (i.e .
stress matrix = elastic constant matrix times the strain matrix)

P =dX = dCe
where e is the strain brought about by the temperature change ¢ If
4, 0 0
A=|0 A, 0 | isthe temperature expansion matrix we have:
0 0 Aa N
Al‘
A
Asl
0

Now since @ has 3 rows and the A4 matrix has but one column the product
dCA has 3 rows and one column so that we may define p as dCA.
As D of D = ip transforms by D’ = aD, so does p:

p' = ap
When a center of symmetry exists a permitted transformation isa = —1I,
whence p = —p’ = —p so that p = 0. No pyro-electric effect (on this

theory) could exist for a crystal with a center of symmetry.
If a binary axis exists and is chosen as x; we have

2 -1 00\ /o —p
p2| = 0—-10)o)=|—p
3 0 01 3 P3,
-whence for this case
0
p = 0 ). ... . fev i (14.2)

3,

If another binary axis exists at right angles to this one we find p = 0.
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This is seen seriously to limit the number of classes showing this kind of
pyro-electric effect. In fact we find p = 0 for classes 2, 5, 6, 8, 9, 11, 12,
13, 15, 17, 18, 19, 21, 22, 24, 25, 27, 28, 29, 30, 31 and 32. The expression

0
p = | 0 ) describes the pyro-electric effect in the classes, 3, 7, 10, 14, 16, 20,

P1
23 and 26, while the expression p = | p2 | describes class 4, and only class
0
1 is described by
P1
p=\p] . (14.3)

It is to be noted then that this theory excludes many classes ordinarily
described as pyro-electric, such crystals as quartz in Class 18 for example.
Consequently it would seem that whether or not this effect exists we must
seek elsewhere for the explanation of the effect in quartz.

The effect can easily be explained as due to non-uniform temperature,
which causes stress which in turn give rise to electric phenomena in piezo
active crystals. For example a suddenly chilled crystal has its outer layers
in a state of tension. This would produce just the pattern of positive and
negative charges that one actually observes. As to whether the first effect
exists, much argument between Lord Kelvin and others seems to have left
the question still uncertain.

In pyro-electric crystals we would expect to find a difference in the piezo
constants measured isothermally or adiabatically. If a temperature
change ¢ causes an electric displacement D = pt the application of an electric
field E should cause a temperature change ¢ given by a relation such as:

Also the temperature coefficient of expansion, 4, (for a crystal with faces
rendered conducting) would differ from the coefficient A ; (for a crystal with
an insulated surface).

If a crystal at temperature /o has suddenly applied to it a field E the
temperature rises to /o + ¢E and the crystal strains, because of the converse
piezo effect, by amount e = g, E where ga is the adiabatic converse piezo
matrix. If the field is now removed isothermally a further strain gE
takes place. If the faces are short-circuited and the temperature restored
to ¢y a further strain A,t = A,oF takes place and the crystal is then in its
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initial state. Equating the sum of the strains to zero we find (gz — g:)
E = AE or

Let the initial state of a crystal be, temperature = f;, stress, strain and
field = 0. If the (electrically insulated) crystal is heated by amount ¢,
a strain A is caused and also an electric displacement D = pt. There now
exists an electric field E = rrk 'pf. Let this field be discharged at con-
stant temperature, giving a further strain of g;E = 4xg;k 'pi. The crystal
is now short-circuited and if the initial temperature is restored a strain
—A,t follows. The crystal is now in its initial state. If we equate the
sum of the strains to zero we find:

Ai— A =dmgk™p ... ... (14.6)

SECTION 15
TaE THERMO-ELECTRIC E¥FECT IN CRYSTALS

It should be possible for an electric field to be set up by a temperature
gradient, Let us assume that the vector T is the temperature gradient and
is related to the vector field E through the matrix II by means of the equa-
tion: :

Iy Ty Ty
E =0T where II = |y Mo Mo .. ........ (15.1)
Il3; I Il

Examination shows that IT transforms through
0'=alla,....................... (15.2)

For Class 1 the IT matrix has the 9 terms of (15.1). Class 2 has a center of
symmetry. For a center of symmetry ¢ = —7I but @ = —17 causes no
change in (15.2) so that class 2 has 9 constants. The thermo electro effect
is not killed by the presence of a center of symmetry. The ordinary thermo-
electric effect of metals is a case in point.

-1 00
If a3 is a binary axis @ = 0 —1 0] and II reduces to
0 01
My Il O
I = H21 Hzg, L (153)
0 0 Iy

Examination shows this form to answer for classes 3 and 4 and 5.
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If a; and =3 are binary (15.3) reduces to

Hu 0 0 :
O=(0 M0 }...........c...... (15.4)
0 0 Il
which described classes 6, 7 and 8.
For x3 quarternary alternating:
Iy Ie O
H = —Hu Hu O .. (155)
0 0 g

This is found to handle classes 9 and 10. If x3 is quarternary alternating

and x; is binary:
M, 0 0
M={0 Hu0 J..oovvveieiiiii.. (15.6)

0 0 Il

which is found to cover classes 11, 12, 13, 14 and 15. For classes 16, 17,
19, 23 and 25 II reduces to the form (15.5).

