The Fundamental Equations of Electron Motion
(Dynamics of High Speed Particles)

By-L. A. MacColl

I. INTRODUCTION

In work relating to the motion of electrons and other particles it is fairly
common to assume that the particles obey the laws of Newtonian dynamics.
That is, briefly, it is assumed that the rectangular coordinates (x, ¥, z) of
the particle under consideration satisfy the differential equations

mi = X, my =V, mé = Z,

where m is the mass of the particle (assumed constant), X, ¥, and Z are the
components of the applied force, and the dots indicate differentiation with
respect to the time 2. '

However, it is well recognized now that the above equations are not
strictly correct, and that they merely represent an approximation which is
adequate when the speed of the particle is sufficiently small compared with
the speed of light. The system of dynamics based upon the correct equa-
tions! (which will be exhibited presently) is commonly called relativistic
dynamics, not because any knowledge of the theory of relativity is essential
to its understanding and use?, but because it is in agreement with the theory
of relativity (which Newtonian dynamics is not), because it was first de-
veloped in connection with work on the theory of relativity, and because
even yet virtually all of the expositions of the subject are to be found in
books and papers dealing primarily with the theory of relativity.

Just where the dividing line should be set between cases in which New-
tonian dynamics is an adequate approximation and cases in which it is
necessary to use relativistic dynamics is, of course, a rather vague question
which cannot be answered simply and definitely. We may note, however,

1Tt is not the purpose of this article to discuss questions of fundamental physics, or
the physical validity of any particular equations. For purposes of discussion, we assume
outright that relativistic dynamics is at least more nearly correct than is Newtonian
dynamics.

2 The theory of relativity can be described briefly as a theory of the relations between
the descriptions of phenomena in terms of different systems of reference. We shall not
be concerned with this theory, because we shall be employing the same reference system
throughout most of our discussion. In the final section of the paper we shall consider
purely geometrical transformations of the coordinate system. These transformations,

however, involve nothing that is really characteristic of the theory of relativity in the
usual sense.
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that according to relativistic dynamics the mass of a five thousand volt
electron is about one per cent greater than the mass of an electron at rest.
From this we can infer that, while Newtonian dynamics may be adequate
for many purposes in our studies of electron motion, we do not have any
great amount of margin, and that it will be necessary to use relativistic
dynamics whenever we wish to obtain really good results concerning the
motion of even moderately high speed electrons.

This article is purely expository. Its purpose is to set forth the funda-
mental equations and theorems of relativistic particle dynamics in a clear
and concise form, unencumbered with any material relating to the theory of
relativity proper. Almost all of the material is to be regarded as already
known, but apparently it is only to be found in an inconvenient and scattered
form. The incomplete hibliography at the end of the paper gives references
to some of the more accessible sources of this and other related material.

I1. TuE ELEMENTARY DIFFERENTIAL EQUATIONS OF MOTION

Our discussion might be begun in any one of a number of ways, and no
doubt the different approaches would appeal unequally to different readers.
Considering the nature and purposes of this article, the author has deemed
it best to begin by writing down at once the differential equations of motion
of a particle (according to relativistic dynamics) in their most elementary
form. Then, for the purposes of this discussion, these equations will have
the status of a fundamental assumption. It need hardly be said that the
equations are not written down arbitrarily. On the contrary, they represent
the consensus of modern opinion as to the laws under which particles really
do move.? The grounds, experimental and theoretical, for this opinion are
set forth in various of the works cited in the bibliography.

For the time being, until the contrary is stated in the final section, we
“employ a fixed rectangular coordinate system. Instead of denoting the
coordinates of the particle by x, v, and 2, as we have done provisionally in
the Introduction, we shall denote them by a1, ay, and a3.  Then 4, @, and
&3 denote the components of the velocity of the particle. The components
of the force acting on the particle will be denoted by X, X,, and X;. For
the time being we need only note that the force may depend upon the
coordinates, the velocity, and the time; later on we shall introduce some
more explicit assumptions about the force. The symbol ¢ will be used to
denote the speed of light in vacuo.

3 The validity of these laws is not unrestricted. It is limited on the one hand by the
quantum phenomena which become appreciable on the atomic scale, and on the other hand

by certain phenomena revealed by the general theory of relativity which become
appreciable on the cosmic scale.
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We assume that the particle moves, under the influence of the force (X,
Xa, X3), so that its coordinates satisfy the system of differential equations

d  mdn
dt /1 — (/¢

where m, is a positive constant characteristic of the particle, and 27 is an
abbreviation for the expression @, + &* + #;%* The positive value of the
square root is the significant one; and wherever square roots appear in the
subsequent work it will be understood, unless the contrary is stated, that
the positive values are intended.

A few remarks may help bring out the significance of the foregoing assump-
tion and its relations to the corresponding fundamental assumption of
Newtonian dynamics.

We call the constant mi the rest-mass of the particle, and we assume (in
accordance with the experimental evidence) that mo is identical with the
mass of the particle which is used in Newtonian dynamics. In relativistic
dynamics the quantity m defined by the equation

= Xﬂ! (" = 1: 2: 3)1 (1)

m=
Vi— @)
is called the mass of the particle. We note that as v/c approaches zero the
mass approaches the rest-mass (whence the appropriateness of the latter
term), and that as v/c approaches unity the mass increases without limit.
Consider the vector having the components pi, ps, ps defined by the
formulae

o = Mo Ty
TN = @)
We call this vector the momentum of the particle. The momentum is equal
to the velocity of the particle multiplied by the mass.

