A Mathematical Theory of Linear Arrays

By
S. A. SCHELKUNOFF

MATHEMATICAL theory, suitable for appraising and controlling

directive properties of linear antenna arrays, can be based upon a
simple modification of the usual expression for the radiation intensity of a
system of radiating sources. The first step in this modification is closely
analogous to the passage from the representation of instantaneous values
of harmonically varying quantities by real numbers to a symbolic repre-
sentation of these quantities by complex numbers. The second step con-
sists in a substitution which identifies the radiation intensity with the
norm' of a polynomial in a complex variable. The complex variable itself
represents a typical direction in space. This mathematical device permits
tapping the resources of algebra and leads to a pictorial representation of
_ the radiation intensity.

An antenna array is a spatial distribution of antennas in which the in-
dividual antennas are geometrically identical, similarly oriented, and
energized at similarly situated points. The first and the last properties
insure that the form of the current distribution is the same in all the ele-
ments of the array and that consequently the array is composed of antennas
with the same radiation patterns. The difference between individual ele-
ments consists merely in the relative phases and intensities of their radiation
fields. The second property means that the radiation patterns of the
individual elements are similarly oriented and that consequently the radia-
tion pattern of the array is the product of the radiation patterns of its typical
element and the ““space factor”. The space factor of an array is defined as
the radiation pattern of a similar array of non-directive elements. Hence in
studying the effect of spatial arrangement of antennas, we may confine
ourselves to non-directive elements and thus materially simplify the analy-
sis.

An array is linear if points, similarly situated on the elements, are colinear.
In this paper we are concerned mostly with linear arrays of equispaced
sources although in conclusion we shall have an occasion to say a few words
about more general types.

1 The norm of a complex number is the square of its absolute value.
80
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RADIATION INTENSITY AND FIELD STRENGTH

Consider a linear array of » equispaced nondirective sources (Fig. 1).
Apart from the inverse distance factor, the instantaneous field strength of
the array in the direction making an angle 6 with the line of sources may be
expressed as follows

V®; = Ao cos(wt + 3o) + Ay cos(wt + ¢ + ) + A cos(ot + 2 + )
4 oo 4 A cos(wt + n—2 ¢ + 8,) + cos(wt + n—1y), (1)

Y = Blcos § — &, g =—.

Fig. 1—A linear array of equispaced non-directive sources. If two sources are of equal
intensity and in phase, their fields at a distant point are substantially equal in
intensity but differ in phase by 8¢ cos @ where { cos 8 is the projection of the distance
between the sources upon the particular spatial direction under consideration. If
the sources are unequal, an allowance must be made for the relative field inten-
sities in proportion to magnitudes of the sources and the phases must be adjusted
for the phase difference between the sources.

In this equation: Ay, 4y, - -- 4,1 = 1 are the relative amplitudes of the
elements of the array; ¢ is a progressive phase delay, from left to right, be-
tween the successive elements of the array; ¢, ds, - - - Fu_a, a1 = 0 repre-
sent the phase deviations from the above progressive phase delay; 8 = 2z /A
is the phase constant, where \ is the wavelength. The radiation intensity,
that is the power radiated per unit solid angle, is proportional to the square
of the amplitude of D; .

Forming another expression similar to (1) but with sines in the place of

cosines, multiplying the result by i = 4/—1 and adding it to (1), we have
V3 = [0 + Aye?t? o Ayt .
+ A,,ﬂge'-ﬁwm"_’ 1 eiﬁw] e;'ut.

(2)

The true instantaneous value of the field strength is the real part of (2).
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Hence the amplitude 4/® of the field strength® is the absolute value of
(2); thus’

VE=|ataz+ad+ o+ g+,

z=¢e¥, ¢y =plcosl — & an = A e,

3)

In this equation: @, @1, @2, * - * @2, @1 = 1 are complex numbers repre-
senting the relative amplitudes of the elements of the array and the phase
deviations of these elements from a given progressive phasing. Thus if
all the coefficients are real and positive, they represent the relative ampli-
tudes of the elements of the array. If the algebraic sign of a particular
coefficient is reversed, the phase of the corresponding element is changed
by 180°; if some coefficient is multiplied by 7 or —1i, the phase of the cor-
responding element is respectively accelerated or delayed by 90°% and in
general the phase acceleration is equivalent, in our scheme, to a multiplica-
tion by a unit complex number e®. Some coefficients may be equal to zero
and the corresponding elements of the array will be missing. In view of
this possibility, we shall call £ the “apparent” separation between the
elements; it is the greatest common measure of actual separations. When
the elements are equispaced the apparent separation is the actual separation.