If xs is trigonal and x, is binary the matrix is (15.5) which then handles
cases 18, 20, 21, 22, 24, 26 and 27.

For cubic crystals, not only are xx, and x; binary as for matrix (15.4)

1 010
but the vector [ 1] is an A3, for which a = (0 0 1) whence, for classes
1 100
28, 29, 30 and 31 we find the matrix:
My 0 O
I = (0 I, 0 ) ................... (15.6)
0 0 Iy :

Reports of a pyro electric effect in quartz should probably be attributed
to nonuniform heating exciting the piezo electric effect. Reports of a pyro
electric effect in such crystals as topaz and colemanite which have a center
of symmetry and hence cannot be piezo electric should probably be at-
tributed to this thermo electric effect.

SECTION 16
Tae PROPAGATION OF LIGHT IN CRYSTALLINE MEDIA

Mazxwell’s equations are:
CV X B=4xj
CVXE=—-B
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when C is the velocity of light in free space, E is the (vector) electric field,
j is the induction current and B is the magnetic induction. In a crystalline
medium the current is given by 4nj = ERE where & is the dielectric constant
(matrix), whence:

CVYXB=¢EkE. ................... (16.1)
CVXE=—=B.................... (16.2)
As the divergence of the Curl is always zero:
VE = V.j =0
................... (16.3)
VeB =0

applying % to (16.1) and substituting (16.2) in the result:
—C'V X VX E = kE or
CAVY — VVIE=kE......... ... .. (16.4)

We shall try as a solution:
E = B ™™ (16.5)

where E, is the vector amplitude of the electric field, 7 is 4/ —1, r is the

radius vector from the origin to any point, ¢ is a constant, » is the unit

normal (at r) of surfaces of equal phase, and w is 27 times the frequency of E,
Substituting (16.5) in (16.4) we find:

E—nBn=""kE....... .. ... (16.6)
q°c

Examination of (16.5) shows that ¢ is the phase velocity along n. Writ-

ing 4wk} for E and V* for % we have:
q

k_l'-n'kﬁln=12' 16.7
f j Je 62]................( .)

This equation is independent of the absolute value of j so let us restrict 7
to being a unit vector.

VkE = 0 = VREwE ™ ™" = j nige'amer—en
whence Jen =0 . (16.8)

That is, the current is always normal to the direction of propagation.
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Multiplying (16.7) thru by the prefactor j. and cancelling the term in
jen we have:

NP
hkb=?””“m”“““m{m%

This tells us that the velocity is a single valued function of the direction
of the current.
With the idemfactor I, (16.7) may be written:

a V. "y
k _ﬁI 7 =n(k " §)en
2

-1
If we multiply this thru by (k_l — % I ) we get

2

Vz -1
p{w—gonwwmmmm”mm
Multiplying this thru by #. and dropping the scalar factor (k7' §)en:
V! -1
mG*—?J)n=0”“”m““(mn)

If the axes are so chosen that k is a diagonal matrix (16.9) and (16.11)
become:

__ncz —u k-_ﬂ., _k“ ................ .
n-z ”2 nﬁ
L S 4+ i =0........ (16.13)

1 _ o1 v 1 7
b C kx C ks C
Examination of (16.13) shows that (16.11) must have two values of
V? for each value of the vector normal n. As 7 is a single valued function
of j there must be two distinct values of j (j* and j'"" say) for any particular
n; and given n, only waves having their current vectors in the directions
of j/ and j can be propagated. A ray in the direction N but not having
its j in one of the directions j* or j will be broken up into two components
having their current vectors along j' and j” respectively.
Tf the velocity V1 corresponds to j' and V3 to 7" we have by means of
(16.10) since »n' = #n'":

Vz -1 V2 -1
jﬁ:m@ﬂl£0(w—£0nwwmwﬁm

[

(The quantities in the braces are scalar)
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By means of the identity
W' =) = —uu — o)’

since

PR 1 N Vi — Vi
k —?Z-I—(k _FI =—62—I

the idemfactor can be multiplied into an adjacent matrix giving

2 —1 2 -1
e (k_l — %—11) (k_l - %I) n

& ( » VE )—1 . v: A\
= n |k — = — (s =22
R 7, 2 I (k = ) n

=0—-0=0

so that j* and 7/ are mutually perpendicular.

SECTION 17
TaE ErecTrO-OPTIC EFFECT

The velocity of light in a crystalline medium is a single valued function
of the unit current vector j

I:—:=jck_‘j...‘................(16.11)
where ¢ is the velocity of light in vacuo and £ is the dielectric matrix, also
§ = D where D is‘—fg.