Now equations (1) assert that the time-rate of change of the momentum
of the particle is equal to the applied force.

We have already observed that as v/c approaches zero the relativistic mass
of a particle approaches the Newtonian mass. We now note that as v/c
approaches zero the components of the relativistic momentum approach
the values

2)

b = o 2

* We might merely say that vis the speed of the particle. However, for our immediate
purposes, it is important not to lose sight of the fact that v is a certain particular function
of the components of velocity.
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which are precisely the components of the momentum according to the
Newtonian theory.
Finally, as v/¢ approaches zero, the differential equations of motion (1)
approach the forms*
d

dt (modn) = Xa, (1)

which are the Newtonian differential equations of motion.

Thus we see that Newtonian dynamics is in effect a simplified approximate
form of relativistic dynamics which is valid when the speed of the particle
under consideration is sufficiently small compared with the speed of light.

Let us carry out the indicated differentiations in equations (1), and then
solve the resulting equations for the quantities mody, mods, mods. The work
is straightforward, and need not be given here. We obtain the following set
of formulae:

X1 By e Fy iy
migy=(1—=2"¢)"" | Xy 1— (@' + a')” dydyc )
' X, Fadigc 1— @+ d)e
1— (@& + a0 Xi By dgc
moda = (1 — of ¢ )™ Fy e X, By dyc , (3)
I .1':3 5_2 Xs 1—- (Ifl12 + ;1'522)5_2
1 — (& + @) Fydac” X,
mody = (1 — o' ¢ )™ By dac 1— (@ + )" Xaf.
drdzc dpdyc X,

These equations are, of course, the differential equations of motion (1)
written in a new, but equivalent, form.

If, at some particular instant, the particle is moving parallel to the x;-axis,
so that #; = @3 = 0, the equations (3) reduce af that instant to the forms:

mp 1 My T2 o &
= XE, = Xs.

M - x T —
(1 — g%c2)3 I (1 = 2 (1 — o222
These equations show that a particle of rest-mass o, moving with speed v,
responds to a force parallel to the velocity as would a Newtonian particle’
of mass
mo )
(1 — e
4 If this conclusion is not entirely evident, the reader is referred to equations (3), from

which the conclusion follows at once.
% I.e. an ideal particle which obeys the laws of Newtonian dynamics.

m¢=
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and that the particle responds to a force perpendicular to the velocity as
would a Newtonian particle of mass

Mo

my = (1— 2R’

For this reason, it was usual in the early work on relativistic dynamics to
ascribe two masses to a particle: the longitudinal mass m ,, and the transverse

mass m,. However, in general this procedure leads only to inconveniences,
and it has been almost entirely abandoned.

This concludes our discussion of the elementary differential equations of
motion. Without any further general theory of relativistic dynamics it is
possible to solve many interesting and important problems. For instance,
it can be shown easily that the trajectory of a particle subjected to a force
which is constant in magnitude and direction is a catenary (rather than a
parabola, which is the curve predicted by Newtonian dynamics).® In the
following sections we shall discuss some of the less elementary parts of the
subject.

III. THE LAGRANGIAN EQUATIONS

In the foregoing the components of the applied force have been any func-
tions of the coordinates, the components of the velocity, and the time.
However, in problems concerning the motion of electrons, and for that
matter in many other physical problems also, we are usually concerned with
forces of a somewhat special kind. Throughout the remainder of the article
we shall assume that the force belongs to this special class.

We consider four given functions of the coordinates and time, namely

V('TIJ Xa, X3, t): Aﬂ(:"lr Xg, X3, i’): (n’ = 1: 2, 3):

and we assume that the components of the force are given by the formulae

av o4y, . [64. 84, | [o4:r 945
X = e — o _—— — — —_—
! dxy  of T l: dx;  Oxs | T | Oxa  Ox |’
AV a4y, . [04s a4y . [04. 94,
Ye=—an " a T ‘”a[ax; o | " e T @
v ads | [edr a4] L [ady . a4,
Xy = dxs ot T I:é‘xa ox; | e | 9xs  Oxs |’

Let us suppose, for purposes of illustration, that we are considering the
motion of an electron. Then the physical interpretation of our assumption

6 L. A. MacColl, American Mathemalical Monthly, Vol. 45 (1938), pp. 669-676.
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-concerning the force is the following.  V(xy, as, x5, £) is the potential energy
of the electron in an electromagnetic field; that is

V(.‘C1, X2y X3y )= — E‘1"(:t“.1r Xgy X3, ‘J’))

where e is the absolute value of the electronic charge, and (%1, a3, %3, #) is
the scalar potential of the field. The functions 4,(x;, %, %3, t) are related
to the components a,(x1, 43, 3, £) of the vector potential of the field by the
equations
A (1, x9, 23, 8) = — eay(x1, xa, 3, 1).

The terms —d4,/0t are — e times the contributions of the vector potential
to the components of the electric force. The quantity d4s/dxs — 9A4s/0x4
is —eB;, where B is the x-component of the magnetic induction; and
similarly for the quantities 84:/9xs — 943/9x; and d4,/0x, — 84,/dxs.*
In other cases also, equations (4), which may degenerate considerably, can
be interpreted without difficulty.