Thus we have the fundamental :

Theorem 1: Every linear array with commensurable separations between
the elements can be represented by a polynomial and every polynomial can be
interpreted as a linear array.t

The total length of the array is the product of the apparent separation
between the elements and the degree of the polynomial. The degree of the
polynomial is one less than the “apparent” number of elements. The
actual number of elements is at most equal to the apparent number,

The above analytical representation of arrays is accomplished with the
aid of the following transformation

z= ei\b} (,4)

in which ¢ = B¢ cos # — # is a function of the angle # made by the line of
sources with a typical direction in space. Since ¢ is always real, the ab-
solute value of z equals unity and z itself is always on the circumference of
the unit circle (Fig. 2). As 8 increases from 0° (which is in a direction of the
line of sources) to 180> (which is in the opposite direction),  decreases and

2 For brevity’s sake, we shall call 4/ itself the “field strength.”

3 Equation (3) could be derived directly from the physics of the situation in the same
manner as (1). The foregoing method of transition from (1) to (3) serves only the purpose
of showing the relationship between a less familiar formula and a very well known one.

1 If the separations are not commensurable the arrays are represented by an algebraic
function with incommensurable exponents.
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(o] Z=|

Fig. 2—A typical direction in space is represented by a complex variable which is repre-
sented in a complex plane by a point lying on the circumference of a circle of unit
radius, having its center at the origin. As the angle # made by a typical direc-
tion with the line of sources, increases from 0° to 180° point z moves clockwise.

=] Z=|

(A) (B)

Fig. 3—(A) The active range of s, corresponding to ¢ = ¢ and one-quarter wave-length
separation between the elements. (B) The active range of z, corresponding to
d = pland £ = A

z moves in the clockwise direction. When 8 = 0,y = g{ — #; and when
§ = 180° ¢ = —B¢ — ¢. Hence the range ¢ described by z is

¥ = 28¢. (5)

When the separation ¢ between the successive elements of the array is
equal to one-half wavelength, the range of 2 = 27 and as 6 varies from 0°
to 180° z describes a complete cycle and returns to its original position.
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In this case there is a one-to-one correspondence between the points of the
circumference of the unit circle and conical surfaces coaxial with the line
of sources. Such conical surfaces, called radiation cones, are loci of direc-
tions in which the radiation intensities are equal. If the separation between
the elements < A/2, the range of z is smaller than 2z and z describes only a
portion of the unit circle (Fig. 3A). Finally, if £ > A\/2, then the path of z
overlaps itself (Fig. 3B). Such a path, winding upon itself, will be called a
Riemann circle. In this instance, one and the same point on the circle may
correspond to several radiation cones; but if we regard different positions of
z along its path as distinct points on the Riemann circle, then there will be
a one-to-one correspondence between the points on the circle and the
radiation cones.

Since the radiation intensity is a periodic function of ¥, the space factor
of a given array will repeat itself if the separation between the elements
is greater than one-half wavelength.

CoMPOSITION OF SPACE FACTORS

Since the product of two polynomials is a polynomial, we obtain the fol-
lowing corollary to Theorem I

Theorem I1: There exists a linear array with a space faclor equal to the
product of the space factors of any lwo linear arrays.

In other words, there is a linear array such that its radiation intensity
in any given direction is the product of the radiation intensities in this direc-
tion of any two given arrays. Thus we have

VE = a0+ az+ ad + o+ @,

V& = | b+ bz + b2 + o+ bz
VO VO = (@t az+ -+ anaz D)o+ biz+ - bmaz™ ) |
= | aoho + (aohy + @mbo)z + (aohs + arbr + asho)z’ 4+ -+ - |.

The coefficients of the expanded product represent the amplitudes and the
phases of the derived array.

Naturally the process may be repeated and a lmear array can be con-
structed with its space factor equal to the product of the space factors of
any number of linear arrays or to any power of the space factor of any array.

For example, let us start with a pair of equal sources, represented by

Ve =|1+z]| (N

and construct a linear array with the space factor equal to the square of
(7). The field strength of the required array will be

VE= |1+l =|1+2+2] (®)

(6)
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This array consists of three elements with amplitudes proportional to 1,
2, 1. If the elements of the original couplet are one-quarter wavelength
apart and 90° out of phase, the couplet is “unidirectional”. The space
factor of such a couplet is depicted by Curve A in Fig. 4. The space
factor of the triplet represented by (8) is shown by Curve B. In the
directions in which the couplet radiates half as much or a third as much
power as in the principal direction, the triplet radiates correspondingly
only a quarter or a ninth of the power radiated in the principal direction.