We developed the induction as a linear function of the electric field,
deriving the relation:

If the induction is not a linear function of the electric field we can improve
on eq. (6.1) by adding second order terms:

4xD; = kaFy+ koFy + kaEs + kaFi + ko + kaFj
+ 3 BBy + § haFaFEs + . . . L hyE\E,
or
4rD; = (ko + haFy + 3 hisFs + 3 hisEs) Fy
+ (ko + 3 hisEr + hoks + F huks) B,
+ (ks + 3 hisEy + 3 haBa + haEs) Ey.............. (17.1)
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Examination of (17.1) suggests that we might consider the &’s as being
lineraly modified by the field. Writing % as a single column matrix:

kn} K,
b K,
ks

ks
kla .
\klza \KG

we may write
K=K°+hE. ....................... (17.2)

where K° is the dielectric matrix for vanishingly small fields.
We can develop the modified reciprocal matrix in the same manner:

K7t kn

1 —1

AT il I

E' = |kn ko knm K'=|" | =[5

-] —1 —1 . k22

kla k23 kaa -1

. km

K3 Fi2

where

KY=K"43E ... ................ (17.3)

It is to be noted that K" is not the reciprocal of K but merely a symbol
for the single column matrix formed from k7" in the usual way. Taking
reciprocals of both sides of &' = aka. we find (") = ak'a,. That is,
k™' transforms exactly as did 2 Whence, K™ transforms exactly as K
does, i. e.

KV = aK_I
We can rewrite (17.3) as
aK'=aK" + (aza)aE
or

K™Y = (K™Y 4+ 7E

In case @ ' = ac the z's transform as do the conjugates of the piezo-
electric constants, d. Of the transformations permitted by the symmetry
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of the 32 crystal classes only those of the trigonal and hexagonal systems
fail to have @' = @.. These 12 classes must be examined individually but
the other classes may have their z matrices copied from the corresponding
d. matrices. :

Applying z' = aza. for a rotation of 120° about x3 we find for class 16

Zn T2 213

—Zun % Zi3

0 0 Z33

z = Z41 Z51 0
z51 —2a 0

—2Zw —2n 0

The remaining 11 classes may be derived from class 16 by operations for
which either a ' = a, or a center of symmetry exists. Consequently, we
may form our z matrices from the d.’s in all cased if we leave out the 2’s.
The electro-optic effect can be put in terms of the polarization instead of
the field by substituting in (17.3).
E = 4r (k=)' P whence
K '=K 4P ... . . (17.5)
where

n=4drs(k — )7

Conversely 1

g=-—-n(k—1)
4r

The n matrices transform exactly as did the z’s and hence may be formed
from the d.’s but omitting the 2’s.

SECTION 18
THE PiEzo-OpTicAL EFFECT

If the dielectric constants of a crystal are changed by the application of
stress, this may be represented by:

K'= (K" 4+aX. ... (18.1)

where the 36 constants my * -+ me are stress-optical constants.
We may then form £ as

ki + miX o kw4 weXs B4 msX: '
E =k 4 Xy, km o+ miXs,  km A maXe) oo (18.2)
ks + Xy ko4 maXs ka4 mX
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As the velocity of a light ray of unit current vector j is given by

2

We can, by (18.2) and (16.9), compute the change in the velocity caused

by the stress, if we know the constants .
Altering (18.1) to aK ™ = oK™ + ara'aX we see that:

KV = KY 4+ X' where o' =ama '......... (18.3)

The alteration of K ' can be expressed as a function of the strain by
substituting ce for X in (18.1).

K'=K" 4+ me=K"+me............ (18.4)
m = c, T I M e (18.5)

Operating in (18.4) as we did on (18.1) we find m transforms as
M= amae. (18.6)

Applying the crystal symmetry operation to these matrices shows that
they reduce to the following

Triclinic system (1&1 T2 M3 T4 T15 T16
36 constants g1 a2 Te3 o4 Wap 26 The m matrix
M3l T3z T3z T34 Wb 36 is entirely
el T3 M43 Tad 45 0 analogous
51 M2 o3 Wod W66 66
61 o2 63 oA 65 TE6) o v vvevrvnneenns (18.7)
Monoclinic system (7 72 13 0 0 )
a3 is binary o T s 0 0 e The m matrix
20 constants ma w2 maz 0 0 s . .
0 0 0 0 is entirely
0 0 0 myms0 analogous
L"rﬁl a2 Te3 0 0 1I'|sa‘ ................ (188)
Orthorhombic T30 0 0
system a3 oy w3 0 0 0 The m matrix
is binary T T2 m3 0 0 0 is entirely
12 constants 0 00 740 O analogous
0 00 0 mw0 (Rochelle salt)

0 0 0 0 O mes) ovvvenenennn (18.9)
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Tetragonal system
a3 is a four-fold
axis
(Classes 9, 10
& 13) .
9 Constants

Tetragonal system

x3 is a four-fold axis

1 is a binary axis

mm mepws0 0 18
2 muT0 0 —mp
mn  w; w3 0 0 0
0 0 0 T4 0 0
0 0O 0 0 7 O
el — el 0O 0 0 mee

11 T2 T13 0 0 0
T2 M1 i3 0 0 0
m T w7 0 0 0

55

The m matrix
is entirely
analogous

(18.10)

