Memorial to the Classical Statistics
By KARL K. DARROW

NE of the most elusive and perplexing, hazy and confusing of the parts
of theoretical physics is that which bears the name of ‘‘statistical
mechanics”.* On the principle that a tree is to be judged by its fruits, this
must be ranked as high as the tree which bore the golden apples of the
Hesperides; for among its fruits are the Maxwell-Boltzmann distribution-
law, the black-body radiation law, the value of the chemical constant, the
Fermi distribution-law for the electrons in metals, the alternating intensities
in band-spectra—and indeed the tree might lay a valid claim to the whole of
quantum-theory. The singular thing is that such wonderful fruits should
have grown from, or should have been grafted upon, so badly-rooted a tree.
To change the metaphor, one frequently feels that the superstructure is
sustaining the foundations, and the premises are flowing from the con-
sequences, rather than the other way about. Perhaps anyone who feels
this way should be disqualified from writing about the subject; but on the
present occasion, the attempt is going to be made.

Statistical mechanics—hereinafter to be called “S.M.” at times for short—
did not of course arise from any desire to solve the problems suggested above,
which came late. It seems to have sprung from attempts to answer older
questions, of which the following may serve as an example. Consider a gas
in a box, with an electric fan or something of the sort fitted inside to stir
it up. The gas having been stirred up, the fan is stopped, leaving it in a
state of surging and whirling about within the confines of the box. Very
shortly, however, the surging and the whirling cease, the gas having passed
of itself into a state of tranquillity and uniformity—uniform density, uni-
form pressure, uniform temperature. From this state it never departs, un-
less stirred up afresh. There is a tendency of the gas to go of itself from the
state of surging into the state of uniformity, and no tendency at all for it to
go from the state of uniformity back into the state of surging. This is very
unlike the behavior of a pendulum, which having fallen from one end of the
arc of its sweep to the middle thereof, moves on to the opposite end, re-
traces its path and returns to its first situation. Why should the gas behave
that other way?

*I acknowledge with gratitude the incentive given me by Smith College to explore
this subject, by offering me the opportunity of giving a course on statistical and chemi-
cal physics in the spring semester of 1942.
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For an answer to this question and others of the kind, S.M. offers the
following statement:

Basic THEOREM OF STATISTICAL MECHANICS

A system is more likely to be found in a stale of greater probability than
in a state of lesser probability

It may be that no reader of these lines has ever seen the basic theorem of
S.M. set forth with such merciless candor, though in many a sober treatise
there is an elaborate statement which when analyzed turns out to be just
this and nothing more. Of course it is a tautological statement, and has no
value except insofar as it may help to drive some contradictory notion out
of the student’s mind or to prepare that mind for some meaning or other
which is not yet in the statement but may be added to it later. Actually it
can serve both these offices.

To be expelled from the mind of the student is first of all the idea that
S.M. is going to give him a description of the way in which the gas proceeds
from the surging state to the uniform. From an astronomer he may
learn the orbit of the moon from apogee to perigee. From an authority
on ballistics he may find the trajectory of the bullet from the muzzle of the
gun to the bull’s eye on the target. From a railroad office he may get a
timetable showing the passage of the train from mile to mile over the rails
from Boston to Chicago. All this sort of thing is out of the range of
statistical mechanics! If a railroad acted like a surging gas and its time-
table were devised in the spirit of S.M., one would go to the office and be
told that the trains were enormously more likely to be in Boston than in
Chicago or anywhere in between. From this one would be expected to infer
that at any moment chosen at random the chance of finding a train anywhere
along the line except in Boston would be practically nil—unless indeed one
got a train and put it on the rails at Springfield, and even this would be of
little use for getting to Chicago, since at every subsequent instant the
train would almost certainly be in Boston. Not a very useful timetable,
and not a very useful railroad!

S.M. thus starts off with a renunciation. It renounces the prospect of
telling just how the gas proceeds from the surging state to the uniform state.
To that smooth unbroken sequence of times and places whereby the moon
finds its way through the heavens and the bullet through the air and the
train along the rails, there is no counterpart presented.

This of course is a serious matter, for the smooth unbroken sequence is
inseparably linked—or almost inseparably linked—with the notion of cause-
and-effect, the notion of natural law, the notion of man as a being who can
foretell the future. Mechanics harmonizes with these notions; for mech-
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anics is the science which professes that, given the positions and momenta
and the forces in a system of particles at 10 A M. sharp, it can predict the
positions and momenta of all the particles at 11 A.M. and every instant in
between and all through the endless future. Statistical mechanics, for all
the implications of its name, is nowhere nearly so audacious.

Suppose the electric fan, or whatever stirring-gadget was employed, was
stopped an instant before 10 A.M. sharp. S.M. limits itself to affirming
that at 11 A.M. the most probable state for the gas in the container—the
immensely most probable state, the almost-certain state—is the uniform
state. It also says the same thing exactly for 10:15 A.M., and for 10:01
AM., and even for 10 A.M. sharp. If at 10 A.M. sharp the gas is in a state
of wild and furious surging, S.M. does not deny the fact, but sees no reason
for revising its own affirmation. If at 10:01 A.M. the gas is settling down
but has not yet quite reached the uniform state, that again does not deter
S.M. from standing by its assertion. Whenever a freak of chance or act of
man may have produced one of the states which it calls improbable, S.M.
just says “wait, and you shall have the state which 7 am going to talk about.”
To further questions it can only say “I know my limits”—and that is what
its basic theorem says for it.

If now the negative aspect of the basic theorem is sufficiently clear, we may
address ourselves to the task of giving the theorem a positive meaning. For
this there is but one way: the word ‘‘probability” must be replaced with
some word or phrase or mathematical expression which does have a meaning.
After this is done we can of course restore the word ‘“probability” as an
equivalent for that other word or expression. The basic theorem will then
be tautological upon the surface only, for actually it will have the meaning
conferred upon it by the definition of its key-word.

Various meanings have been offered for the key-word, by various people
who have been successful in getting useful results out of statistical mechanics.
Until 1924 the dominant meaning was that imposed by Gibbs and Boltz-
mann. From this meaning arises the form of S.M. which is called ‘the classi-
cal statistics”. (The word “statistics”, by the way, is a bad but common
abbreviation for “statistical mechanics”.) This is the topic of the present

article. In 1924 there was proposed a novel meaning for the key-word,
which led to results sometimes agreeing with, sometimes differing from, those
attained by the classical statistics. Where the results of the two agreed,
they agreed with experiment also; where the results of the two disagreed,
experiment sustained the new one. This event has left the classical statis-
" tics in a strange situation, in which one cannot exclude the possibility that
all of its remarkable achievement is due to a happy but deceptive chance.
The classical statistics may indeed be only a past episode in the history of
scientific thought, and it is for this reason that I have given to the article the
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strange and sombre title “Memorial to the Classical Statistics”. Yet even
as a past episode, it is worthy of remembrance; its didactic value may yet be
great; and perhaps the human mind may some day stretch its powers to the
point of conceiving the classical and the new statistics as aspects of a single
whole, as it has lately stretched itself to the extent of uniting the wave-
picture and the corpuscular picture of matter and of light.

ToaE MAXWELL STATISTICS

Since the main concern of S.M. is with the “most probable state”, one
sees that its principal content must be made up of assertions about that most
probable state. Maxwell made such an assertion. He wrote down a for-
mula for the distribution-in-velocity of the molecules of a gas. It is the
formula now called “the Maxwell-Boltzmann distribution-law’’, which is so
well known to the readers of this journal that I will not bother to write it down
until there-is actual need for having it on the page. Maxwell might have
said bluntly: “This is the distribution which I will assume for the most
probable state’”; and having said so, left it at that. He did not leave it at
that, and presumably he would have been dissatisfied so to leave it, as most
of us would be. Instead, he postulated a pair of attributes for the most
probable state, and showed that if these are the attributes, then the distri-
bution is according to that formula.