The above considerations suggest a simple method for suppressing
subsidiary radiation lobes. It is well known that in a uniform linear array®

1.0
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Fig. 4—Space Factors—Curve A is the space factor of a unidirectional couplet in which
£ =M/4. Curve (B) represents the space factor of an array with amplitudes pro-
portional to 1, 2, 1. .

the difference in levels of the principal maximum of radiation and the first
subsidiary is substantially independent of the number of elements, pro-
vided this number is sufficiently large. Thus in the limit, the first sub-
ordinate maximum is 13.5 decibels below the principal maximum. Con-
sequently for the array with its space factor equal to the square of the
space factor of the uniform array, the limiting difference in levels must
be 26.9 decibels.
Since the uniform array is represented by

VE=|14+z4+24 -+ 271, 9)

& A “uniform” array is an array made up of sources of equal strength with a uniform
progressive phase delay.
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the other array is given by

Ve

1424 -+ 2]

|1+ 2543224 -+« + 0" 4 (n — 1)7" (10)
4 oeee - 29203 4 gn—2 '

Thus the amphtudes of the individual sources are proportional to 1, 2, 3,

-m—1,n n—1,---3,2, 1. Figure 5 depicts the effect of such
“triangular” amplitude distribution.
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Fig. 5—Space Factorsf(A} is for a uniform array and (B) for an array with “triangular”
amplitude distribution.

Evidently we could raise (9) to any given power
Ve=|1+z4+24+ -+ 1™ (11)

This process does not change the number of separate radiation lobes. The
so-called “binomial” distribution of amplitudes was first suggested by
John Stone Stone.® His scheme is a special case of (11) if we let n = 2.
For the effect of the binomial amplitude distribution see Fig. 5.

The relative merits of two forms for the radiation intensity as given by
(1) and (3) can now be appraised in the light of the foregoing examples.

Using (1), we have for the instantaneous radiation intensity of the uni-
directional couplet

6, S. Patents 1,643,323 and 1,715,433,



A MATHEMATICAL THEORY OF LINEAR ARRAYS 87

V®; = cos wt + cos(wt + % cos 8 — 7—5)

(12)

cos wt + sin(mt + ; cos 8) .

By just ihspecting this equation, we find no evidence for existence of a
linear array with a space factor equal to the square of the space factor of
the couplet. Still less obvious is the method of obtaining proper amplitude
ratios.

ARRAYS OF ARRAYS
The foregoing method of composition of space factors is in reality an

analytical expression of geometric construction of ‘““arrays of arrays”.
Consider, for instance, a pair of equiphase sources of equal strengths

[P [ —j——_!. o
(A) C)
. 2 S -
L £ - 9 2 2
)
Fig. 6

(Fig. 6A). Take two such pairs as elements of an array of the same type
(Fig. 6B). The middle sources add up to a single source of strength two.
If the operation is repeated by taking (B) as elements of (A) or by taking
(A) as elements of (B), then (C) is obtained; the amplitudes of (C) are
proportional to 1, 3, 3, 1.

Each shift of a source to the right through distance { is represented
analytically as multiplication by z. An algebraic identity

(a0 + @15 + @22z = a0z + @12 + aq23 (13)

is an expression of an obvious fact that each element of an array is shifted
through the same distance as the entire array. Similarly a given change
in the strength and the phase of the array is achieved by making the same
change in all its elements; this fact is expressed by the identity

b(ag + a1z + asz?) = bay + baz + bagz?. (14)
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In general, if an array represented by

f@)=a +az+az+ - + Gn._p'a‘"‘l (15)
is taken as the element of an array given by
F(Z) = by + bz + bo2 + -+ + bm_lz"'—', (16)

then the resulting array of arrays is represented by
f@F@) = bif(z) + biaf(z) + bag?(z) + -+ + buaz"f(2).  (17)

DECOMPOSITION THEOREM

Consider now a pair of non-directive sources with strengths proportional

to 1, —¢; then
VE=|z—1| (18)

Geometrically, the complex number z — ¢ is represented by a line drawn
from point ¢ to point z (Fig. 7A). Accordingly, the radiation intensity

ts

(A) (8)

Fig. 7—The radiation intensity of a linear array is represented by the square of the product
of the lines joining the null points of v/ to a point 5 on the unit circle.

of the pair of sources is represented by the distance between t and 3. If Vo
vanishes for some particular direction in space, it vanishes for all direc-
tions making the same angle with the line of sources; these directions form
a cone of silence of the radiation system. Obviously, a radiating couplet
has a cone of silence if and only if the null point of /@ is in the range of z;
in particular, there can be no cone of silence unless the null is on the unit
circle.