The m matrix is entirely

(Classes 11,12,14& [0 0 0 w4 0 O | analogous
g
15) 00 0 0 70
7 Constants 0 0 0 0 O meg) ..oovvvvvvn.... (18.11)
T )| The m matrix isanalo-
rigonal system T T2 T3 w4 — e 0 us excent that
X3 isa trigona.l e 11 M3 — T4 a5 0 5? _ Xm p
a,xis T3y 31 Tag 0 00 mm : mEZ
(Classes 16 & 0w s 2me %= mﬂ— m
17) —mee w0 —mis  ma 2w Mg = L 5 12
11 Constants \ 000 m mi(m-—m)| (18.12)
Trigonal system The m matrix isanalo-
¥3 is a trigonal ™ m2ms 0 0 gous except that
. 12 mums —ru0 0 _
axis - o T 00 0 Mse = My
¥y is a binary axis ﬂ_al _Wal 033 70 0 e — My — M2
(Classes 18, 20 & | ™ ~ ™ “ % 2
21) 0 00 0 mu2my (quartz)
8 Constants kO 00 0 mu (mu—mg) | (18.13)

Hexagonal system
a3 1s a sixfold axis
xy is a binary axis
(Classes 19, 22, 23

24, 25, 26 & 27)
6 Constants

Cubic system
3 Constants

y

mumemz0 0 0
T2 T11 T13 0 O O
31 T31 a3 00 o0
0 0 0 ms0 O
000 0 740
00000 (m—mp)

my memz 0 0 0
T2 M1 T2 0 0 0
M2 T2 T11 O 0 0
0 0 0 w740 O

0 0 0 0 740
0 0 0 0 0 7y

The m matrix is ana-

logous except that
my — M

m% _— e—

(18.14)

The m matrix is en-
tirely analogous
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For isotropic bodices, the = matrix is formed by setting 7u = (mn—mw)
in the = matrix of the cubic system; the m matrix is similarly formed by

. muy — M
putting 74 = — 5
TIsotropic e 0 0 0 The m matrix has
bodies e 0O 0 0
T2 T2 T11 0 0 0 M4y etc = Mon — M1
0 0 O i — 12 0 0 2
|0 00 0 mu—mz 0O
0ooo o 0  mu—m)........... (18.16)

SECTION 19
APPLICATION OF THE ELECTRO AND Prezo OrpticaL ErFrFECcT

In the equations K = K"+ zEand K™ = K"+ mE, etc. the K ’s

are to be used in forming &~ for the equation giving the velocity of the light
2

used na\.melyg2 = j.k 'j. Obviously then K" should be formed from the
squares of the reciprocals of the refractive indices, the lower three members
being zero. After applying the electric field or strain a transformation of
coordinates may be necessary to rediagonalize, i.e. make K7V = K7V =
K3" = 0. From the rediagonalized K™' we may write the new principle
refractive indices by taking the reciprocals of the square roots of KiY,
K7 and K3V, It should be noted that if k7" = K7 + A, then

!
uh + Ap o= pl — ”2"3 Biooorii . (19.1)

For a given direction of the wave normal there are two velocities, a wave
splitting into two components traveling with different velocities. By defini-
tion the refractive indices, o and p in a given direction are the normal
velocities in that direction divided into the velocity of light in free space.

. lpa .
Whence in a path length / there are -%— waves in one component and I—;b
waves in the other, where \ is the wave-length in vacuum. Consequently if
] is the thickness of the crystal along that path the two components can
recombine after passing through the medium but they are out of phase by

= % (ua — u) whole waves so that the light which entered as plane polar-

ized will leave elliptically or circularly polarized, except when 2y is an integer.
<
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The quantity B = pe — s is known as the birefringence.

IB

= (192)

If a phase difference of 4% wave can be just detected, using a wave length of
6000 4 and a path length / = 1 cm the just detectable birefringence would
be B = "’;‘
0.2 X 10~°. Obviously this detectable difference between refractive indices
is much smaller than could be detected by measuring each refractive index
and subtracting.

It is customary to choose the coordinate system so that looking along x,
the very lowest refractive index is for polarization in the plane of x; and the
very highest for polarization in the plane of x3. That is, the x, axis is the
axis along which light should be passed to get the greatest birefringence.

2 X 107°; if the path were 10 cms the detectable B would be

Birefringence in any Direction

If the axes are so chosen that K is diagonal and K3 > K, > K, then,
somewhere in the plane perpendicular to x» are two directions, the optic
axes, along which there is a single normal velocity. These directions make*
equal angles V with the x5 axis where

. Ki' — Kz
sin K — K3
or e .(193)

l/Ke_l—Ka_1
cos V = =+ _—K;lﬂK;,

Also the two refractive indices p, and p for a wave normal making angles g;
and g with these optic axes satisfy the equation:

2
= (Ki' 4+ K3') + (KT' — K3') cos (g1 — g)
2 _
5= (KT + K3') + (KT' — K3') cos (g1 + g2)
whence
) (1 _ 1) ~ 2(wp — Ba)(a + m)
] 2 - 2 2
Ma Mo Ha Kb

= (K7' — K3") cos (g1 — g2) — cos (g1 + g2)

* Theory of Optics, P. Drude, pg. 320.
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as B = pp — p,is the birefringence we have:
B = _uiﬁ (Ki' — K3Y) singisings......... (19.4)
Ma t+ pe
By spherical trigonometry:
cos g1 = cos V cos 8 4 sin V' sin 0 cos ¢
cos g2 = cos V cos 8 — sin V sin 0 cos ¢

where 8 is the angle the wave normal makes with a3 and ¢ is the angle the
plane containing the normal and x5 makes with x;.

From (19.5) it follows that:
sin gy sin go =

1/(1 — cos? V cos? @ — sin? V sin?f cos? ¢)?