The attributes which Maxwell postulated are “isotropy’’ and ““independ-
ence’’.

The former is easy enough. One assumes that in the most probable state,
the distribution of velocities of the molecules is isotropic. Nothing can
usefully be added to this simple statement.

The latter is a little harder to grasp. Perhaps it can best be exhibited by
describing a couple of imagined cases for which it would not be valid. Sup-
pose for instance that all of the molecules have the same speed—the same
magnitude of velocity, though their velocity-vectors be pointed in all
directions. Let this common value of speed be denoted by V, and let any
direction chosen at random be made the axis of x in an ordinary coordinate-
frame. If a molecule happened to be travelling with such a velocity that
the component thereof along the x-axis, v, let us call it, was just equal to V,
then it would be a certainty that v, and 2., the y and 5 components of the
velocity, were both of them zero. If a molecule happened to be travelling
in such a way that v, was zero, then either v, or 2. or both of them would have
to be different from zero, and the square root of the sum of the squares of
v, and v, would have to be equal to V. There would consequently be a
correlation between the values of the three components, and the probable—
nay even the possible—values of any one of them would be affected by those
of the other two. If the molecules had a uniform distribution of speeds up
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to a maximum value of V, there would still be a correlation of a similar
sort, though not so marked a one: the higher the velocity-component in the
x-direction, the lower would the y and the z components be likely to be.
One could imagine distributions for which the higher the velocity-component
in the x-direction, the higher would the y and the z components be likely
to be.

The “assumption of independence” is, that in the most probable state
there is no correlation at all. Whether the x-component of the velocity of a
molecule is high or low is a detail which has no influence whatever on the
possible or the probable values of the y and the z components. Low values
of v, go just as well and just as abundantly with low values of v, as with high,
and reversely.

The Maxwell-Boltzmann law, as I said, is the distribution-law which
conforms to both the assumption of isotropy and the assumption of inde-
pendence. So the question arises: do those two assumptions have the
quality of plausibility and of convincingness, which make the average per-
son say “Surely these must be the attributes of the most probable state ofa
gas!” 1 do not know what result a referendum on this question would give,
but it is my guess that most physicists would feel more satisfied with these
than they would with the Maxwell-Boltzmann distribution-law if it were
tossed out to them with the bare affirmation “This is assumed to be the
attribute of the most probable state”. Clearly this is how Maxwell felt, and
there is no better guide than the intuition of a Maxwell.

The foregoing question is something else than the question whether the
assumptions, and the Maxwell-Boltzmann distribution-law which follows
from them, are truly the attributes of the most probable state. Itisa strange
historical fact that not for many years after the promulgation of this famous
Jaw, and not till after both of its sponsors were dead, was there any proper
test of it. The derivations of the law were exercises in abstract and un-
renumerated thought. Nevertheless experiment—applied to thermionic
electrons, to molecules of ordinary gases, to thermal neutrons—came at long
last to justify Maxwell. To any who may feel that the assumption of
independence is in itself too reasonable to require any proof, I disclose that
in other forms of statistics this assumption is declared to be false, except as
an approximation.

The “Maxwell statistics” therefore consists in the main of the statement:

The most probable state of a gas is that in which isolropy and independence
prevail among the velocity-vectors of the molecules.

We now require some terminology and some notation.

I take for granted an understanding of the terms “velocity-vector” and
“distribution-in-velocity”, these being learned by physicists out of kinetic
theory if not out of S.M. A velocity-vector may be replaced by a point
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which serves just as well for all of its purposes and even better forsome. Let
the velocity-components v;,7,,and v:belaid out along the axes of a Cartesian
coordinate-frame, and the vector for any molecule be drawn from the origin:
the point at its tip is the point in question. Point and coordinate-frame are
said to be “in velocity-space”. Statistical mechanics prefers as a rule to
deal with the momenta of the molecules rather than their velocities. This
is for valid and powerful reasons, one of which is that the transition to the
case of photons becomes much easier! In the case of material gases it
makes no practical difference, since the momentum of a molecule is its
velocity-vector multiplied by the mass of the molecule which is practically a
constant, and every statement about the distribution-in-velocity can with
the utmost ease be translated into a statement about the distribution-in-
momentum and vice versa. The momentum-vector may be ref)laced by the
point at its tip, having coordinates p., p, and p. in a coordinate-frame. in
“momentum-space”. If we consider together with these the three co-
ordinates x, y, 5 of the molecule in ordinary space, we may say that we are
locating the molecule in six-dimensional space. T have yet to meet someone
who claims that he can visualize a six-dimensional space, and yet there is no
doubt that the phrase fulfills a psychological need and has a practical value.
The six-dimensional space of these particular six variables is called “‘the
p-space”.

It seems odd to bring in the p-space before considering by itself the three-
dimensional “ordinary” or “coordinate-space’ in which the gas is located.
Is there nothing to be said about the most probable distribution of the
molecules in the coordinate-space? Well, “every schoolboy knows” that
the state to which a gas tends and in which it remains is a state of uniform
density. Maxwell, I think, accepted this as one of the facts behind which
one cannot, or does not, go. For a complete statement of the Maxwell
statistics I therefore offer the following:

A gas is very much more likely to be in its “most probable state’ than in any
other. The most probable state is that in which isotropy and independence pre-
vail among the momentum-vectors, while the distribution in coordinate-space is
uniform.

So in the Maxwell statistics the distribution-in-momentum of the meole-
cules is derived from assumptions ostensibly more basic, while the distri-
bution-in-ordinary-space is simply affirmed. If a theory could be devised in
which both were derived from assumptions apparently more basic, one would
be likely to feel that something had been gained. Now this is a char-
acteristic, and one of the principal virtues, of Boltzmann’s theory known as
the “Boltzmann Statistics” or as the “Classical Statistics”.

1 Another reason has to do with “Liouville’s theorem,” for which unfortunately I
cannot make room without overloading this article.
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THE BOLTZMANN STATISTICS

Boltzmann invented a way of appraising the probability of any imagined
state of a gas, which has the following very remarkable features:

(@) It gives so sharp a definition to the key-word “probability”, that not
only can the state of maximum probability be identified, but the ratio of
the probabilities of any two states can be computed.

(b) For the distribution-in-momentum of the molecules in the most
probable state, it derives a formula identical with that which springs from
the Maxwell statistics. This of course is why the formula is known as the
Maxwell-Boltzmann law.

(¢) For the distribution-in-space of the molecules in the most probable
state, it derives the uniform distribution.

All this does not entail that the Boltzmann statistics is necessarily right.
Tt does, however, lead to consequences, which it is the privilege and the
affair of experimental physics to verify or to reject.

T can now write down a phrase into which the Boltzmann statistics, and
equally well those which came later, can be fitted:

The probability of a state is the number of different ways in which the state can
be realized.

This is another of those oracular sayings which acquire a meaning only
after some meaning is given to the key-word, which is this case is ways. I
could now rewrite the basic theorem without the word “probability”, and
so can the reader; but the only effect would be to transfer the mystery out of
the word “probability” and into the word “way”. Boltzmann, however,
assigned a meaning to the latter word. It is this meaning which we now
must strive to realize.

For this purpose I propose a game of which the outfit consists of a sack,
an enormous number IV of balls, and a smaller number M of baskets. The
game is played by reaching into the sack, drawing out the balls one after
another, and tossing them into the baskets. All of the balls feel precisely
alike to the hand, so that there is never the least inclination to put one aside
and pick up another as one’s hand gropes around in the sack. Nevertheless
when one looks at the balls after they have fallen into the baskets, one sees
that they are nicely adorned with the integer numbers running from 1 to V.
Incidentally the baskets also are numbered. It is this numbering which
gives point to the game.