By the fundamental theorem of algebra a polynomial of degree (n — 1)
has (n — 1) zeros (some of which may be multiple zeros) and can be fac-
tored into (n — 1) binomials; thus

VE=|GE—t)z—1t) - @—ta)l (19)
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Each binomial represents the directive pattern of a pair of elements sepa-
rated by distance £. Hence

Theorem II1: The space factor of a linear array of n apparent elements
is the product of the space factors of (n — 1) virtual couplets with their null
poinis al lhe zeros of VOt la, o b,

Accordingly the radiation intensity of an array is equal to the square
of the product of the distances from the null points of the array to that
point z on the unit circle which corresponds to the chosen direction (Fig.
7B). To each null point lying in the range of z, there corresponds one
and only one cone of silence provided each null point is counted as many
times as s happens to pass it in describing the complete range.

Fig. 8—The null points of a uniform linear array and the point 5 = 1 representing the
direction of the greatest radiation divide the unit circle into equal parts. The
hollow circles represent the null points and the solid circles the points of maximum
radiation.

By summing the geometric progression (9) the radiation intensity of
a uniform array can be represented as follows

Vo = (20)

-1
z— 11
Hence the null points of such an array are the s-th roots of unity, ex-
cluding z = 1. Since z is a unit complex number,” any power of it is also

a unit complex number. Moreover, each multiplication by z = e rep-
resents a displacement through an arc of  radians. Hence the n-th roots

T A unit complex number is a complex number whose absolute value is equal to unity.
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of unity divide the circle into n equal parts (Fig. 8). Analytically we
have

' —1=0, th=e », m=123 " --n—1,
‘b = __2m1r cos 8, = E’; —_ ZE_T (21)
" n ™8t mpl’
When z = 1, /& is evidently a principal maximum. Other maxima
of smaller magnitude, the so-called subordinate or subsidiary maxima,

occur approximately half way between the null points. The genera]
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Fig. 9—The field strength +/& as a function of ¢ for n = 5. The principal maximum is
reduced to unity.

behavior of the field strength can readily be understood if we follow z
around the unit circle. When plotted against ¢, 4/® has the shape shown
in Fig. 9. This is a universal radiation characteristic which can be inter-
preted for any particular spacing and phasing between the elements with
the aid of the curve for ¢ + & = B¢ cos 0 (Fig. 10).

It is easy to estimate the relative level of the first subordinate maximum.
For a fairly large number of elements, the difference in levels is deter-
mined largely by the distances of the maximum points from the nearest
null points. The distances are approximately equal to the circular arcs
joining the corresponding points. Since the arcs joining the first sub-
ordinate maximum with the nearest null points are nearly half as long as
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those for the principal maximum, the first subordinate maximum of the
field strength is about one-quarter of the principal maximum. In other
words, the subordinate maximum is approximately 12 -decibels below the
principal maximum.

7

=1 | | HEN

. \\ Y+ =2mcose

4

0 20° 40° 60° 80° 100® 120° 140° 160° 180°

. N

=3

-4

-5 : : P
~
=6

=7

Fig. 10

A more accurate value for this difference in levels can be obtained by
first rewriting (20) in the form

B z% _ z—g sin%\—b
Ve = 2 — | : v (22)
sin 3

and then substituting successively ¢ = 0 and ¢ = %r , one for the principal

maximum and the other for the first subordinate. Accordingly we obtain

17\;% = nsin 3T (23)
n

If » is large sin ;—: is approximately equal to g—: and the field strength

ratio becomes §21r = 4.71. This ratio corresponds to the difference in

levels equal to 13.5 decibels.
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DIRECTIVITY OF ARRAYS

The “decomposition theorem” of the preceding section throws consider-
able light on directive properties of arrays. The number of elements in the
array is one greater than the number of virtual couplets. Hence to secure
the greatest possible directivity with a given number of elements, the virtual
couplets must be properly combined.

Q

P
M

Fig. 11—The null points of several three-element arrays. The spacing between the
elements is /4 and the progressive phase delay is 7/4 (T equals period).
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Fig. 12—Comparison of directivity of several three-clement arrays. The spacing between
the elements is A/4; the direction of principal radiation is = 0°, Curve (A)
refers to the uniform array, (B) to an array with nulls at P and B (see Fig. 11),
and Curve (C) refers to an array with its nulls at B and M.

For example, the null points of a uniform array of three elements, one-
quarter wavelength apart, are at P and Q (Fig. 11). If&# = =/2, the range
of z consists of the lower half of the unit circle and principal radiation takes
place in the direction § = 0. Evidently, the virtual couplet with its null
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at ( is comparatively nondirective. Substituting for this couplet another
couplet with a null at B should improve the directivity of the array. This
is indeed the case: In Fig. 12, Curve A depicts directive properties of the
uniform array and Curve B depicts those of an array with its nulls at P and
B. The field strength of the second array is

271 2wi

= lz2 +(1—¢ T)z—¢ ¥

27 !