— 4sin’ V cos’ Vsin®6cos’ fcos’ o . .. .. (19.6)

Hence if the rediagonalized K" is

KV 4+ A
Y+ A
KV 4+ A
0
0
0
then
2 2
B = Faks |
MHa — Mb

(K" — Ks" + 61— &) — (K2 — K3'" + Ay — Ay) cos® 6
— (KT — K3" 4 Ay — Ag) sin® 0 cos’ ¢* — 4(KT" — K7
+ Ay — A (K3 — K3 + As — Ag) sin” 6 cos” 8 cos’ ¢ .. (19.7)

3
B = Bo—l—%(AlAs) singisings..............(3)
For most practical purposes we may take
papy _ B
Mo + p 2

where  is some intermediate value of the refractive index.*

2
* Nofe: It might seem that as K71 = K719 4 A; gives us p; = p — % A; F 2piAY ...

we could form the 3 principal birefringences directly from the u's instead of using (6a - - - €).
From the u expressions we would get By = p» — u — 3(u3ds — piA)) + § which differs
from 6b if ua ¥ g . Equation 6b is correct; the one from the x expression is an approxi-
mation.
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In a few special cases (18.7) may be simplified. If (¢, 0) falls along an
opticaxis gy = V — V°and g2 = V + V° whence

3
B, = % [(A1 — As) cos® V° — (Ay — Ag) sin® V°]....(19.61)

B=p—m+ ”‘:” (A — Ao)..........(19.62)

if 8 = 90°
B = (us — p)(1 — cos® ¢ sin® V°)

3
+ 6‘2- (Ay — As — (A1 — As) cos® &) . . (19.63)

ifg=20

B = (u3 — ) (sm Ve — sin® 6) + (A1 — (A — Ag) sin 6). . (19.64)
if ¢ = 90°

B = (ug — p)(1 — cos® @ cos’ V°)
3
+ “5 (A — As — (A2 — Ag) cos 6) . . (19.65)

The Electro Optics of Quariz

For quartz, in the equation K * = K™V + zE
211 0 0
—znu 0 0| If E is in practical volts*
0 0 0| Zu=047x107"
Z= zg 0 0| Zg=020X107"
0 —Z41 0
0 —Zn 0

Obviously the E; component produces no effect so we shall examine the

1
effects due to the components E; and E; separately. If £ = (0) E,

0
KT + mE
Ki" = zuFE
1 _ K3 . . .
K+ = which can be diagonalized
s Ea

0|

* Computed from F. Pockels data, see his Lehrbuch der Kristall-Optik, (B. G. Tuebner).
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. —zn B ..
by a small rotation about #; of amount ¢ = KT — k; 8ving

3
KV — 2uF, o % X 047 X 1075,

—1° 3
K!= { KS and u = m + 'Ez-l X 047 X 107°E,

] H3
0

The greatest ‘““added birefringence” is gotten by viewing along x3, when
AB = 1.544* X 047 X 107 E;. TIf E; = 10*AB = 1.73 X 107" a quantity
detectable if the path length is about 1 cm. Viewing along x; (the optic
axis) is complicated by the rotation of the plane of polarization in quartz.
Homogeneous strains have never been found to alter this rotation, but the
rotation complicates and partly masks the birefringence phenomena. If

[KTIZ + an By

0
E =|1)E;wefind
0
K"
1 K"
E=1"9
—zn Fy
—ZuE2

Rotating the coordinate axes through 45° about x; then applying the
transformation

1 0 @
a= 01 —¢
—e o 1
where
. E;
— /5 %4
o= Y2
Ky - Ky
we find:
Ki" + zn By :
‘ Kflu — zn By # _2_ s By
wr k3" I
K = 0 p=m+ 5 mkE
2
0 p3
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which is identical to the u for field along «; , but the final axes in this case
do not coincide with the final axes for E = E; , but again, the greatest added
birefringence is utilized by viewing along 5. In the second case the Nicols
would be best set along ¥, and x,, i.e., at 45° to xl and xa whereas in the
first case they would be best set at 45° to x; and xs.

The strain Optics of Quartz
K=K + me,

My My My M O 0 ) my = .138
g My Mz —my 0 0 e = 250
M31 Ma1 M3z 0 0 0 miz = .259
m = |my my 0 my O 0 where* mu = 029
00 0 0 my My mg = 258
My — M2 me = 098
0 0 0 0 mu—m— My = — 042
my = — 0685
If the strain is a simple tension along w1,
[KTID + mllf}] Klﬁlu + mu 61]
1° 1°
KTIG + muel  which diagonalizes, Ky - + mue
K' = |Ks + mael  through a small KV = | Ky + muea
| mg € transformation to: 8

l
L o ) 0
applying 18.63 or 18.64 we find the birefringence along x; to be:

Bu = M3 — H1 + (Mm —_ m.u) 5 = .0091 — .0148 _£_1

Similarly the birefringence along ; is B = .0091 — .225 & and By =
0 — .207 &. With a strain of 10, which is about a tenth of the breaking
strain, By would be 20.7 X 107", a quantity detectable in a thickness of one
millimeter,

The values of By - -+ By corresponding to birefringence along x; for a
tension along x, etc., can be computed in just the same way. But Bp - - -
Bes require rotations of 45° about x3 to diagonalize, so the birefringences
can be computed by setting § = 45° in equations (19.6).