Someone or other—someone who might be designated as the caller, after
the man who calls the figures of a square-dance—has prescribed a sequence
of M numbers N; and N, and N; and so on to Ny, all of them positive
integers and totalling up to N. A single inning of the game consists in
drawing all of the balls out of the sack one after another, and dropping the
first N, which come out into the basket I, the next Ns which emerge into the
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basket IT, and so on until every one of the balls is reposing in one or another
basket. Now along comes the umpire with pencil and pen, and he writes
down on one sheet of his pad of paper the numbers of all the balls which are
in basket I, and on a second sheet the numbers of all which are in II, and so
on until he has got an inventory of the contents of all of the baskets. 7The
inventory does not state the order in which the balls in any basket were dropped
into that basket. That order is blotted out and forgotten. Te inventory
states which balls are in which baskets, and lets it go at that.

This does not seem a very entertaining game, but entertainment is not
what it is for. The present question is: how many different inventories can
there be, consistent with that sequence of figures Ny, Ny, N3, + - - N, which
the caller prescribed at the start?

The answer is obtained in what must seem, to anyone meeting for the
first time such a question, a strangely devious way.

First we evaluate the whole number of different orders in which the balls
can be drawn from the sack. This is N-factorial or N!; for the first ball to
emerge may be any one of the NV, and the next may then be any one of the
(N —1) remaining, and the next may then be any one of the (N —2) remain-
ing, and so on to the end.

If each order corresponded to a different inventory, N! would be our
answer. Clearly this is so, if and only if there are as many baskets as balls
and one ball in every basket. In all other cases N! is larger, and often
colossally larger, than the number which we seek. It is necessary now to see
that this great multitude of N'! different orders falls into groups composed of
X orders apiece, all of those in a single group corresponding to a single
inventory—necessary to see this, and to calculate X; whereupon we shall
find that X, the “number of orders per inventory”, is the same for allof the
inventories—so that the number which we seek is N'! divided by this common
value of X.

It seems to be helpful to think of some one inventory, and of some one
order which leads to that inventory. By a certain amount of mental effort,
which varies from person to person, it can be seen that this particular order
is but one among Ny! Na! N3! - -+ N, ! different orders all leading to the
very same inventory. For think of the N; numbered balls which lie in the
first of the baskets: there are N;! different orders in which they could have
come out of the sack, and every one of these corresponds to the very same
inventory. Think next of the N» numbered balls which rest in the second
basket: they might have come out of the sack in N,! different orders, without
changing the inventory. Think now of the contents of both of these baskets
at once. Each of the Na! orders in which the second basketful may come
out of the sack may follow on any one of the N;! orders in which it is possible
for the first basketful to emerge. The product N;! N.! is therefore the total
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number of ways in which the first (Ny 4 N,) of the balls might have come
out of the sack without changing the inventory.

The process of proof need not be carried further. X has been evaluated.
It bears no earmark of whatever particular inventory the student may have
chosen to adopt at the beginning. It depends only upon the sequence of
numbers Ny, Nz, « - -, N fixed by the caller, which sequence I will hereafter
term a “distribution”.

The number of inventories—or ‘‘complexions”, to use a commoner word—
for the distribution N, - - -, N is therefore given by the formula, '

W = NY/Ni! Na! -+ Nu! = NI/IIN,! ()

The theorem to which we are advancing affirms that this number has its
maximum value for the uniform distribution—the distribution in which the
caller assigns the same number of balls, N /M, to each of the baskets.

The usual argument for this statement may be put as follows: Let us
assume the uniform distribution, with A = (N/M) balls in each basket, and
compare its value of W with that of one of the neighboring distributions
such as the one in which there are (4 + 1) balls in the first of the baskets,
(A — 1) in the second and 4 in each of the rest. It is not evennecessary
to get out a pencil and paper to see that W for the latter is less than W for
the former, being in fact just 4/(4 + 1) times as great. The same is
evidently true for disarrangements of the uniform distribution which involve
more than two baskets and more than one ball per basket. The conclusion
is clinched by the obvious fact that when all of the balls are in any one bas-
ket, W has its least possible value, viz. unity. (To unite this formally with
the previous statements, one must follow the mathematicians’ practice of
using a symbol 0! or “zero-factorial” and giving it the value unity).

We shall have to play this not so very entertaining game on several oc-
casions in S.M., altering the meaning of the balls and the meaning of the
baskets from one occasion to the next. The reader has probably guessed
that the balls stand for the molecules. The guess is right in the classical
statistics, wrong in the newer forms. To get at the meaning of the baskets,
suppose the gas contained in a box of volume ¥, the interior of which is
divided up by impalpable coordinate-planes into compartments or cells all
of the same volume V,. The baskets stand for the cells.

Now we have the theorem that W is greatest for the uniform distribution
of the balls in the baskets, and the assertion that the most probable state
of a gas is the state of uniform density, all ready to be fitted together. The
process of fitting-together is of the simplest. W is christened the ‘“prob-
ability” of the state described by the “distribution” Ny, Ny, <++ Ny, the
quantities N; now standing for the numbers of molecules in the various cells.
Not only is the state of uniformity the most probable one by this definition,
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but so long as the number of molecules N is many times as great as the number of
compartments M—a condition easy to realize—those distributions which are
markedly far from uniform have probabilities which are fantastically smaller
than the value of W for the uniform state.

The Boltzmann statistics manages thus to derive the assertion aforesaid—
the assertion that the uniform distribution in ordinary space is of all the
most probable—from a principle which (at least in appearance) is more fun-
damental. Ithasindeed a couple of bothersome points—more than a couple
perhaps, but there are two in particular which the newer statistics will at-
tempt to assuage. One of these is the size to be assigned to the cells ¥V ; but
we are borrowing trouble to think too much of that now, since whatever
choice be made so long as N/M be large will not affect the achievement just
cited. The other is, that one would much rather think of the molecules of a
gas (of a single chemical kind) as being alike absolutely, than as being dis-
tinguished one from another by a mysterious something-or-other represented
in this theory by numbers painted on balls. In the Boltzmann statistics,
however, the numbers must stay on the balls.

We go over into the momentum-space, setting up a coordinate-frame and
representing the molecules by dots, the coordinates of which are the momen-
tum-components p;, p,, p: of the molecules in question. To each position of
a dot corresponds an energy-value, equal to (1/2m) (p2 + pp + p3); we will
callit £. E vanishes at the origin, and has a constant value over any spheri-
cal surface centered at the origin. To any distribution of the dots will cor-
respond a specific value for the total energy of the gas. For this we need a
symbol different from ¥; and as we shall have a good deal to do with thermo-
dynamics later on, I choose the thermodynamical symbol U. The average
energy of the molecules of the gas will then be U/N, to be denoted by U.

The entry of E and U into the situation is of the first importance. It isin
fact all that will save us from the highly unwanted conclusion that the most
probable distribution in the momentum-space is the uniform one, just as it
was in the coordinate-space. To see why it makes so great a difference is
not altogether easy. I think that the reflections which follow may give an
inkling of the reason.