Now we define a function L{xy, &9, x3, @1, &, &3, £) of the coordinates, the
components of the velocity, and the time, as follows:

L= — mec*(1 — 022" — V 4+ idydy + dpdy + d3d 5. (5)

We call this the Lagrangian function.
" We write the equations

d oL _ oL
dt 8%, 0%,

=0, (n =1,2,3), (6)

carry out the indicated differentiations, and readily verify that the resulting
equations are identical with those obtained by substituting the expressions
(4) in equations (1). Hence, equations (6) are merely a form of the differ-
ential equations of motion. We call equations (6) the Lagrangian equations.
The chief importance of these equations is due to the ease with which they
enable us to use coordinate systems which are not rectangular. This will
be discussed in the final section.

In the Newtonian case, i.e. the case in which the speed of the particle is
small compared with the speed of light, the Lagrang:an function reduces
approximately to the form

L= —mdc+ % (@) + i + @) — V4 A+ dady + 8945, (5)

* These relations between the A’s and the components of the vector potential, and
between the partial derivatives of the A’s and the components of the magnetic induction,
are based upon the use of the M.K.S. system of units, If we measure the electromagnetic
quantities in other units, certain constant proportionality factors may appear in the
relations.
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If we employ the function (5') in equations (6), we do indeed get the New-
tonian differential equations. Since the constant term —mc? is of no
effect in the formation of the differential equations of motion, it is ordinarily
omitted in writing the Newtonian form of the Lagrangian function.

IV. Hamirton’s CanoNicAlL EQuATIONS

Let us write
Pn+ Au = ma. (7
Solving equations (2) for i, @, 3, we get the result
dn = cpalme’c” 4+ pi’ + p° + p'T"
c(mn — An)lmg' ¢ + (w1 — 42" + (w2 — Ao)* + (w5 — Ag)* 2 ®

Also, it is readily seen that the differential equations (1) can be written,
with the aid of equations (7) and (8), in the form

b= b a0 s O
%, ox,, 0)
ov (

=~ cu [mo'c” + (1 — 42)° + (w2 — 42)" + (my — Aa)]'"

Now let us define a function H (xy, xu, xs, 71, o, 73, £) as follows:
H = C[mogcﬂ + (71'1 - -‘11)2 + (71'2 - ,42)2 + (‘ﬂ's - -‘13)2}”2 + V. (10)
Then equations (8) take the forms

oH

Ln = 6_-.-r,. ’ (11)
and equations (9) take the forms

)

‘ﬂ_'n - C.Fn - (12)

The function H is called the Hamiltonian function. The six equations
(11) and (12), which are equivalent to the three equations (1), are called
Hamilton’s canonical equations of motion. These equations are of great
importance in all of the deeper theoretical work in dynamics.

An easy calculation shows that we have the identity

II + L = 7r1:i:1 + 1'r22f,'2 + 1r3:i:3. (13)
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In the Newtonian case the Hamiltonian function given by (10) reduces
approximately to the form

H = mdé + ij; (1 — A A (mp — A2 + (s — A1+ V. (10)

The equations (11) and (12), with H given by (10’), are equivalent to the
Newtonian differential equations of motion (1’). Here again the constant
term mic? is of no effect, and it is ordinarily omitted in writing the New-
tonian form of the function H. The Newtonian forms of the functions H
and L satisfy the identity (13), whether or not the constant terms moc? and
—mc? are included.

V. Staric Fierps oF Force: THE ENERGY INTEGRAL; NATURAL FAMILIES
ofF TRAJECTORIES
By equations (11) and (12), we have the relation

dH 6H oH .
i +2;1[67 u+£nm.]

OH 0H  OH oH oH
- + E [695,. Omn O Bx,.] T (14)

In particular, if no one of the functions V, 4, As, Ay involves the time
explicity, we have dH/dt = 0, so that the value of H remains constant
during the motion of the particle. That is, under the condition stated we
have

moc'[1 — o' ¢ "1 + V(a, an, a5) = constant. (15)

In the Newtonian case equation (15) reduces approximately to the form

moct + 1”2_‘.’ v* 4+ V (a1, %2, 43) = constant,

which is equivalent to the equation

MUz

5 + V(a1, 22, ¥3) = constant. (15")

It is well known that this equation is a consequence of the Newtonian
differential equations of motion.
The left-hand member of equation (15) is the energy of the particle in
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Newtonian dynamics, the first and second terms being the kinetic energy
and the potential energy, respectively. The equation itself is called the
energy integral.” Similarly, we call (15) the energy integral in relativistic
dynamics, and we call the expression

mocl — TPV

the relativistic energy. This energy is the sum of three parts: the proper
energy moc?, the relativistic kinetic energy

moc’ [l — ¢ T — moc’,
and the pofential energy V.

The totality of possible trajectories of a particle in a static field of force
forms a five-parameter family. We now see that if the field of force is
static and of the kind we are considering now, the five-parameter family of
curves consists of «! four-parameter subfamilies, each of which corresponds
to a different value of the energy of the particle. Each of these four-param-
eter subfamilies is called a natural family of trajectories. We proceed
to derive the differential equations defining a natural family.

If the constant in the right-hand member of equation (15) is denoted by
the symbol E, we have the relation

fll + w + " =l — it (B - VT, (16)
where
Xy = dxz/da;;, xs = duy/duy.
Hence,
dt=c 'L+ a2 + x5 ][ — mic (E =" day.