* Lehrbuch der Kristalloptik—F. Pockels.
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The following table summarizes these simple strain birefringence effects,
the rows indicating the strain and the columns the direction of light passage.

Bo— 0148er By — 222 @ 207 &
Bo+ 222 e By — 0148¢e - 207 e
By — 298 & By — 298 e 0

By+ 0536es By — 0536 —.107 &
(Bo+0 Bo+4+0 —.107 e5)
(Boa+ 0 Bo+ 0 .208 e5)

(the parentheses indicate the 45° transformations).
A similar table for the electro-optic effect in quartz is

Bo— 8T X 107NE, Bp+ 87X 107°E, 1.74 X 107°E,
By+ 0 Bo+ 0 1.74 X 107°E,
B+ 0 By +0 0

Since a driving voltage of E; = 100 volts may, due to the building up of
oscillations, cause a periodic strain of ¢ = 10 *ina quartz plate, it would
seem from the foregoing that 99.999, of any birefringence change must be
due to the mechanical effect.

The 18° Cut Crystal

A crystal, the thickness of which is along the electric axis, x; , the width
making an angle 8 = 18° with the optic axis, &3, can be caused to oscillate
with a simple motion along its length. (If 8’ is not about 18° or 72° the
oscillation is not a simple extension along the length, as is shown by the node
which then lies diagonally across the crystal.) On a set of axes defined by
the edges of the crystal block, %1 being in the direction of the thickness or
xy, 3 in the direction of the width and makes an angle ¢’ with ;, #; is the
length and makes an angle ' with x»; on these block axes the strain is €.
Rotating the axes about a1 through an angle 8 we find the strain expressed
on the crystal axes to be:

0
cos’ &
e=a € = sin® ¢ e
—sin & cos ¢
0
0
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whence
K'= K" + me gives us

KT 4 (my cos’ 8" + myg sin® @' — myq sin 6 cos 0')es
K" 4 (my cos® 8" + mus sin® 0 4 my sin 6 cos 6')es
K3 4 (mg1 cos® 6" + mg sin® 6")ez
— (mag cos® 8’ + ma sin 8’ cos ¢p’)ej
0
0

K=

A small transformation removes the 4th term without altering the others to
the first power of small quantities.

To obtain the birefringence along the width x3, we set 8 = ¢’ in equation
(18.65):

3
By = (ug — i) sin® 0 + % {mm cos’ @ — mucos' @ + (my — mgs) sin® 6

1 + cos® ¢

- 2
= M4 SIN 3’ 2

- 2 2 4
— g sin” 8’ cos 9’} ez

which, for 6’ = 18°is By = .00087 + .20 e
For the birefringence along the length x; we set
§ = 90° 4+ ¢’ in (6e) giving:

3
I

B = (us — p1) cos’ 6’ + 5 {13 cos” 0" — mzy cos’ 0" + (my — My — mgs)

sin’ 6’ cos” 8/ — mu sin 6’ cos (1 + sin’ 6’)}@"

which, for @ = 18°is By = .00824 + .049 ez,

SECTION 20

TRANSVERSE ISOTROPY

A material that has identical properties in all directions normal to a given
line is called transversely isotropic. Any line parallel to this line may be
considered as an axis of transverse isotropy.

Dielectric Properties, Optical Properties, Thermal Expansion

With respect to these, a transversely isotropic material behaves as does a
uniaxial crystal, only two constants being needed to describe each. For
example, the displacement current in terms of the electric field and the dielec-
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. .. 1 . : .
tric constant matrix is D = o EE where, if x; is the axis of transverse
m

isotropy:
Dy 0 0
D={0 Dy O | .....ooo i, (20.1)
0 0 Dy
Elasticily

We must find the forms of S and C, (the elastic modulus and elastic con-
stant matrices) that are not changed by rotations about the axis of trans-
verse isotropy. We can simplify the work by starting with the crystal
class that has hexagonal symmetry only. On applying the transformation
S' = a.Sa = S for arbitrary rotations about X5 we find no further simplifi-
cation follows. Hence the S and C matrices can be copied from those for
the Hexagonal Pyramidal Class.

The Piezo-Electric Effect

Again choosing x; as the axis of transverse isotropy and starting with
hexagonal symmetry about X; we find that in order to be invariant to all
rotations about X3 the matrix must simplify to:

0 0 0 00O
d= {0 0 0 000) ......oooiiiiit. (20.2)
ds dai dss 0 0 0

A pitch solidified in an electric field would probably exhibit this kind of
piezo electric behaviour. It might also be expected to show an electro optic
effect governed by a matrix like the conjugate of the above matrix.