VE == )+

(24)

iT

\1 + 2V/3 e—l_“t + e ©

Il

m
s z=§(c056-—1);

hence the amplitudes of the elements are proportional to 1, 4/3, 1 and the
total progressive phase delay in the direction of maximum radiation is
T

T 27 .
7 + =73 radians.

3
The minor lobe of the second array is substantially smaller than that of
the first array. The major lobes, however, are equally “wide’” although
one lobe is somewhat sharper than the other. The width of the major lobe
can be reduced at the expense of increasing the minor lobe by moving the
null from P to M (Fig. 11). The effect of this change is shown by Curve
C (Fig. 12). The corresponding field strength is’

VE=|G+ )6+ 1] =+ 1+ )2+ i

iv

=|1—i(l 4+ iz —id| = \1 V2 s e 2
hence the amplitudes are proportional to 1, 4/2, 1 and the total progressive
3r
T

For arrays of six elements, one-quarter wavelength apart and with ¢ =
x/2, we have Fig. 13. Curve A represents the directive characteristic of a
uniform array, with its nulls as shown in Fig. 14A, and Curve B shows the
directive properties of an array with its nulls equispaced on the lower half
of the unit circle as shown in Fig. 14B.

If the spacing between the elements is { = \/8 and if the phase delay ¢ =
x/2, then the effect of distribution of the null points is even more pronounced
(Figs. 15 and 16). This time z is confined to the fourth quadrant of the
unit circle. In Fig. 15, n = 3; Curve A corresponds to an array with equal
amplitudes in which case the nulls are equispaced on the complete unit
circle (Fig. 17A) and Curve B corresponds to an array with its nulls equi-

(25)

LT, T
phase delay is 3 + i=

8 If the “width” of a lobe is measured by the angle of the cone of silence enclosing the
lobe.

* When transforming the expressions for 4/, it is well to remember that the absolute
value of a complex quantity does not change if this quantity is multiplied by a unit complex
number.
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spaced within the range of z (Fig. 17B). In Fig. 16, # = 6; Curve A repre-
sents an array with nulls distributed evenly on the complete circle and
Curve B represents an array with nulls evenly spaced in the range of z.
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Fig. 13—Directive properties of 2 six-element arrays with { = A/4. Curve (A) refers to
a uniform array and Curve (B) refers to an array with its nulls equispaced in
the range of z.
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Fig. 14—Disp¢1)§ition of null points for the arrays with directive characteristics as shown in
Fig. 13.

If the total length of an array is kept constant but the number of ele-
ments is increased, the array may be made more directive; Figure 18 illus-
trates this point. This increase in directivity can be secured only if the null
points of the array are properly distributed within the range of z; in Fig. 18
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Fig. 15— Directive properties of three-element linear arrays with £ = N/8. Curve (A)
refers to a uniform array and Curve (B) to an array with its nulls equispaced
in the range of s.
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Fig. 16—Directive properties of six-element linear arrays with £ = A/8. Curve (A)

refers to a uniform array and Curve (B) to an array with its nulls equispaced
in the range of z.
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Fig. 17—Disposition of nulls for the arrays whose directive properties are shown in Fig. 15.
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the null points are evenly spaced in the range of z, appropriate to each sep-
aration between the elements.

If the elements of the array are directive, the null points should be dis-
tributed with due reference to the directive pattern of the elements in order
that a further increase in directivity could be secured.
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Fig. 18—Directive properties of linear arrays with total length equal to A/4. (A), n= 2,
£=N4; (B),n=3,{=x/8;(C),n=25,{=n/16.

MULTI-DIMENSIONAL ARRAYS

The simplest method of constructing multi-dimensional arrays is to take a
linear array as an element of another linear array. The axis of the second
array may be chosen to make any angle with the axis of the first array.
In this way only a special class of multi-dimensional arrays can be formed.
Analytical expressions for the radiation intensities of more general arrays
can be formulated in terms of two or more complex variables. These
variables, however, will not be independent and a given direction in space
will be represented by a group of related points, one point on each circle
representing the particular complex variable. At this time we shall not be
concerned with any developments applicable to such general multi-dimen-
sional arrays.

ARRAYS WITH PRESCRIBED SPACE FACTORS

If the minimum separation between the elements does not exceed A/2,
it is theoretically possible to design a linear array with a space factor given
by an arbitrary function () or F(8) of direction of radiation. Naturally
the number of required elements will be usually infinite; with a finite number
of elements the space factor may only be approximate.