From this, and the two equations

@ mi oV Tady o] [ods _ ody
dt (1 — ¢ )2 9y ] oxs 0xs ' ax axs |’
4 mod; —__ﬂﬁ_i; 94, _ 94s — & 94s _ 94,
dt (1 — ¢V 8xy ' ' G om Lore  oxs

it follows that we have the following system of differential equations defin-
ing the natural family of trajectories corresponding to the total energy E:

"In the theory of differential equations, an equation relating the unknowns involved
in a system of differential equations, their derivatives of orders less than the highest orders
appearing in the system, the independent variable, and one or more arbitrary constants,
is called an integral of the system of differential equations.
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m d [ [E=VY —md|"
1 - 2 1"2_(.2[_ ) ) T e
{ o %] dx: § 14+ ;\‘;2 -+ .\:.'fs

_ 9 2 AR
_E[(E V) moC |

+ ol +at A (xg [6A3 - (Z‘iz] -

EU; dx3

’ o d [ [(E— V)Y —mic]"
14 ! + ‘s l 7 (x [*7 T [E
[ T o dxl ? 1+ x; + a3

B
ax 1 31'2

17

6 2 2 49172
—_ e——— E — —_—
o [( V) —mocl

s ([ o] [ o))
+ol 42 o] ([ o e " am )

The equations which correspond to (17) in the Newtonian case are most
readily obtained by going back to the Newtonian differential equations of
motion and employing the integral

mw?/2 + V = E.

An easy calculation, which is entirely parallel to the foregoing, gives us the
following system of equations:

7] re—1p @ 7 E —_Vi e . 0 _ 172
(14 a2 + a3 d_xl(M [—l-l-x;z —|—.’.r;’;2j| = 6_:\:2(‘5 V)

12 _I! —1/2 ’ aAa _ 6‘4.42} _ 6.42 _ 31_4_1:|)

i mepd (f E=V N9 p gy
[1 + a2 + %3 ] d—ﬁ(xs [sz] = oxs (E V)

+ ol + o+ 2T ([‘L“-‘ - ?iﬂ} — [% ~ aA‘*D.

0x3 o0y %o dx3

| 17)

On comparing the systems of equations (17) and (17'), we get the follow-
ing useful theorem.

If the constants E, E*, mo, mo*, k, and the functions (of ®1, a9, %3,) V, A1, As,
Ay, V¥, Ar*, As*, Ag* are such that we have identically

(E— V) —moc' = B (E¥ — V¥),

0ds _0As _  k  [045 _ 6‘4:]
0xs éxg ’

Ixs  Oxg  c(2mg*)P
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sy _ob_ k[0df o
3231 axg C(sz*)uz dx EU; ’
Mg_tz@:_L[aﬁ_aA?
dxg ey c(2mg*)V2 | By ox; |’

the natural family of Irajectories of a relativistic particle® (of rest-mass my)
moving with relativistic total energy E in the field of force derived from the
Sfunctions V, Ay, As, Ay is identical with the natural family of trajectories of a
Newtonian particle (of mass mo*) moving with Newtonian energy E* in the
Jield of force derived from the functions V¥, A*, A5* Aj*.

In particular, the conditions of the theorem are satisfied if

k= c(2mo)'?, E* = ¢2(2mo)"W(E? — maoc"), mo* = my,
V=V1*=0, A*=4, AF=2Ad, A=A,

Hence, we have the corollary:

I'n the case of an electrified particle moving in any static magnelic field the
natural family of Irajectories corresponding to any value of the energy given by
relativistic (Newlonian) dynamics is identical with the natural Samily of
trajectories corresponding lo a certain other value of the energy given by New-
tonian (relativistic) dynamics.

The equation

E* = ¢ *(2mo) (E' — mich

establishes a one-to-one correspondence between the physically significant
(E = myc? and E* = 0) values of the relativistic energy E and the New-
tonian energy E*. From this fact and the preceding corollary we get the
following further result:

In the case of an electrified particle moving in any static magnelic field the
fotal five-parameter family of trajectories given by relativistic dynamics is
identical with that given by Newfonian dynamics.

Of course, these peculiar properties of motion of an electrified particle
moving in a static magnetic field are explained physically by the fact that
the magnetic forces do no work, so that the speed of the particle, and
consequently also its mass, remain constant during the motion.

VI. SoME FORMULAE FROM THE CALCULUS OF VARIATIONS

This section is devoted to the derivation of some formulae from the
Calculus of Variations which will be needed in the further discussion of the

8 I.e. a particle obeying the laws of relativistic dynamics.
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dynamics of a particle. All constants, variables, and functions considered

here are understood to be real.’

Let F(t, x, ¥, 5, #, q, ) be a function of the seven arguments indicated,"
which, together with all of its partial derivatives of the first three orders, is
continuous in a region R defined as follows:

a <t < ay
b < x < by
R: a<y<oecy
d <z < dy,
#, g, and r unrestricted,

the a’s, b’s, ¢’s, and d’s, being constants.

Let x(2), y(2), 3(8), ¢(£), ¥(2), and w(£) be continuous functions with con-
tinuous first derivatives, and let ¢, 5, and 6 be parameters, independent of ¢,
such that we have the relations

b < x(t) + eplt) < b
a < y(E) + m(t) < o (a1 < t < @),
dy < z(f) + B(t) < do,
Let T, and 7% be constants, and let ¢, and #, be parameters, such that
a1 < T1+t1<T2+tg<Gz.
We now consider the integral

I(G: n, 0, i, fa)

To+ta
= f F(t,x + e,y + mb, 2 + b, 2" + ¢,y + ¢/, 5’ + 00) dt.

T+t
Tt can be shown without difficulty that the integral exists and is a differen-
tiable function of €, n, 6, &1, . We are interested in formulae giving the
values of dI/de, dI/dn, 81/86,31/dt,, dI/dt; at thepoint e = n =0 =4 =
ty =0,

9 Since this section is purely mathematical, the constants, variables, and functions do
not necessarily have any special physical significance.