The momentum-space must be taken either as infinite or as finite. If we
take it as infinite and demand a distribution of uniform density, then the
density goes to zero and at the same time the energies of the molecules go to
infinity, producing an impossible situation. Let us then take it as finite,
blocking off all of the parts of it which lie beyond a certain sphere centered
at the origin. Assume a uniform distribution within the sphere. This will
correspond to a certain value of U. (The student may suppose, if it makes
him happier, that the U-value was preassigned and the radius of the “certain
sphere” chosen accordingly.) The W-value of this distribution will surely
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be greater than that for any non-uniform distribution, whether of the same
U or of a different U, confined within the sphere. However, by blocking off
the whole of the momentum-space beyond the sphere, we have barred a
whole lot of distributions corresponding to the same U and having some of
their dots beyond the sphere. By no means have we proved that the W-
value for the uniform distribution within the sphere is greater than that for
any and all of the barred distributions. Now if we can agree that the block-
ing-off of part of the momentum-space is a silly thing to do and unacceptable
to Nature, the argument for the umform distribution is spoiled, and we have
to look for a new idea.

At this point it seems best to go through the mathematical process for
finding the distribution of greatest W in the coordinate-space and the
momentum-space, just as that process is presented in the textbooks.

_ We return to equation (1) and make it a manageable one by having re-
course to that godsend of statistical mechanics, the “Stirling approxima-
tion”, which may be written thus:

IWN!=NInN — N+ In+/2zN (2)

This is valid only for large values of N, though writers on S.M. never seem
to remember how large the values must be. For still larger values of N we
can drop off the last two terms, arriving at a sort of super-Stirling approxima-
tion which however itself is commonly called the Stirling approximation:

InN!'=NhN 3)
Putting (3) into (1), we find:
InW=NIhhN-ZNhAN; (4)
Defining some quantities w; by the equations N; = Nw; , we make this over
into:
InW=— NZwlInuw (5)

having availed ourselves of the obvious fact that Zw; is equal to unity.

We might now convert this into an equation for W, but this would be a
waste of time and energy, since whenever W has a maximum so also will
InW. With In W, therefore, we operate from now on. Making small varia-
tions in the quantities N; , and making therefore small variations—call them
sw—in the quantities w;, we find in first approximation for the ensuing
change in In W,
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Now we are restricting ourselves to variations in the quantities N; which
leave unchanged the total number of molecules in the cells, or of balls in the
baskets—to variations, therefore, for which

Z N; = N = constant, Zowy =0 (N

This restriction being introduced into (6), 8 In W proceeds to vanish if and only
if w; has the same value for all of the cells. Now, the vanishment of § In W is
a necessary condition for having a maximum of W at the situation in ques-
tion. I do not refer to it as a sufficient condition, because it admits ofa
minimum or of what is technically known as a “stationary” value of W in the
situation in question. However it has already been shown, without the aid
of the Stirling approximation, that the expression to which we are approxi-
mating is greater for the uniform distribution than for the neighboring non-
uniform ones. It may therefore be accepted that here we have a maximum
of W for the uniform distribution, and have reached the old result in a new
way; an achievement nearly useless, were it not a prelude to the performance
in momentum-space.

I continue to use the symbols W and N and N; and w; , but now with ref-
erence to the distribution of the representative dots in momentum-space.
A new symbol, E;, shall signify the energy of a molecule in the ith cell of the
momentum-space. We wish at all costs to avoid the conclusion that the
stable distribution in the momentum-space is the uniform one. Boltzmann
managed to avoid it, and his was the following way:

Let us write, for the number of molecules in the ith cell, the expression:

Nw; = NA exp (—BE,) (8)
and insert it into (6). We shall find:
dInW = —NZ (1 + Ind — BE) sw;. (9)

Of the three terms on the right, two vanish for all variations in which the
total number of molecules remains the same. The third does not—but it
will vanish for a restricted class of these variations, to wit, those and those
only for which the total energy of all the molecules remains the same; for
NZw;E; is precisely that total energy.

Some writers at this point ask the student to imagine a gas in a container
being completely cut off from energy-interchange with the container-walls
and with the whole of the outside world, and therefore being limited to the
particular U-value with which it started out. Others import the word ‘‘tem-
perature” which I am desperately (and vainly) trying to keep out until I am
ready to bring it formally into the discourse, and aver that the gas is nearly
or quite so limited if the walls of the container have the same temperature as
the gas itself. The student may take his choice, but must suppose that
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under such conditions Nature rejects that distribution which so to speak is
“stable against” every conceivable variation, and elects that peculiar distri-
bution which is stable not against any conceivable variation but only against
the possible ones. Perhaps this is because the uniform distribution would
entail the consequences mentioned on page 117, or perhaps there is no sense
in saying that it is “because” of this or “because” of that. Anyhow, the
peculiar distribution is the one which the data sustain.

However I have not really defined the peculiar distribution as yet, having
merely thrown the symbols 4 and B into equation (8) as though they stood
for completely disposable constants. It can readily be seen that at the
most there can be but one disposable constant, for A and B interlinked by
the obvious equation:

Sw;=AZexp(—BE)=1 (10)

But even B is not disposable, if the total energy U and the average energy
per molecule U are preassigned; for there is another obvious equation:

U = = Ea; = A Z Eeexp (—BE)) (11)
What with equations (10) and (11), there is no longer anything disposable
about the constants 4 and B. The peculiar distribution in the momentum-
space is completely defined. It is the Maxwell-Boltzmann distribution-law
obtained from the Maxwell statistics, and sometimes known as the “canoni-
cal” distribution.

To summarize now the Boltzmann statistics as on page 113 the Maxwell
statistics was summarized:

A gas is more likely to be found in its most probable state than in any other.
The probability of a stale is found by imagining it as a distribution of numbered
molecules among cells, in the coordinate-space and in the momentum-space.
That of any.distribution is measured by the number of inventories compatible
therewith. By this crilerion the most probable distribution in coordinale-space
is the uniform one, and by this criterion carefully hedged about, the most probable
distribution in momentum-space is the Maxwell-Bolizmann or canonical one.
It is necessary to liken molecules of a single kind to numbered balls, differing in
no way except the numbering.

This point was reached by statistical mechanics about fifty years ago.
Had it not been for Planck’s wish and tenacious will to explain the black-
body radiation-law, it might have been the stopping-point.

A Herprur AND TROUBLESOME COINCIDENCE BETWEEN Two
D1rFERENT QQUANTITIES

Let us return to the game with the sack, the balls and the basket, played
in the manner which led to good results when applied to the molecules in the
coordinate-space.
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The most probable distribution is the one evoked by the caller, when he
calls for an equal number of balls in every basket. If there are NV balls and
M baskets, this means N /M balls to each basket, and a maximum number of
inventories which I will call Wy... Looking back to equation (1), we see
that Wi is a fraction the numerator of which is N-factorial, while the de-
nominator is (N/M)-factorial raised to the power M. Taking logarithms
and using the super-Stirling approximation, we find:

In Whax = NIn M (12)

The logarithm of the probability of the most probable distribution (of num-
bered balls in numbered baskets, or molecules in equal cells of coordinate-
space) is equal to the logarithm of the number of baskets (cells), multiplied
by the number of balls (molecules).

Next suppose the caller, in a fit of uncontrollable zest for the game, calling
in succession every one of the conceivable distributions. What is the total
number of inventories compatible with all of them together? To sum over
every conceivable expression of the type of (1) seems a hopeless assignment,
but there is a short-cut to the result.

Fix a particular order for the drawing of the balls from the sacks—it may
as well be the very order of their numbering. The first of the balls to be
drawn may be tossed into any one of the baskets, giving M distinct “possibil-
ities”. The second may be tossed into any one of the baskets, the same or
another, giving in conjunction with the fate of the first M* different possibil-
ities. The third may be tossed—but we leap to the conclusion. There
are M~ possibilities altogether, and these are the inventories. Thus the total
number of inventories consistent with all of the distributions, which I will
call Wy, is a number whereof the logarithm is,

InMWiee=NInM (13)

But this is the same as the expression for In Wiyay!