A MATHEMATICAL THEORY OF LINEAR ARRAYS 97

Consider an array with an odd number of elements » = 2m + 1. Since
the modulus of z is unity the polynomial (3) can be divided by 5" without
affecting 4/ ®; thus

V@ = e + e e
+ tn+ anpz + 0+ G|

Let us now assume that the coefficients equidistant from the ends of the
polynomial are conjugate complex; then the polynomial is real and we can
drop the bars. Thus setting

am = Ao, Amir, = Ap — 1By, k>0, Amk = a:.”,, (27)

(26)

where the 4’s and B’s are real; we have
Gt + amaz* = (Ap — 1Br)e™ 4+ (A + iBy)e

. (28)
= 24y cos kY + 2B sin By

Consequently, (26) becomes

m

V& = ) aldicos by + Bisinky), (29)

k=0

where ¢ is the Neumann number.}®
If now we wish /& to be a prescribed function f() of the variable ,
we need only expand this function in a Fourier series

)

V& = () = 2 exlbu cos b + qi sin k), (30)
and approximate it with any desired accuracy by means of a finite series
(29). Once the A’s and B’s are known, we calculate the a’s from (27).

It must be remembered that the real independent variable is not ¢ but
# and the directive pattern is to be assigned as a function of 8. Besides
being dependent on 8,  is a function of the distance { between the succes-
sive elements of the array. Since § varies from 0° to 180° the range of ¢
is ¢ = 28f. The function f(y) is prescribed within this range. On the
other hand the period of the expressions (29) and (30) is 2r. This means
that if ¢ > 2, that is if £> A/2, it is impossible to obtain the desired direc-
tive pattern with our scheme, because the pattern repeats itself automatically
asy increases or decreases by 2x. But if £ <\/2, we have a considerable
latitude in the design; outside the range of ¥, we can supplement f(y) by an
arbitrary function of . It is only when £ = \/2 that there is a unique class
of linear arrays that will produce a directive pattern given by the first

We =1, = 2when & = 0.
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(m + 1) terms of (30). Dr. T. C. Fry of these Laboratories has suggested
that leaving £ undetermined and fixing the number of elements, an array
could be designed which would have the best fit to the prescribed pattern.
In this connection, the “best fit” means the least mean square deviation
of the approximating pattern from the given pattern.

If 4/® is given as a function F(6) of §, then by virtue of the definition of
Y we can write

Fo) = F(cos—‘ ‘L;Fﬂ_") - W) 31)

Let us now consider a simple example for the sake of illustrating the
method. Let f(y) be defined by

f) =0, 0 <y <m
=1, 7<y¢<?2m

32)

We shall assume that the separation between the elements is one-half
wavelength. This makes the range of ¥ equal to 2=. It is also seen that
regarded as a function of 6, f({) retains its essential characteristic: being
equal to zero over one-half of the range and to unity over the remaining
half.

Expanding (32) into a Fourier series we have

_ 1 2<~sin 2k — 1Y
R R @3

Consequently
Ao=3%, 4 =0if b # 0;
B, = 0, if kis even; (34)

By = “i,ifkisodd.
km

Figure 19 shows several approximations to f(i/) by means of a finite num-
ber of elements. The curve S,, corresponds to an approximation by the
finite series (29). If Sy is deemed to be a sufficiently good approximation
to the given directive pattern, then

111,101 4, 1% 5 , IT o
Ve=Zllgtis gt Fgi ety
(35)
10 112 14 116 118
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The total length of this array is (z — 1) % = 2m% = Ox. All elements
except the three central ones are separated by one wavelength since the odd

powers of z except z° are missing.

ExD-On ArrAYS WiTH EQuUisracEp NULL PoINTS

We now pass to a more detailed analysis of end-on arrays with null points
equispaced on a given circular arc.

z=13

Fig. 20

For an end-on array ¢ = 8{ and
3 = eW, Y = Bf(cos 6 — 1). ' (36)

The range of z begins at z = 1 and extends clockwise to a point determined
by ¢ = —28(. Letn — 1 null points be equispaced on an arc of length ¢
as shown in Fig, 20; the field strength is then
_ i
VE=|E—0a—F -], t=e¢*% @370

This can be expressed as
VE =2 sinl(y+ ¥ )
2 n—1

Xsin%(lﬁ-l- 4 1) sin%(sﬁ‘l‘nn__lllp)’.

nw —

(38)




A MATHEMATICAL THEORY OF LINEAR ARRAYS 101

The angle of the cone of silence enclosihg the major radiation lobe is
determined from

Bl(cos 8y — 1) = —

T (39)

thus

_ R 2 S A 2
1 —cosb = v = 1)Be’ sin > 1/2(13 ~ gt (40)

If the arc ¢ is equal to the range of z, then (40) becomes

2 61

1 COSBl —m, Slni —ﬁ. (41)
In this case, the size of the first cone of silence is determined solely by the
number of elements. On the other hand, if ¢ = 2r —2x/n, the nulls are
equispaced on the unit circle and we have an ordinary uniform array; then

2T\ .6 /N
1—c0501-—m—;—5, . Slni _V—Tf;g. (42)

This time the size of the first cone of silence depends upon the total length
= (n — 1)¢ of the array measured in wavelengths.
When the number of elements in the first case and the total length of the
array in the second are large, then we have approximately

' 2 1" /A
61 —\/T__i, 6, = 2 —2_12_5. (43)

For a large » the ratio of the two cone angles is approximately

o /2t
o= 1/; (44)

For example, if {=\/8, the angle of the major lobe in the first case is one-half
of that in the second case or one-quarter if we are to compare the solid angles.