19 We treat the case of a function of seven arguments in order to fix the ideas, and
because this is a case we shall meet in Section VII. However, the discussion applies
essentially to other cases as well. In particular, in Section VII we shall also deal with a
case in which F has only five arguments, z and r being absent.
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By a well known theorem concerning the differentiation of definite
integrals with respect to parameters,'! we have

al Totig F:] , F] ,
de le-Hl [wa(x + ep) te alx’ + etp')]F(t’ #tep o, 8 0 d

gTI = —F[Tl -} tl,x(Tl -+ h) -+ é(p(Tl + tl) Z’(Tl + tl) + 6“’(111 + tl)]r
g_nn+bﬂn+m+mn+m 8 (T + 1) + 6’ (T2 + ).

The formulae for 87/dy and dI/d0 are similar to that for aI/d¢, and need
not be written down.

In particular, if [07/d¢]o, etc. denote the values of the derivatives at the
pointe=n=0=1 =, =0, we have

Ka - i /
_B—E_n B fr, [qa te ]F(t %o #)dh
~ = T

g - igI:"!/fj“l'iw —,:IF(l,x,---,z")dt,
|91 _Jo T

[or'] " '
HEA [""J“’ f]”‘“ ki 1
g_{ = —F[Ty, a(Ty), - -+, 2(TV)],

| 041 _jo

g = F[Ty, 2(Ts), -+ , #(T3)).

L Ok2_jo

The first three of equations (18) can be transformed to advantage, as
follows. Integrating by parts, we obtain the formula

Tzfa rd aF 7 T2
L*p&r’F(I’x"“’z)t_[qoa_x' (tsx;"'sz)]l

1
T 49
N € dt ox’

F(t,x,---,4) dt,
and similar formulae for the integrals

f ‘V F(z x, -+, %) dt
and

To a
!
— ces di.
fﬂ w az,F(t,x, ,2) dt

11 The theorem is given, often in the form of two separate theorems, in most works on
Advanced Calculus and the Theory of Functions of Real Variables. See the bibliography.
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It follows, therefore, that we have

aI _ d ; "2
[Fe‘]u = l:(P (E; F(t: X, y & ):|T1

+f dt)[ da"]F(tr L7 d,

oI _ ] T2
(5] =¥ sy reno],

2¢(1)|6J" ,l](!,x,-“ 52’) dl! (Ig)
I: ]
do o

dt dy

a N

[W&—,F(t,x, 1"”-’):L"1
Ty “ dz  dt az’ T » 5

An important special case is that in which /4 and % are zero (so that the

limits of integration are fixed), and

‘P(TI) = ?(Tz) = ‘P(Tl) = V"(Tz) = N(Tl) = w(Tz) = (.
In this case we have in general

! d ar
I(é, m 6’ O’ 0) - I(Oi 0! 0: 0: 0) - Efr, ‘P() [ax - d—tﬂ'] d

aF d oF oF d OF
ro v [ o 2 - £ 2]

+ 0(51 7 6)»

where o(e, 1, 6) denotes a term, the exact form of which is unimportant,
which is such that the expression

o(e, n, 6)
lel + |nl + [6]
approaches the limil zero as €, n, and 0 tend simultaneously toward zero.
In particula, if the functions x(f), ¥(#), 5(¢) satisfy the system of differen-
tial equations

d aF OF d F OF d 0F AF

s "  aw & =0 G a0
we have (for all choices of the functions ¢, ¥, w subject to the conditions
stated)

I(f: 1 B; 0: O) - I(O: 01 0’ 0: 0) = 0(6, M 8) (21)
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Also, it can be shown without difficulty that in order that we have (21), for
all such choices of ¢, ¥, w, it is necessary that x, y, and z, satisfy the equations
(20).*

The last result can be stated in the following summary, and not quite
explicit, form: If, and only if, the functions x(£), ¥(¢), z(¢) satisfy equations
(20), the integral

Ty
Ft, x,y,2,4",5,4) dt (22)
Ty
is stationary with respect to infinitesimal variations of the functions x(z),
y(#), 5(¢) which leave the terminal values unaltered.
The problem of finding functions which render the values of definite
integrals stationary is the chief subject of the Calculus of Variations.
The equations (20) are called the Eulerian equations of the Calculus of
Variations problem of making the value of the integral (22) stationary, or,
as we usually say, of maximizing or minimizing the integral.

VII. HaMrLToN’s PRINCIPLE AND THE PRINCIPLE OF LEAST ACTION

We immediately recognize equations (6) as the Eulerian equations of a
problem in the Calculus of Variations. Thus we have the following principle
(Hamilton’s principle):

The particle moves, under forces of the type (4), so that the value of the integra]

ty
L dt,
ty
with i and ty held fixed, is stationary with respect to infinitesimal variations of
the functions x,(t) which leave the initial and final points unaltered.

The precise meaning of this is determined by the discussion given in
Section VI.

Hamilton’s principle leads to the relativistic or Newtonian differential
equations of motion, according as we use in it the function L given by (5)
or by (5).