The meaning of this strange coincidence can only be, that when N and
N/M are both so great that the super-Stirling approximation is a good one,
then the logarithm of the number of inventories belonging to the most prob-
able distribution is nearly as great as the logarithm of the total number of
inventories belonging to all of the distributions put together—so nearly as
great, that either logarithm is a good approximation to the other.

In the foregoing very important paragraph, I have italicized the word
“logarithm’ because if it were left out the statement would become a false
one. The statement is not true if applied to the numbers themselves. Wit
is manyfold greater than Wy, and the ratio between the two actually in-
creases with rising N. So does the difference between In Wyo, and In Wiy
increase with rising N, but not so fast as either by itself; wherefore the truth
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of the statement. The student may convince himself of this by applying
the second-degree Stirling approximation (equation 2)?.

T have called this both a helpful and a troublesome coincidence. It may
be deemed a helpful one, because the expression for the total number of in-
ventories is easier to derive and easier to remember than the expression for
the number of inventories belonging to the most probable distribution. If
therefore one has good ground for believing (as here is the case) that the
logarithms of the two are approximately equal, one may serenely remember
and use In Wy, instead of In Wy . The troublesome feature is, that some
expositors speak of In Wy throughout and never allude to In Wy, thus
confusing the student to an extent which (if my experience is typical) may
well be serious. I shall later dwell on the fact that In W for any distribution
is regarded as a measure of the entropy of that distribution, and In Wmax
therefore as a measure of the entropy of the most probable distribution.
Some people imply that In Wy, is the true measure of the entropy of the gas,
instead of being an approximation to it. They commit no numerical error
in so doing, but they blot out the most remarkable quality of the Boltzmann
statistics, to wit, the clear distinction which it makes between the most prob-
able distribution and those of lesser probability. This mistake is more
commonly made in treating the newer statistics. Here I am not so sure
that it is a mistake, but I think so.

MEANINGS OF THE WORD “‘STATE”

The word “‘state”, which turns up continually in this essay, is one of those
words of which a proper definition is hardly less than a full description of the
theory which employsit. When the theory changes so also does the meaning
of the word. In the welter of statistical theories, the word *state” has
several different meanings. In thermodynamics also it has more than one
meaning, but one is preeminent.

Thermodynamics usually concerns itself with gases (not to speak of li-
quids and solids) which are in what T earlier called a “uniform” state: uniform
density, uniform pressure, uniform temperature. For a gas of a single kind
(“kind” being a word which it is the business of chemistry to define) it is a
fact of experience that any two of these three variables suffice to define the
third and also all of the other variables which thermodynamics cares about.
Of these others there are two in particular which I mention at this point, the

2 Actually if one goes from the “most probable state’” N; = const. = N/M to the
“next most probable” in which one ball is taken out of one of the baskets and put into
another, the change in W is in the ratio of (N/M) to (N/M) + 1, which is practically
no change at all when N/M is so high as is commonly taken. This shows that the state-
ment could not be true if it were made about the numbers Wiy and Wi rather than
about the logarithms thereof. It certainly looks as though the statement.could not be
true even when made of the logarithms, but this is evidently one of the cases where
“intuition” is a fallible guide.
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energy and the entropy. This makes five altogether, and any two of the
five suffice to determine the state,—THE STATE, the uniform state, the
only one about which thermodynamics really knows or cares. When asked
about what I earlier called “a surging state’”, thermodynamics mutters
something to the effect that the entropy of such a state is smaller than that
of THE STATE, and then puts an end to the conversation by refusing to
commit itself further. Thermodynamics takes no cognizance of the molecu-
lar structure of matter. A gas might be a continuum, for all that it knows
or cares.

Statistical mechanics talks about a mental image of the gas, in the form of
a flock of dots in the coordinate-space and another flock of dots in the mo-
mentum-space, or one may call them a single flock of dots in the y-space. In
Boltzmann statistics, the “state’ of this image is what I have been calling
the “distribution”. The most probable state of the image—to wit, the one
with the greatest number of inventories or complexions—is identified with
THE STATE of thermodynamics. All of the rest belong to the category of
which thermodynamics would say, that the entropy is smaller than it is for
THE STATE. But since according to S.M. they belong to a category for
which the probability is smaller than it is for THE STATE, one sees a con-
nection between entropy of the gas and probability of the image beginning
to take shape. .

Now it is time to make a formal introduction of the concepts of entropy
and temperature—the latter word having already sneaked into this article
two or three times in spite of all my efforts to keep it out.

ForMAL ENTRANCE OF ENTROPY AND TEMPERATURE

For a substance, meaning now a gas, of a single kind, entropy and tempera-
ture are defined by the equation,

dU = TdS — PdV (14)

P stands for pressure, V for volume, and S for entropy. For energy I use
the symbol U already employed in that sense—but notice that formerly it
stood for the kinetic energy of the molecules! To use the same symbol in
both senses implies that the energy of the gas is entirely the kinetic energy
(of translatory motion) of the molecules. This identification turns out to be
valid for the “monatomic” gases, which are luckily numerous and well-
studied. To these we confine ourselves throughout this article. 7T stands
for the temperature called absolute; this being the only kind of temperature
which will ever figure in this article, the adjective henceforth is discarded.
Density was the fifth variable in my list given above, but volume is usually
preferred to it. To make them equally useful, the quantity of gas must be
stated; here it will be taken as one gramme-molecule.
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It is evident that the equation is a comparison between two states. Do
not go astray by supposing that these are like two of the states which we
have been considering, having the same U and V and differing in the number
of inventories! These on the contrary are two examples of THE STATE—
of the thermodynamic state, of the most probable state—of a gas, differing
in the values of some at least among the five variables. The quantities dU
and dS and dV are the differences between the U-values and the S-values and
the V-values of the two states, whilé P and T may be taken as referring to -
either, the smallness of the difference between the two states—implied by
the differential notation—permitting of this.

It is also evident from my wording that the one equation is being used
to define the two quantities S and 7. This is unluckily no verbal slip,
nor is it a temporary shortcut to be replaced by a royal road as the ar-
gument proceeds. The meanings of entropy and temperature are so
coiled up together in thermodynamics, that it is impossible to take them
apart unmutilated. One cannot seize either by storm and then invest the
other, at least not without the aid of statistical theory: one has to surround
them both in a single campaign. As Eddington has vigorously written, this
is a common thing in physics. Electric force is defined as that which acts on
electric charge, electric charge as that which is acted upon by electric force,
and so on. ... Common as it may be, it is probably nowhere else so har-
assing as in thermodynamics. There are three ways of intruding upon the
vicious circle.

First, to apprehend both concepts in a single mental act. This is the
counsel of perfection.

Second, to use a temporary definition of temperature, with the promise of
confirming or correcting it later. The ideal-gas thermometer is the device
used for this purpose in thermodynamics. Anyone trained in this way is
likely to think for the rest of his life of temperature as the primary concept,
entropy as a derived one—as indeed was the case, when thermodynamics
started.

Third, to produce a theory whlch makes a pronouncement as to the nature
of entropy. :

This last is the major office of statistical mechanics. To those who accept
it, entropy becomes the primary concept and temperature the derived one,
and both are visualized by the aid of the key-word “probability” of the basic
theorem, interpreted in some particular way.