SECTION 21
APPENDIX

Transformations

A counterclockwise rotation of the axes through an angle ¢ about the x;
axis is represented by the matrices @ and « as follows (where ¢ is written for
cos ¢ and s for sin ¢):

1 00 0 0 0
1..0 0 0 cisi 25¢0 0
a=(o0 ¢ s} a= |0 S ¢ 720 0 (21.1)
0 —s c' 0—5(:565_—50 o '
0 00 0 ¢ —s
0 00 0 s ¢



MATHEMATICS OF PHYSICAL PROPERTIES OF CRYSTALS 65

A counterclockwise rotation about xy is given by:

0 5 0-2s¢0

c 5
c 0 —s o1 0 0 0 O
- 2 2
s 0 ¢ 0 2s¢ 0
a = ?(1) 0) a= 00 0 c 0 s| (21.2)
¢ sc0 —sc 06—50
00 0 —s 0 ¢
A counterclockwise rotation about a3 is given by:
50 0 0 2
s$E0 0 0—2cs
cs0 001 0 0 0
a=|—-s5s¢0) a=| ~ . ... (21.3)
001 000 ¢—s O
000—-s ¢ O
—¢ses0 0 0&—5

In case one wants only the value of a tensor property in a given direction
not all the elements of @ and a need be used, but only a row or column. A
special case is that of computing such a property in the direction (8, ¢)
of polar coordinates. The :rf axis is chosen in this direction; xa and .’,L;; are
not determined. Writing ¢, for cos 8, ¢a for cos ¢, s, for sin # and s for sin ¢
the required matrices are

2 2
€1 52
2 2
5182
62
-1 2
ad; = §182 « =1 | s i (214}
slszcz - .o
616232 ...
2
clslsz Y

From these the (11) term can be computed for any tensor.
A few special transformations needed constantly are: A rotation of 180°
about aj:

100 0 00
010 0 00
-1 00
B - oot 0o oo
a= 8 [1)(1), «= 1000 —-1 ool® ¢ = a....(21.5)
000 0-10
000 O 01
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A rotation of 90° about 3:

010
a=—-100) a=
001

A reflection in the plane perpendicular to xs:

10 0
a= (01 0} a=
00 —1

BELL SYSTEM TECHNICAL JOURNAL

P1oo 0 0)

1000 0 0O

0010 0 0 _

0000 —1 0,a1=ap(ﬂm
0001 0 0

0000 0 —1)

(100 0 00)

010 0 00

001 0 00 _

000 —1 00,a‘=abxnﬂ
000 0—10

000 0 01

A cyclic interchange where x» replaces x; , etc.:
(The line making equal angles with x;, ¥, and 3 is a three-fold axis)

—_ O

01
a= 00 a =
10

o

P01000
100000
010000
000001«
000100
000010

A cyclic interchange, where —ux; replaces ay, etc.:
(The line making equal angles with x;, x2, and 3 is a six-fold axis of the

second sort)

0—-1 0
a = 0 0—-1), a=
-1 0 0

3

A rotation of 90° about x; combined with a reflection in the x3 plane:

010000
001000

100000 _

000010l o l=a, ..., (21.9)
000001

000100

(010 00 ©

100 00 O

001 00 O _

000 01 0,a1=aPQMm
000—10 0

oo 00 -1
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A rotation of 60° about x3:

14/3
7720
Vs
a = - —2 5 0 «
0 01
To form « * substitute

—4/3forv/3ina.

13
4 4
3 1
4 4
0 0
0 0
0 0
_V343
4 4

0o 0
0 0
0 0
1_+3
2 2

vi o1
2 2
0 0

A rotation of 60° about x3 combined with a reflection in x3:

o

I
|

b
S N N W]

o M|$ﬁl\-‘lll—*
- O

To form & substitute

— /3 for4/3 in a.

A rotation of 120° about x3:

13
2 2
a = _‘\/3 1 ol @
T2 2
0 01
To form o' substitute

— /3 for /3 in a.

R

’

—_—

—

o O HlWwWkl=

|
JS o
4S5

o O W -

o Ol =W

wl o

S O =W

0 0

0 0

0 0

_ 143
272
_V3 1
2 2

0 0

0 0
0 0
0 0
13
2 2
V3 o1
2 2
0 0

|

N= O

|
Sl

’

S

o oM

o] = [

~

67

.. (21.11)

..(21.12)

..(21.13)
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Tnversion through the origin (a center of symmetry)

Pooooo
010000
-1 0 0
_lootooo| _
a—( 8—3_9 «=1gp0100| =l (21.14)
000010[% T %
000001
A rotation of 180° about x;:
(ftooo 0 ©
0100 0 0
10 o |
s _looto o o _
a—(g é—(l)) «= 10001 0 ol =a, ...(21.15)
0000 —1 0
l0oooo o0 -1
A reflection in x; plane:
(tooo o 0
0100 0 O
-100 ‘
_ _looto o of _
a—(gé(ll a = |0001 0 o0l® —ac...(21.16)
0000 —1 0
0000 0 —1
A reflection in the 2z plane:
100 00 O
1 00 010 00 0
a=0—-10] a= 001 00 Ola'=a=a..(21.17)
0 01 000—10 0
000 01 0
000 00 —1

In computing the electro-optic and mechanico-optic effects we need a
transformation that will restore to diagonality a matrix that has very small
but symmetrical off diagonal terms. This transformation we call a small
transformation. Such a transformation has its matrix differing but slightly
from an idemfactor.