A little inspection suffices to show that the system of equations (17) is
also the system of Eulerian equations of a problem in the Calculus of
* In brief, suppose that 49r_ B_F were not zero for some value of £.  Then if we should

ditay’  ax
choose a function ¢(#) which was (say) positive in the neighborhood of that value, and zero

elsewhere, the integral
T2 o aF _dor
N - ——— | at
fr, ¢ ax dt dx'

would have a value other than zero. We shall not give the actual proof here; it is to be
found in the works on the Calculus of Variations cited in the bibliography.
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Variations. Thus we get the so-called principle of least action, which can be

stated as follows:
The particle moves, in a static field of force of the type (4), and with the
prescribed total energy E, in such a curve that the value of the integral

(31)
f( 1+ 23" + 25 I(E = V)6 —mi 1" + Ar + Ass + Asxs) dy,

z1),

with the limits of integration held fixed, is stationary with respect to infinitesimal
variations of the trajectory which leave the end points unaltered.

We have a precisely similar principle in Newtonian dynamics, but here
the integral in question is

(21)2 2 1] ’
ﬂ (1 + 2" + 23 TP 2mo(E — VI 4 Ay + Azzs + Aaxs) dmi.

%),
The last two integrals can be written more symmetrically, but not quite
so explicitly, as follows:

Fr 9 —2 2 aq1/2 dx1 dxs dxs
f (E = V)Y = mic' ] + A4 — - A s+ As—= ) ds,
Py

dxl dxz

L]
[ ([Zmu(E — VM 4B 4,0 4, ) s,
Py
where P; and P, denote the end points of the trajectory, and ds* = dxi +

dx + da.
VIII. Tae Hamirton-Jacosr THEORY

Let us write
- fl 2 Lixy (), 2(8), 23(8), 21 (), 23(8), 25(8), 1] . (23)

We have already studied the variation of W when # and f; are held fixed,
and the functions x,(f) are varied in such a way that the terminal values are
unaltered; and we have shown that under these circumstances the variation
of W vanishes, to the first order of small quantities, in the natural motion.™
In the following we shall study the variation of W under some other
conditions.

Specifically, we shall study the quantity AW defined by equation (23)
and the equation

ty+Aty

W+ AW = f Lln() + &), -, 65(0) + £, 4 d,

12T e. a motion satisfying equations (1).
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where the functions x,(f) represent a natural motion, the £,(f) are small
functions, and A# and A, are small parameters.
It follows from the results of Section VI that we have (to within terms

of the second order in small quantities)!?
AW = Ab Llx(t), -+ -, I;(fz), 1]
— Ay Lln(h), -+, x;(fvl), tl

3 3
I EARCCEMEA O

n=1 n=1

= Aty Llxi(), « - -, xa(te), to]
— At Llx(h), -, I;(h), t]

+ 21 [‘ﬂ'n(t*z)En(h) - Wn(tl)En(tl)]-

Let us write
(Axy)y = xults + Ab) + Eu(le + Al) — 24(t) = Ea(la) + x;(tz) Aly,
(Ax,); = xau(ty + Ah)_ + &t + Af) — xa(h) = &(t) + an(f)Ah,

so that (Axy)s, (Axs)s, (Axy)s are the coordinate differences of the terminal
points of the varied and unvaried curves, and similarly (Ax)1, (Axo)1, (Axah
are the coordinate differences of the initial points. Then we have the

formula

AW = (L[xl(te), cee] = }i_‘, wﬂ(r.z)x',.(ra)) Al

n=

~ (o), -1 - 3 ma(b)eh(8)) 86

+ nz—:l ['ﬂ'n(t?)(Axn)Q - Wn(tl) (A~\'n)l])

which, by equation (13), can be written in the form

AW = —H[x(t), -+ -1 AL + Hlxs(h), - 144
+ ; [7a(te) (Axp)e — ma(t) (A )il (24)

Now, the integration in (23) being taken over a natural motion of the
particle, the value of W depends upon the initial instant, the initial coordi-

13 This is also the sense in which the following equations are to be understood.
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nates, the initial components of velocity, and the final instant. It is
necessary now to consider W as depending upon the following equivalent set
of eight variables: the initial and final instants # and f, the coordinates
(x11, 91, 31) of the initial point, and the coordinates (a2, s, ¥3) of the final
point. Regarding W in this manner, we at once obtain the following
relations from equation (24)

oW oW

a_fﬂ = _H;!, aj;nz = Tn2, (25)

oW oW

A - = — 7, 26

6t1 ' b Gxnl Tl ( )
where H. denotes H[xi(2), « - - , mi(ts), - -+ , 2] and H; denotes H[x(#), «- -,

Trl(tl)s R} tl]-
Let us now consider the partial differential equation

ng T H(xi,xn, x, OW /30 W /3, 0W /dxy, £) = 0. (27)

The preceding work shows that the function W we have been considering
(with a1, xey, xa1, &1 regarded as parameters, and with the symbols wya, x,
xg, #z replaced by x, aw, a3, ¢ respectively) is a particular solution of this
equation. We shall show that the complete solution of this equation
possesses remarkable properties in connection with dynamical problems.

The complete solution of equation (27) is a function of ay, ay, a3, 4, and
of four arbitrary constants, of which one is merely additive, and can be
neglected for our purposes. Let the solution be written

W = ”/'(1'1, X9, X3, £, ay, g, ag),
where the o's are the three essential arbitrary constants.

We write the equations
= Ba, (28)

where the 8’s are further arbitrary constants. These equations implicitly
determine the «’s as functions of 7 and the six arbitrary constants ey, - -+ , 8s.
We also write the equations

W _ 29

Eralaiid (29)
These equations determine three functions m, of the «'s, the a’s, and £
In virtue of equations (28), the #’s are ultimately functions of ¢, the &’s, and
the 8’s.
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There is no reason to foresee a priori that the functions x1(¢, aa, -+ - , B83),

-, ms(t, ay, -+, Bs) determined in this way, by means of the complete
solution of equation (27), satisfy the differential equations of motion (11)
and (12). Nevertheless, they actually do satisfy those equations, as we
proceed to show.