OLD STATISTICAL THEORY OF ENTROPY

In the classical statistics, the entropy of a distribution is considered to be the
logarithm of the number of inventories or complexions compatible with that dis-
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tribution, multiplied by a constant (always denoted by k) which is adjusted to
bring about agreement with experiment:

entropy S = kIn W. (15)

To illustrate this doctrine and to evaluate %, I now take the student back
to the coordinate-space, where a box of volume V populated with N mole-
cules is divided mentally into M equal cells of volume Vy,and the most
probable distribution is characterized by the value N In M for the logarithm
of the probability. The entropy—or no, not the entire entropy of the gas,
but merely what I will call “the contribution of the volume of the entropy”
and denote by S.—is then supposed to be 2N In M, or:

S.=kNInV — ENInV, (16)

Reverting to the equation (14) in which the definitions of entropy and
temperature were tangled up together, and rearranging it, we get:

TdS = dU + PdV 17)

Now, an “ideal gas” is defined by two attributes. First, there exists between
its pressure and its volume and its temperature the relation P = oT/V,
wherein @ stands for a constant. Second, its energy U depends upon the
temperature only, and not upon any other variable, in particular not upon
the volume. Therefore we may write:

TdS = C.dT + (aT/V)dV (18)

C, here standing for something of which we need only know that it is a
function of T alone. Integrating, we find:

S = R1InV 4 (function of temperature) + constant (19)

and lo! it is seen that the dependence of entropy on volume is precisely of
the sort which the theory is fitted to explain.

The next step is to adjust the value of the constant 2. The constant a
aforesaid is proportional to the amount of gas in the box, proportional there-
fore to N: it is the constant ratio of @ to NV to which £ must be equated. For
the amount of gas let us choose one gramme-molecule. Then @ assumes the
value always symbolized by R and called the ‘“gas-constant”, and V assumes
the value usually symbolized by N, and called the “Avogadro number”.
Both of these are known from experiment, and # is fixed by the equation

k= R/N, (20)

The constant  is named in Boltzmann’s honor, though in his time its value
was not known because the value of Vy was only vaguely apprehended.
Now we have settled what I called “the contribution of volume to en-
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tropy”. It remains to interpret the rest of the right-hand member of (19),
which I will call “the contribution of temperature to entropy”. To do this
we must re-enter the momentum-space.

From (15) and (5) and (8) we get, for the entropy S of the flock of dots
in the momentum-space:

Sm = —kInW = — kNEw,-lnw.-
= —kNAZ (In A — BE)e % (21)

Refreshing our memory from (10), we see that the first term of this expres-
sion reduces to —kN In A. Refreshing our memory from (11), we see that
the second term reduces to + ENBU or EBU. Referring now to one
gramme-molecule of gas, I put R for Nk, and find:

Sn = —RInA + kBU (22)

S, is hereby given as a function of U, but a more complicated function than
appears on the surface, since 4 depends upon B (equation 10) and B upon V'
(equation 11). Yet when we differentiate S with respect to U, and in so
doing take account of these complications, it turns out that we might as well
have been oblivious of them! for the result is the same as though 4 and B
were constants:

dSn/dU = kB (23)

Now the temperature, which has so often slipped into this argument in
ways more or less surreptitious, is about to make its formal and ceremonious
entry into the statistical picture. We turn back to equation (17), and
deduce:

dS/du = 1/T (24)

The derivative here standing on the left is the derivative of entropy with
respect to energy under the condition of constant volume: a thermodynami-
cist would write it (8S/dU), . It is therefore properly to be identified with
the derivative in (23), and we make the two identical by putting:

B = 1/kT (25)

Now taking the entropy S to be the sum of .S; and Sy , we find:
S=54+8S.=—RhmnAdA+U/T+RInV—-RInV, (26)
and this is to be compared with (19), the thermodynamic expression for

entropy, which I repeat to make the comparison easier:

S = f (C/T)AT + R1n V + constant @7
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Comparing these, we see first of all that R/n V appears in both, as was already
stated. It also seems at first glance that (—RinA + U/T) is to be identi-
fied with the integral in (27), and that —RIn Vis to be identified with the
constant in (27). This however is not necessarily the case, for (—RIn 4 +
U/T) may prove to include constant terms. Indeed they do; and we must
proceed to evaluate both 4 and U in terms of 7" in order to round off the
task.
I recall equation (10) and write it thus:

1/A = X exp (—E;/kT) (28)

This is a summation, to which each cell contributes one term having the
value of E appropriate to that cell—E; for the 4th cell. Of the volumes of
these cells I have thus far said nothing, except that all are equal. I con-
tinue to say nothing further, but I give to their common volume the symbol
H,. Let us now form the integral:

[[[ ep (~E/k1) dpapaip, £ = @/2m) 02+ 25+ 55 29)

the range of integration extending over the whole of momentum-space.
This integral may be described as follows. Let the momentum-space be
divided into cells of unit volume. Each of these cells of unit volume makes a
contribution

exp (—E/kT)

to the integral, E standing now for the average value of E in the cell in ques-
tion. The integral is the sum of all of these contributions. Now let us in-
quire how much of a contribution is made by this same cell of unit volume to
the summation (28). This second contribution is made up of 1/H, terms,
one for each of the cells of volume H'y which occupy the cell of unit volume.
The values F; corresponding to these cells will not be exactly equal to the
value E corresponding to the entire cell of unit volume; but to the degree of
approximation which is now being used, the difference may be neglected.
The summation (28) is then equal to 1/H, times the integral (25). Now the
value of the integral (29) is given in all tables of definite integrals, and in
terms of our symbols it amounts to

(2rmkT)*"*
so we come to the conclusion:
InA = — In (2rmkT)** + In H,
= —3InT — In 2emk)*® + In H, (30)
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Now we have attended to every term in (26) except the term U /T. Nearly
every reader will remember that the average kinetic energy of an atom of a
monatomic gas at temperature T is § k7. I therefore leave out the deriva-
tion of this result, except for showing the student how to begin on it: the
first step is to go back to equation (11) where an expression was given for U,
and in that expression to replace the summation Z E; exp (—BE;) by

(1/H.) times the integral f [ [ E exp (~BBYIp. dp, dp.. Ttfollows that

U/T is (3/2) Nk, which for one gramme-molecule of gas is (3/2)R, which I
write as R In ¢*”.

The picture of entropy for a monatomic gas limned by the Boltzmann sta-
tistics, is now completed. Entropy is the function which follows:

(2mmbke)™"
Vo Ho

The dependence on volume is correct, i.e., just the same as in the thermody-
namic formula. The dependence on temperature is correct, for (3/2)R is
the value of the specific heat at constant volume per gramme-molecule of a
gas, the quantity C, of equation (18). The additive constant, as to the
value of which thermodynamics says nothing, is fixed when the volumes
Vo and H, of the elementary cells in the ordinary space and the momentum-
space are fixed.

S=%RlnT+R1nV+Rln (31)

MIXTURES OF GASES

Now we will go through the mental operation which is called “considering
a mixture” of two different monatomic gases, N’ atoms of the one and N’
atoms of the other, in the same box and (necessarily) in the same momentum-
space. Let me denote by U’ and U " | respectively, the energies of these
two gases; and by N ! = N'w;and N ! = Nw}, respectively, the numbers of
atoms of the two kinds in the ith cell of momentum-space.

If we seek the most probable distribution of the first gas in the momentum-
space, making the stipulation that we will admit only such variations of the
quantities w; as leave N’ and U’ unchanged—well, of course, we get the same
result as before, the distribution (8), with N’ in place of N and (let me say)
A’ in place of 4 and B’ in place of B. A’ will depend upon B’ and B’ will
depend upon U’/N’. - If we do the like with the second gas, we get anew to
the distribution (8) with N/, A" and B" in place of N/, A’ and B'. A" will
not be the same as A’ nor will B"' be the same as B’, unless it happens that
U /N" is equal to U’/N'. There is no cause for surprise in this. Inacting
this way we are only treating each gas by itself, and have as yet done nothing
which can be regarded as “considering a mixture”.