Equispacing the null points in the range of z not only makes the major
lobe narrower but it also makes it sharper. Thusat the point lying halfway
between the point of maximum radiation and the first null point, the field
strength relative to the principal maximum is

. v . 3y . 59 o (2n =3 )Y
_ M =D i =0 M im =1 " am — 1) @)
X v % . 3 (= 1P

M= -0 2w —1) 2w — 1)
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For a quarter wavelength separation between the elements ¢ = 7 and this
ratio is equal to

B 1
X = Vi =5 (46)

so that the drop in the radiation intensity becomes [10 Logy (2 — 1) + 3]
decibels. On the other hand, for a long uniform array the corresponding
drop is independent of # and is equal to 4 decibels.

Another consequence of equispacing the null points in the range of z
consists in substantial suppression of subsidiary radiation lobes. The first
subordinate maximum is situated approximately halfway between the first

two null points where ¢ = —Tﬂ‘w’—) thus the field strength there, relative
to the principal maximum, is
v ¥ W g Cn =50
4(n — l) 4(n — 1) 4(n —-1) 4(n — 1) )
in v sin 2 sin ¥ +++ sin (——ﬂ b
2(n—1) 2n—1)" 2(n—1) 2(n — 1)
For a quarter wavelength separation this field strength becomes
_211—3 T
2
X = 2 4(n - 1)
2n—3
V2m —1)2 % sin (;’Z(n 31))‘"-
(48)
n—
— 4(n — 1)
V2(n — 1) sin 2(n — 3)“'
4(n —1)
When # is sufficiently large, we have approximately
- e — 49
X =i - DV =D 4

and the subsidiary maximum is [30 Logy (» — 1) + 5] decibels below the
principal maximum. FEach time the number of elements is doubled, the
level of the subsidiary maximum is diminished by about 9 decibels. Thus
an array of the type (37) with ¢ = 28 has very sharp directive properties.
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In order to find the relative amplitudes and phase deviations of the ele-
ments of the array represented by (37), we expand 4/ into a single poly-
nomial as follows!!

‘\/6 = |(1 - t‘lz)(l — t_ﬂz) e (1 - t—n+lz)|

B n—1 X (1 — ﬂ+l)(1 —n+2) (1 _ t—n-i—k) _k(’-;H) X
‘1"'?; -) A—0 —... Q=% z
a1 a1 _n—k n—k
n—1 b = ) (1 T — 2 _kn
1+ ot LT 0
=1 e O [GEE) R ()
N U 2 eyt
- 2m—n 2n — 1) iknd_
=& - )k Vo B s
2(n - 1) 2(n —-1)
Hence the progressive phase delay from one antenna to the next is equal to
d=7 — 2 f ) and the amplitudes are in the ratio
L (n— 1) (n—19 . (n—2)
Lo = 1 S = 1) "% 20 — 1)
T ¥ : v 9
S:mz_(;z—_l) s 2(11 _ )sm ( — 1)

(51)

(n — 1)y sin (n — 2);& (n — 3
Z(n —1) 2(n — 1) Z(n -1 .
¥ 2'1’ W ’

n2( _l)sm 3n — sm TR

The amplitudes of the elements equidistant from the ends of the array are
equal. In the special case of an end-on array with nulls equispaced in the
range of z,¥ = 28{and & = B¢; hence the progressive phase delay from one
Bt
n—1
While (50) serves well for finding the amplitude and phase distribution in
the individual elements of the array, another form is more general for cal-
culating the directive properties. In order to obtain this form we set

antenna to the next is = —

1 Chrystal's Algebra, Vol. 2, p. 340, (1926),
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iy @ D0 o — k)Y
po=1,  Pnri=pr, Pr= (”\;,—1) Mk; UERY
sxnz—“—(n_l)"'51n2(”_5 (52)
PSR 2
AR T T VR

i (n—l)_tp
divide the last expression in (50) by ¢ *  and combine the terms equi-
distant from the ends. Thus we obtain