By equations (28), we have the relations

_dB. _ W OW
dt Ja, 0 =1 Oy 0%y,

On the other hand, by (27) and (29), we have"

. (30)

0= 9 I:ﬂv + H(x1, x2, X3, m1, T2, T3y t):|

" dan | Ot
_ W N~ 0H dm, _ W 5~ 0H OW (31
o, Ob | =l Ay 0w Oandl - i 0T Oty 0%y
The determinant
o'W W
6a1 011 aﬂil 0x3
W o'W
Ga;, 6:\:1 3{1'3 ox3
is not zero. For if it were, we would have a relation of the form
@[6]*1"/61‘1, 011’/0;\'2, 6W/6.\'3, X1, Xg, X3, t] = 0, (32)

independent of the «’s. Now equation (32) is obviously distinct from (27),
since it does not involve 17 /dt. Hence, the vanishing of the determinant
would imply that the function W (xy, a2, ¥3, ¢, o, g, @g) satisfies two distinct
partial differential equations of the first order. This, however, is impossible
when W is the complete solution of (27); for an essential part of the concept
of the complete solution of a differential equation is that the elimination of
the arbitrary constants, from the solution and the equations obtained by
differentiation, shall result in the given differential equation and no other.

It follows, therefore, from (30) and (31) that
_
O

Tm

We also have, by (29),

W Lodw . dW N O'W oH 33
T, 0t | S 0rvnox, " 0%, 0L el 0%, 0%, 0Ty )

Tn

14 Since the function W(x, ¥z, ¥3, I, a1, es, ers) satisfies equation (27) identically in the
a's, §, and the o’s.  This remark applies also in the case of equation (34).
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On the other hand, we have

_a [aw W | 0H | <~ 0H o'W
= a.?,.[a +H}‘axum+m+§,armax; (34)

By (33) and (34), we have the second set of canonical equations

oH
fm = ——

0x,

This completes the demonstration.
If H does not involve the time explicitly, we can write

W =S — Et, (35)

where E is an arbitrary parameter, and S is a solution of the differential
equation

H(xy, %9, ¥3, 0.5/0x1, 0S/dxs, 05/0x35] = E. (36)

The complete solution of (36) contains three arbitrary constants (besides
the parameter E), of which one is merely additive, and can be neglected.
It is easily seen that the solution of the canonical equations determined in
the way described above, using the function W given by (35), and treating E
as one of the a’s, represents a motion of the particle with the total energy E.

All of this theory holds both for the relativistic case and for the New-
tonian case, the only difference being in the forms of the differential
equations (27) and (36) in the two cases.

IX. CurviLINEAR COORDINATES

In all of the foregoing we have employed rectangular coordinates, because
they afford the simplest and most direct expression of the basic physical
facts. However, in the solution of particular problems it is often more
convenient to use other systems of coordinates. For this reason, we shall
now formulate the more important equations in terms of general curvilinear
coordinates. In this work, as in all work with general coordinate systems,
we shall encounter concepts and relations which can be handled most
perspicuously by means of the modern tensor calculus. Actually, the
amount of tensor calculus we shall use is very slight, and no extended pre-
liminary discussion is necessary in order to make the formulae intelligible.
It will suffice to give occasional explanations of the notation, and of some
of the concepts, as we proceed. Further information is to be found in the
works cited in the bibliography.

First consider the Lagrangian equations, which, as we have seen, are
merely the Eulerian equations which follow from Hamilton’s principle.
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Now Hamilton’s principle expresses a fact concerning the motion of a
particle which is, by its very nature, independent of the choice of coordinates.
Hence, the Lagrangian equations (6) hold in any coordinate system. How-
ever, the form of the function L depends upon the particular coordinate
system, and we must discuss the change of the form of the function resulting
from a transformation of the coordinate system.

In accordance with the common practice in the tensor calculus, we shall
now denote the coordinates by the symbols 2', &°, «°, instead of by the
symbols xy, «a, a3

In rectangular coordinates the differential distance ds between the points
(21, 2, x3) and (x! + da?, a2 + da?, 23 + dx?) is given by the simple formula

ds? = dxt’ + dx? L dx?’ ,
but this is highly special; in general coordinates we have
3 3
ds = 2, D gma(a, &%, &) da™ dx” (37)
m=1 n=1

where the g’s are functions which depend upon the particular coordinate
system under consideration. It is understood that gm. = gum. Hence-
forth, we shall write (37) in the form

ds? = gmn(a?, 22, 2¥)damdx", . (38)

and we shall observe this general rule throughout: When the same literal
index occurs twice in a term, once as a subscript and once as a superscript,
that term is understood to be summed for the three values of the index.

We now have the result

12 = [ds/dl]? = gma(xl, 22, a3)EmE",
and
moc(1 — v )V = moc’[1 — ¢ 2gma™ "],

The function V(a!, a2, 43, £) is a scalar. That is to say, when the coordi-
nate system is changed, the first three arguments of the function are replaced
by their expressions in terms of the new coordinates, and so we obtain a
function which is of a new analytical form, but which has the same value
as the original function at each point of space.

Now we consider the expression

At 4 A.3* 4+ AaTd,

In rectangular coordinates this is the scalar product of the vectors (4,
As, A5) and (d1, 42, #%). The expression retains its form and interpretation
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under changes of the coordinate system, provided (as the notation implies)
(A,, As, A3) is treated as a covariant vector.”