Agp koy + A Aoy
Az Ay km + Am

_ ku + An A An
If k=
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we assume that it can be rediagonalized to the matrix &’ by means of the

R 1 6 b
transformation: k' = 6ké. where 6 = |8y 1 0
031 0 1

Since 81 82y + 812 82 + 813 s = 0 we find that, to the first order of small
quantities;; = —&;.

Expanding k8. to the first order of small quantities and equating the non-
diagonal terms to zero we find that:

Ap Any Az
b= — 2 . Gy= % oand oy = o
T o — ke P hm—ks 0 T kw— ka
Therefore, to the first order of small quantities A;;:
kn 4+ An A Ay kn+4n 0 0
0= Ag kan + Az Agy 6. = 0 koo + Ags 0
Az Aoy kaz + Asg 0 0 bas + As
i’
1 Ags —Ag
by — ko ks — kn
where § — | —Ap ) Ags is the transformation
T By — Ea Bog — Bgg| o) = x. . ... ..., (21.18)
Ag —An 1

kg — kn kun — ks

The electro and piezo-optic effects of biaxial crystals can be handled by
these infinitesimal transformations, but uniaxial crystals and cubic crystals
may require finite rotations to re-diagonalize the k7' matrix. In the

k0O
case of cubic crystals we note that | 0 £ A ] may be diagonalized by a
0 AR
rotation of 45° about ay, giving
E 0 0
Ok4+A O ..ol (21.19)

E O A k 0 v/A? + A2
0 k A;] becomes B 0,,,,_ k 0
Ay Ay R VAT + A O k

upon rotation
through angle
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-1 A . . .
tan™? =¥ about a3 and diaonalizes by then rotating through 45° about x.
2

giving:

k 0
0 k— /A7 + A}

E+ /AT + A} 0 0
B = 0

The work can be handled with single column matrices K instead of using
the square matrices k. If & is a diagonal single column matrix (i.e., the
single column matrix of a diagonal matrix), than the almost diagonal
matrix K -+ A is diagonalized by the transformation:

r 2A6 2Ao 3 ( 3
1 0 0 0 ¥ RE-L Ki+ A
20, —2As
K
0 1 0 5K 0 K- K 2+ A
—2A, =24
0 0 l R E-K 0 K+ As [
0 —Ay A —As —As A T
K. — K3 Ko — K3 K, — K: K1 — Ks !
— A Ag Ag Ay
S —— 0 —_— 17 S . S
LE-K F-KBE-K | &-K||
—Ag Ag Ag Ay
0 1
Ky, — K; K, — K, K, — K3 Ky — K3 )L b )
( 3
Ki+ &
Ks + As
K; + A
..................... (21.21)
0
0
L 0
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which transforms vectors as ' = 8x where

1 Ag As
Kl — K2 Kl - K3
—Ag Ay
8= | 1 — .. (21.22
K, — K» K, — K; ( )
—As — Ay

1

Kl'—Ka Kz—'Ka

If K,, K, and Kj; are not all different the preceding analysis falls down as
some terms become infinite; a finite transformation is needed in this case.
The difficulty can generally be doged by applying a 45° rotation about one
of the axes. Sometimes the easiest solution is to rotate through an angle
¢ about a coordinate axis then solve for the value of ¢ that will vanish
certain terms. As examples of these devices we give the following:

Kl ‘ Kl
K, K+ A
K| rotated 45° about &) becomes |K; — A ... .. (21.23)
Ay 0
0 0
0- 0
(K K, K 4+ /A7 + A
K, | rotated through K, and ro- |K
f;l tan”" 24: about Igl ;i‘fjfi; (I){ — VAT + A% . (21.24)
Aa X3 iS \/AE + A% is 0
0 0 0

D = electric induction

E = electric field

k = dielectric constant matrix (square)

K = dielectric constant matrix (single column)

a = transformation matrix for vectors

a = transformation matrix for tensors (of stress tensor sort)

X = stress matrix (single column)
e = strain matrix (square)

= strain matrix (single column)
S = elastic modulus matrix
C = elastic constant matrix

H = temperature change of elastic modulus matrix
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I = temperature change of elastic constant matrix
Ty = temperature coefficient of elastic modulus terms
T = temperature coefficient of elastic constant terms
A = temperature expansion matrix
d = piezo-electric constant matrix
g = inverse piezo effect matrix
G = electro-striction matrix
Z = electro-optic matrix
m = stress optic matrix
m = strain optic matrix
P = polarization = elec. mom. per unit vol. = surface charge per unit
P P ge p
area
R P
n = susceptibility = =
E
Table of Equations Transformations
1 The form «x y =
D= i kE x' lom o
e =SX v iy me ny
X = Ce s’ Iy ma ng
5= hola s
I = —C°HC° is the transformation ¢ = m w2 m3
H = —Sal ° My MHa N3
Al = tAl -::5‘32135
D =dXx A = ada™?
e=g D' = aD
g = d E" = aE
K-1= K 4 ZE k' = aka,
K= K%+ xX K = ak
K1 = K1+ me “;’ = ‘ffg
—_ € = o
P*—-kTIE=7rE C!' = aCa,
dm §' = a; a!
E—1 P
T = i = aha,
4w H = a;'Ha™?
Iij = C?:'TC.';;
Hij= SiiTsi;
4" = adot
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