(n — 3)¢

-\/$‘=2cos( 21)(’0+2pc 5

(53)
+ 2pzcos—(n —2 5)‘P+ ey

where the last term is 2p»_ | cosg- if 2 is even and pn—1 if n is odd.
2 2

Let D be the maximum value of 4/®; then the gain of the array over a
single source is given by
2

= 10 Logi — 2D decibels,  (54)
ff@dﬂ f@sinﬂa’&

0

G = 10 Logw

where  is the solid angle and the 1ntegra.tlon is extended over a unit-sphere-
For an end-on array with nulls equispaced in the range of %, the maximum
radiation is in the direction ¢ = 0. Thus we shall have

D = 2cus(—1'1—_2—1)—"90-1-21510305(1';—_23—)—«:D
(55)
+2p2cos£”;25)£°+ v,
where
—at+ Pt (56)

A convenient expression for the radiation intensity can be obtained from
(50) by taking its norm
o = [PO + plgiw + Pzgﬂw .I_ Ce + Pﬂ_lei(nvl)p]

. : (57)
po + e 4 e A paaem VL
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Since the set of coefficients po , p1, p2 - - - pa_1 is symmetric about the cen-
ter, we find

® = 2 cos (n — 1)e + 2(popr + prpo) cos (n — 2)e
+ 2(pop2 + prpr + papo) cos (n — 3)p
+ 2(pops + prpe + papr + pspo) cos (n — e+ -+ (58)
+ 2(popn—2 + Prpns + papast 0+ puspo) coS @
+ (popna + Prpns2 + popns+ - + papo).

Since

™ 1 [0

f @sin6d8=——f ® de, .
0 183 ¥1

_ (59)
_¥
2mn — 1)

=ﬂ£—ﬂ+g+ 1 =28

we can write
fr@ sin 0df = %[ZP" sin (n — 1)¢ 2(P0P1 + p1po) sin (n — 2)e
{]

n—1 n—2
20 (60)
+ o+ (popa1 + 1o+ - + Pn-lPo)qa]- .
e1

For an end-on array with nulls equispaced in the range of 2, (60) becomes

n—1 ,2
f & sin 0df = a[z(n_l_lfﬂ sin (n — 1)B€ cos (n n—_l)lﬁﬂ

2( )" (popr + p10) sin (n — 2)B{ cos (__nﬂ—_Z)IBE’ + --- (61)

n— 2

+ (Pﬂpﬂ—l + pripne+ -0 + PH—IPU)BgiI .

Substituting in (54), we shall obtain the gain of the array.
Similar expressions can be obtained for an end-on array in which the
amplitudes of the individual elements are equal. Thus we have

1 i(n— i(n— 1
&= [ O Y ]

Mt e™ + e 4 oo Y
(62)
[2cos (n — 1) + 4 cos (n — 2)¢

1
7

+ 6cos(n — 30+ -+ + 2(n — 1) cos ¢y + n],
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Fig. 21—The directive gain in decibels of a pair of sources with equal amplitudes. (A),
the phase delay between the sources is 2rf/\; (B), the phase delay between the
sources is * — 2wl/\.
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Fig. 22—The gain as a function of separation in wavelengths: n is the number of elements.
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wherey = B€ (cos® — 1). In thiscase D = 1 and

S 2 sin 2(n — 1)L | 2sin 2(n — 2)B¢
L@sxnﬂd&—nz—m[fz,&l—l— v — 1 -+ ) -
+ +3Si“j(’i;3)ﬁ£+ o+ (n— 1) sinzﬁc].

When the separation between the elements is exactly an integral number
of quarter wavelengths, (63) becomes

f ®sin 9d = 2 (64)
0 n

and consequently the gain is
G=10 Logm n. (65)

Figure 21 contrasts the directive gain of a pair of sources of equal strength
with the phase delay 2x{/\ (Curve A) with a directive gain of another pair
of sources of equal strength but with the phase delay = — 2xf/\ (Curve B).
In one case the directive’gain diminishes with separation between the ele-
ments and in the other it increases. Figure 22 shows the directive gain of
three-element and four-element end-on arrays with nulls equispaced in the
range of z.

As the separation between the elements decreases, the directive gain of an
end-on array with nulls equispaced in the range of z increases but the radia-
tion intensity per ampere-meter decreases. This circumstance would be of
no importance if we had perfect conductors at our disposal to make trans-
mitting and receiving antennas; but in reality parasitic losses in themselves
cannot be removed and the efficiency of an array decreases, therefore, with
the separation between the elements. This decrease in efficiency will
impose an upper limit on the overall gain that can be obtained with small
antenna arrays in spite of the fact that the directive gain could be made very
large.

Likewise the band width diminishes as the distance between the elements
decreases. This imposes another limitation on arrays of this type.