With these understandings as to the significance of the symbolism, we
can now write down the following general expressions for the Lagrangian
function L in the relativistic and Newtonian cases, respectively,

L= —mc [l —c gma”ad"'"* —V + 42",
L= —md + ’;“gma’:"‘.i:" — V4 dpi™.

These hold for any coordinate system; and from the appropriate one of these,
and the Lagrangian equations

d oL 9L

T
we obtain the relativistic or Newtonian differential equations of motion in
any coordinates.
Now let us consider the Hamiltonian canonical equations.
We have already agreed to consider (4., 42, A45) as a covariant vector,
We now make the same convention in regard to (m, ms, 7). Then it read-
ily follows that the equations

oL _

P (40)
15 Suppose that with a point 2 (which may be either a special point or a typical point),
and with each coordinate system, we have associated an ordered triple of numbers,
If the triples of number (a,, a1, @;) and (a.’, a,’, as’) associated, respectively, with any
two coordinate systems (%, a2, x3) and a1, 22’, #3') satisfy the relations

dxn

amr = 5;;0

ny

the numbers (@1, @3, @3) are said to be the components of a covariant vector in the coordinate
system (x!, a2, x%), (It is understood, of course, that the partial derivatives are evaluated
at the point P.)

On the other hand, if the triples of numbers (!, a2, @®) and (a!’, a*', a3') associated with
the typical coordinate systems (x!, 2%, 2%) and (x'’, a?’, x3') satisfy the relations

dxm
’ —
am _— aﬂ,

=

the numbers (a!, @, @®) are said to be the components of a contravariant vector in the
coordinate system (x!, a2, x9).

These concepts agree only in part with the ones used in the elementary theory of
vectors. From our present standpoint, the only vectors used in the elementary theories
are those which are defined with reference to rectangular coordinate systems. When other
coordinate systems are used (e.g. cylindrical coordinates), the vectors, defined in terms of
rectangular coordinates, are merely resolved along the tangents to the coordinate curves.
The components obtained in this way are not the same as the components considered in
the tensor calculus, which we are using here.
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are tensor equations; and since they hold when the coordinates are rec-
tangular, they hold for all coordinate systems."®

We let g™ denote g—! times the cofactor of the element g, in the deter-
minant

g £z £ I
£= |8 f2 £z
831 32 fas
Now we write
H = dmc + g (mm — Ap)(ma — A"+ V (41)

for the relativistic case, and
H = moc® + (2mo) g™ (rm — Ap)(mwa — A2) + V (41)

for the Newtonian case. We see that these expressions specialize into the
ones given earlier for the Hamiltonian function when the coordinates are
rectangular.

H, L, and m,@" are all scalars. Consequently, the equation

H+ L= min (42)

is a tensor relation; and since it holds when the coordinates are rectangular,
it holds for all coordinate systems.
The Lagrangian equations can be written in the form

_ oL

o

Trn (43)
Let us consider the variation of the function L resulting from small
variations of the «’s and #’s. By (40) and (43), we have the relation
oL

. oL .,

= qrp 8%" + m, 61" (44)
= 8(mnd") + (dra 05" — &"0m).

It follows from (42) and (44) that the variation of H resulting from small
variations of the x’s and the =’s is given by the formula

0H = &"m, — madam.

16 The argument is explained in detail in the works on the tensor calculus cited in the
bibliography.
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From this it follows that we have the Hamiltonian canonical equations

o 0H . 0H
" =

S T Taw
in any coordinate system.
We have already seen how to state Hamilton’s principle in terms of general
coordinates.
In the relativistic case the principle of least action takes the form: T/e
particle moves, in a static field of force of the type (4), and with the prescribed
total energy E, in such a curve that the value of the integral

(21 m nTJL/2 o
f ([ dx™ dx :I (E — V) — mid " 4 A, di da',
( da!

oy L5 @t dt

with the limils of integration held fixed, is stationary with respect to infinitesimal
varialions of the trajectory which leave the end points unaltered. The corre-
sponding form of the principle for the Newtonian case is obvious.

We are now in a position to dispose very quickly of the problem of formu-
lating the Hamilton-Jacobi theory in terms of general curvilinear
coordinates.

The general form of the Hamiltonian function being given by (41) (for
the relativistic case) or (41°) (for the Newtonian case), we can at once write
down the partial differential equation

‘%;V + H(x', &%, o, aW/ax', aW /8%, oW /3, 1) = 0. (45)

Let
W = W(al, 2% &% ¢, o', o? o)

represent the complete solution of (45), without the irrelevant additive
constant of integration. :
Our chief problem is that of proving that the functions a™(¢, o', o?, &,
B, B2, Bs), m(t, al, a® o, B1, B2, B3) determined by the equations
aw W

da™ Bns g ™2

where the 8’s are further arbitrary constants, satisfy the canonical equations
R )
oma’ " o
Now, referring to the proof given in Section VIII for the special case of
rectangular coordinates, we see at once that nothing in the proof depends
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upon the special forms which the Hamiltonian function and equation (45)
assume in those coordinates. Hence the proof already given applies imme-
diately to the present general case.

Similar remarks apply also to the case in which H does not involve the
time explicitly, and in which we write

W=S— Ei,

where S is the complete SOlthlO]'l (without the additive arbitrary constant)
of the equation

H(xY, a2 2% 45/9x!, 5/dx2, 0S/0x%) = E
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