Let us however seek the most probable distribution of the two gases, mak-
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mg the stlpulatlon that we will admit only such variations of the quantities
w; and w; as leave N’ and N' and the sum of the energies U’ and U'"—not how-
ever the individual energies U’ and U”—unchanged. In acting this way
we are doing something which may be regarded as “considering a mixture”,
since we are allowing for the possibility that energy may pass from the one
gas to the other and the other to the one. Equally well are we considering
the case of two gases separated by a partition through which energy may
pass, but not the atoms. Since in such a case we really ought to take into
account the atoms and the energy of the partition also, we must appease the
critics by providing that the partition shall be very thin.

Choose any set of values of the quantities +, which is to say, any particu-
lar distribution of the first gas; and choose any set of values of the quantities
N, which is to say, any particular distribution of the second gas. Go back
to equation (1) and put primes on all the symbols N, Ny, Na, --- on the
right-hand side of that equation. The resulting expression gives the total
number of inventories or complexions of the first gas. Take off the primes
and affix double primes to each of these symbols. The resulting expression
gives the total number of inventories or complexions of the second gas.
Every complexion of either may coexist with any complexion of the other.
Therefore the total number of complexions of the pair of gases is the product
of the two expressions. It is this product which is W for the pair of gases, be
they mixed or side-by-side.

With use of the Stirling approximation, the logarithm of W for the pair
is the sum of two such expressions as we have seen in (5):

InW = —N'Zw; In w; — N"Zw! In w; (32)
and its ;raria.tion is:
SIn W = —N'Z(1 + In w)éw; — N"Z(1 + In w'")bw,’ (33)
Let us now give a trial to the tentative distribution,
w; = A'exp (—B'E)), w" = A" exp (—B"E,) (34)

On substituting this into (33) we find that if B’ is unequal to B”, the dis-
tribution has a stationary value of W with respect only to such variations
as leave the energies of the two gases separately unchanged—the result
which we had before. If however B’ and B’ are the same, then W is
stationary with respect to variations which leave the sum of the energies
unchanged, either being allowed to gain or lose so long as the other loses or
gains by an equal amount. Since each B is controlled by the corresponding
U/N, the distribution (33) has a stationary value of W for variations of the
type in question if and only if the average energy of the atoms of each gas
is the same. Since each B controls the corresponding A4, this condition of
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equal average energy makes the distributions of the two gases just the
same.

We have already seen that B is the reciprocal of the temperature: for
it is the reciprocal of (dU/8S), in our statistical picture, and the definition
of absolute temperature 7" is precisely that 7' is this derivative. The state-
ment to which we have come is, that the most probable state of the mixture is
the one in which T is the same for both components. It is often expressed in
this way: classical statistics shows that for two (or more) gases in equilibrium
with each other, the temperature must be the same. Itisindeed a fact of
experience, and a most important one, that when two systems (be they gases
or be they not) are in thermal equilibrium, their temperatures are the same.
This has not hitherto been mentioned, and yet we seem to have derived it.
Quite a rabbit for the magician of the classical statistics to have pulled out
of the hat!

However, skeptical people who see a rabbit pulled out of a hat are inclined
suspect that either the rabbit was in the hat beforehand, or else there is no
rabbit. Let us inquire into the contents of the hat and see whether we can
find the rabbit there.

The first (and the last) question to be asked is: what is the difference be-
tween ‘‘different” kinds of gas in the statistical picture?

To the physicist or the chemist, different kinds of gas will be (for example)
mercury and helium. These differ in their spectra, boiling-points, chemical
properties, and quantities of other features. None of these features however
appears in the theory, and therefore none of them can contribute to the
result. The atoms also differ in mass, and for a moment this seems to be a
difference of which the statistical picture takes account, since the letter m
appears in some of our equations. However, it appears only in the ultimate
equations, those such as (29) in which the distribution-in-momentum is
expressed. It does not appear in the original form of the Maxwell-Boltz-
mann distribution-in-energy, the form shown in equation (8). It appears in
particular in the last term of equation (31), but not elsewhere. Apart from
this it may be said that in the classical stalistics, all gases are the same gas.

This is a paradox, but only one of two. The other paradox is, that in
the classical statistics two parts of the same gas are different gases. 'This second
paradox arises from the numbering of the molecules, which is an essential
feature of the classical statistics.

Therefore in the statistical picture a mixture of N’ atoms of mercury and
N’ atoms of helium is distinguished by the fact that the mercury atoms bear
one set of integer numbers (say those from 1 to N') and the helium atoms
another set (say those from N’ + 1 to N’ + N"). But if the atoms were all
helium atoms or all mercury atoms, they would also be divisible in many
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different ways into a set of N’ atoms bearing one set of numbers and a set
of N'" atoms bearing another set of numbers. Each set would obviously
have to have the same distribution, with the same 4 and the same B, as any
other set or as the totality of all the atoms. This conclusion, which is self-
evident in the case in which all the atoms are called “‘mercury”, remains true
when some of the atoms are called “mercury” and others are called ‘“helium?.
We have done nothing but change the names of some of the atoms; we have
not imported into our theory anything which differentiates one kind of
atom from another kind. No wonder we have arrived at the conclusion that
all kinds have the same distribution-in-energy, the same A, the same B and
the same temperature! The rabbit was indeed in the hat, but it does not
look like so much of a rabbit.

The classical statistics therefore doesn’t recognize any of the real dif-
ferences between atoms of different kinds, except for alterations in the last
term of (31); but it does make an artificial difference which creates the
astonishing result, that any two samples of the same gas are different gases!
At this point we may begin to wonder whether this peculiarity, which has
led to so apparently brilliant a result in respect of the equality of tempera-
tures in thermal equilibrium, might elsewhere lead us astray. It does; and
here appears the rift in the lute of classical statistics.

TaE Rirr 1N THE LUTE

Let us imagine two boxes of equal size separated by a common partition,
each containing a gas consisting of N atoms, both gases at the same tempera-
ture. We will baptize one gas “mercury” and the other gas “helium”,
Let an opening be made through the partition. It is known that in such a
situation in Nature, the two gases diffuse into one another, the final and
permanent condition being that in which the mercury and the helium are
equally distributed between the two boxes. The process of diffusion is an
example of what in thermodynamics is called an “irreversible” process. The
state of uniform mixing ought to correspond to the most probable state in
the statistical picture. But what does the statistical theory say?

The statistical theory says nothing about diffusion and nothing about
mixing. The statistical theory takes account of nothing but the facts that
the mercury had at its disposal the volume V before and the volume 2V
after the breaking of the partition, and ditto for the helium. The value V
contains M cells (M = V/V,) and the volume 2V contains 2M cells. The
(approximate) probabilities of the uniform distribution are M~ before and
(2M)¥ after. The latter is greater than the former; the entropy goes up by
Nk 1In 2 for each gas, by 2 Nk In 2 for the two of them, when the private pre-
serve of each is thrown open to the other. This gain is what is called the
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“entropy of mixing” though as we have seen it is really the “entropy of
expansion”. It is the alteration in the second term of the righthand member
of (31).

But now suppose both of the boxes hold helium. One may indeed con-
tinue to suppose that when the partition is opened each one of the two
samples of helium undergoes an expansion, doubling its volume. The
entropy would then go up by 2 NkIn 2. However this looks so silly a thing
to say that no one, I feel almost secure in affirming, has ever said it. The
natural thing to say is, that the 2N atoms of helium distributed through
the two boxes at uniform temperature and uniform pressure have just the
same entropy-value whether or not the partition is broken. '

What does the classical statistics say about this situation? Its answer can
be foretold. Since the two samples of helium are different by virtue of the
different numberings of the two sets of atoms, the classical statistics insists
that the entropy increase by 2NkIn 2 when the partition is broken, even
though the gases are the same. This is indeed, if I may pervert the poem,
“the little rift within the lute, which makes the classical statistics mute.”
The achievement of predicting the uniform distribution in ordinary space,
the achievement of predicting the Maxwell-Boltzmann distribution-law in
momentum-space, the achievement of providing the proper relation between
temperature and mean kinetic energy—all of these are unsettled by this
calamity.

Were I writing a strictly logical article I should quit at this point. No-
thing further can apparently be done, except to tamper with the classical
statistics in an effort to remove the unwanted result which has sprung forth
to plague us. To violate the logic of the classical statistics in order- to
banish the undesired while keeping the desired results is a very questionable
act. In theoretical physics, it is not admissible that the end justifies any
and all means. Nevertheless so successful a feat of tampering has been
done, that T cannot refrain from mentioning it as I close.

Let me first express in a slightly different way the nature of the “rift”.
Compare two samples of the same gas at the same temperature, one con-
sisting of NV atoms in a volume V, the other consisting of xV atoms ina
volume xV. That which is called entropy in thermodynamics—and there-
fore that which is entropy, since it is the privilege of thermodynamics to
give the definition of entropy—is x times as great for the latter as for the
former. But that which the classical statistics calls entropy—or, as we must
admit, miscalls entropy—is not x times as great for the latter as for the
former. It would be, if there were x times as many atoms but just the same
number of cells. However, there are x times as many atoms but also x
times as many cells into which to put them. The number of complexions is
approximately M~ in the former case and (xM)=" in the latter, M standing
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for the number of cells in the former box. The thing miscalled entropy is
ENInM in the first case and (kxNInM 4+ kxNlnx) in the second case. It is
the term kxNlnx which is the rift.

Clearly we could abolish this term by allowing the volume of the cells to
swell in the ratio x:1 when going from the former case to the latter. This
is the same as making H, proportional to the number of atoms in the sample
of gas which happens to be under study. Since in equation (31) the volumes
Vy and H, (of the elementary ‘cells in ordinary space and in momentum-
space) are indissolubly bound together in the product VoH, , this is the same
as making V¢H; equal to some constant multiplied by the number of atoms
under study. '

Such, if T interpret correctly, was the idea proposed by Sackur in 1912.
While it does the task required, it is an “ad hoc” assumption of the most
barefaced character. If the gas under study is at first divided into two
parts by a partition and the partition is then abolished, the cells must be
supposed to swell up at the moment when the partition vanishes. .

We can also abolish the fatal term by going back to equation (1) for the
number of complexions, and removing the factor N! in the numerator and
replacing it by unity. We then have unity divided by the original de-
nominator, which in the (most probable) case of the uniform distribution is
(N/M)! raised to the power M, as I remarked on page 121. Using the
super-Stirling approximation, we find that the logarithm of one fraction is
(NInM — NInN). The factor N! which we formerly had in the numerator
killed off the term (—NInN), but now that we have taken it out, this term
survives. If now we say that % times the logarithm of W /N! shall be the
picture of entropy in the classical statistics, then the term (—kNInN)
comes over into the right-hand member of (31). It may be amalgamated
with the last term already standing there; and when this is done, we find
VoHo multiplied by N exactly as Sackur put it there, and with the same
wished-for result.

This, if I interpret correctly, is the idea proposed in 1913 by Tetrode. It
does the task required of it, but its drawback is that the removal of the
factor N! from the right-hand member of (1), a drastic piece of surgery as
it were, violates the system of the classical statistics.?

I was not, however, thinking merely of this achievement when on Page
132 T spoke of “‘a remarkably successful feat of tampering.” To show the

3 This may seem too strong a statement. We are, after all, only asked to accept % In
(W/N!) as our picture of entropy, instead of 2InW; why be reluctant? But in effect, as I
see it, we are asked first to accept kInWf as our picture of entropy, f being an arbitrary
function of N; and then we are asked so to choose f, that the dependence of & In Wfon N
shall conform to the actual behavior of entropy. This is different from and much less
impressive than our original procedure, which consisted in first realizing that W is the
number of complexions, and then discovering that % In W depends on volume and on
temperature in just the right ways for entropy.
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magnitude of the achievement, I will rewrite equation (31) with two altera-
tions. The first consists in replacing R with Nk, so that the expression shall
refer not to a gramme-molecule of gas but to any number N of atoms. The
second consists in following Tetrode by affirming that the entropy is not
k In W, but £ times the logarithm of W/N! T follow him still further by
using, not the super-Stirling approximation in which N In ¥ is written for
InN, but the better approximation in which (N InN — N) or (NInN — Nlne)
is written for In N! The result is:

S=(3/2)NklnT+ NkelnV — Nkln N
+ Nk In [(2rmE**e"*/ VoHo) (35)

This quantity newly chosen as the picture of “entropy” depends on volume
and on temperature in the right way, as did the other. The dependence on
N the number of atoms is now correct, and no wonder, for the new quantity
was chosen with that purpose. There is a fourth term in the right-hand
member which is proportional to N, and its value is completely determined
if the value of VoH, is fixed. The value which it takes when N is made equal
to Nomay be called “the chemical constant”’; but this name has been spoiled
through being used with several different meanings, and should probably be
abandoned.

When to VoH, , the volume of the elementary cell in six-dimensional space,
there is given the value #*—the cube of Planck’s constant—the resulting
value of the fourth term is excellently confirmed by experiments on all of the
noble gases, and (with less precision) by experiments on many of the mona-
tomic vapors of metallic elements. This is the achievement known as “the
verification of the Sackur-Tetrode formula” and it is indeed a grand one.

Anyone versed in thermodynamics will probably regard this not as a grand
result, but as an incomprehensible one! Are we not taught in thermody-
namics that nothing is ever measured about entropy except the differences
between its values under different conditions, so an additive constant like
the one in- question must drop out of every verifiable equation, and its
value can never be found? How then can it make sense to speak of con-
firming the value of the fourth term on the right-hand side of (35)?

Well, actually it is a difference which is measured: the difference between
the entropy of the gas at any convenient temperature and volume and the
entropy of its solidified crystalline form at the absolute zero. This dif-
ference is found to be such, that if for the entropy of the gas one puts the
value (35) with / substituted for VoH,, then for the entropy of the crystal-
line solid at the absolute zero one finds the value: zero. This result—this
conclusion that the entropy of a crystal is zero at the absolute zero—is in
itself so desirable and welcome that it is taken as the confirmation of the
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Sackur-Tetrode formula. By “desirable and welcome” I mean that it is
harmonious with the idea that entropy is a measure of disorder, an idea
plausible in itself and fruitful in its applications. A chemical element per-
fectly crystallized at the absolute zero is supposed to be the exemplar of
supreme order, and therefore its entropy ought to be nil. But this is an
enormous subject requiring at least one other article, and I am glad that my
attempt at writing such an article stands already in print in the June(1942)
issue of this Journal.

Here then is the astonishing history of the Classical Statistics. By a
strangely artificial device, the numbering of atoms deemed identical, it
arrived at the proper distributions—that is, the distributions ratified by
experiment—in ordinary space and in momentum-space. It then proposed
a picture of entropy partially right, yet wrong in its dependence on the
number of atoms, and therefore fatally wrong. With another artificial and
dubious device, it corrected itself by adopting a new picture of entropy, this
time depending in the right way upon the number of atoms. With a third
artificial device (the introduction of Planck’s constant in a peculiar way) it
completed the formula for entropy in a manner leading to the consequence
that the entropies of solidified crystallized elements are zero at absolute zero.
All of these feats and more were subsequently achieved by the New Statlstlcs
in a manner which I hope to explore on a later occasion.



