CHAPTER I
Quartz Crystal Applications
By W. P. MASON

1.1. INTRODUCTION—PURPOSE OF SERIF .

HIS paper is the first one of a series of papers dea.: g with quartz

crystals, their applications in oscillators, filters, and transducers, and
the methods of producing them from the natural crystal. This series was
prepared first to make available to the Western Electric Co. and other
manufacturers of quartz crystals some of the specialized knowledge on
these subjects that has been acquired at the Bell Telephone Laboratories.
Sufficient interest has been expressed in this series to make it desirable to
publish them in serial form.

This first paper in the series is a general introductory paper covering
the application of crystals to ostillators, filters and transducers. Anappen-
dix is given which discusses the elastic and electric relations in crystals and
gives recent measurements of the elastic constants, their temperature coeffi-
cients, and the piezoelectric constants of quartz. This paper is followed
by more detailed papers by Messrs. Bond, Willard, Sykes, McSkimin, and
Fair which give consideration to quartz crystallography; determination of
orientation by optical methods, X-ray methods, and etching methods; the im-
perfections occurring in quartz crystals; modes of motion and their calcu-
lation; the dimensioning of crystals to avoid undesirable resonances; and
the use of crystals in oscillators.

1.2 EarrLY HISTORY OF PIEZOELECTRICITY AND ITS APPLICATIONS

The direct piezoelectric effect was discovered by the brothers Curie in 1880.
They measured the effect first for a quartz crystal by putting a weight on the
surface and measuring the charge appearing on the surface, the magnitude
of which was proportional to the applied weight. A simple model for demon-
strating this effect can be made by using a large piece of Rochelle salt cut
with its length 45° from the ¥ and Z crystallographic axes and placing tinfoil
electrodes normal to the X axis. If these electrodes are connected to a
neon lamp, and the crystal is compressed by hitting it with a hammer, a
charge is generated on the surface and a voltage applied to the lamp sufficient
to break it down. In fact as much as 2000 volts can be generated by striking
the crystal hard.
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The converse piezoelectric effect was predicted in 1881 by the French
physicist Lippmann on the basis of the principle of conservation of elec-
tricity. It was verified in the same year by the brothers Curie. In this
effect a crystal is strained when a voltage is applied to it. The effect can
be demonstrated by a model which consists of two thin pieces of Rochelle
salt poled so that one expands when the voltage is applied and the other
contracts. The result is—as in a bimetallic thermostat—the crystal bends.
For crystals 10 mil inches thick and 4 inches long, a ninety-volt battery
applied causes a displacement of a quarter of an inch or more of the end of
the unit. Reversing the voltage reverses the direction of the displacement.
The Curies constructed a bimorph unit of this type out of quartz and used it
practically to measure voltage by measuring the displacement of the end
of the crystal. By connecting the leads of an electrometer to the terminals,
they could measure force applied by measuring the amount of charge gen-
erated at the terminals.

Outside of this use which was quite minor, the piezoelectric effect remained
a scientific curiosity until the war of 1914-1918. It did inspire, however,
considerable scientific speculation. Lord Kelvin in 1893 proposed a model
for explaining the piezoelectricity of quartz and was able to calculate
approximately the value of the piezoelectric constant. This model is
discussed briefly in the next section. He also constructed and demonstrated
a ““piezoelectric pile” made from small spheres of zinc and copper, to illus-
trate the effect. At about the same time (1890-1892) Voigt published a
series of papers followed by a book ““Lehrbuch der Kristall Physik” (1910)
in which the stresses, strains, fields and polarizations of piezoelectric crystals
are related in mathematical form. These mathematical expressions (which
are discussed further in the appendix) form a basis for the development of
the properties of oriented crystals as discussed in section 1.5.

During the war of 1914-1918, Professor Langevin in Paris was requested
by the French Government to devise some way of detecting submarines
by acoustic waves they produce in water. After trying several devices he
finally found that piezoelectric quartz plates could be used for that purpose.
His device, which is shown in Fig. 1.1, consisted essentially of a mosaic of
quartz which has the property that when a voltage is applied the crystal
will expand and send out a longitudinal wave. Similarly, if a wave strikes
it, the wave will set the quartz in vibration and generate a voltage which
can be detected by vacuum tube devices. Langevin did not get his device
perfected till after the war so it was not used at that time to detect sub-
marines. Similar devices have, however, been used in this war. Langevin’s
original apparatus was used extensively as a sonic depth finder. In this
use a pulse is generated which is recorded directly on a moving record and
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is also sent out into the ocean. It strikes the bottom and is reflected back
causing another mark to appear on the record. Knowing the difference in
time and the velocity of sound in sea water, the distance to the bottom can
be measured. A typical record is shown in Fig. 1.2. The top record shows
the contour of the sea bottom while the second record shows the reflections
from a school of fish.

At about the same time, Nicolson at Bell Telephone Laboratories was
experimenting with Rochelle salt, another piezoelectric material having a

Fig. 1.1—Ultrasonic transmitting apparatus

much larger piezoelectric effect than quartz. He constructed and demon-
strated loud speakers, microphones, and phonograph pick-ups using Rochelle
salt.! He was also the first one to control an oscillator by means of a crystal
—in this case Rochelle salt—and has the primary crystal oscillator patent.?
Nicolson’s circuit is shown in Fig. 1.3. The crystal is effectively in a path
between the resonating coil in the output and the grid, since the electrode

1#The Piezoelectric Effect in the Composite Rochelle Salt Crystal”—A. M. Nicolson,
Proc. A. I. E. E. 1919, 38, 1315.
2 See Patent 2,212,845 filed April 10, 1918; issued Aug. 27, 1940.
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3 is in the direction of the smallest piezoelectric effect in Rochelle salt
and contributes little to the action. Tf terminal one to the tapped coil is
at the top of the coil, the circuit although employing a three electrode
crystal connection, effectively reduces to B in which the crystal is in the feed-
back path from plate to grid. On the other hand, if the tap is effectively
at the bottom of the coil, the crystal is between grid and ground and feedback
occurs through a distributed capacity from plate to grid. Both of these
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Fig. 1.2—Ocean contour curves

circuits B and C are widely used in oscillators of Pierce. Prof. G. W.
Pierce published a circuit similar to circuit B, having a two electrode
quartz crystal connected between grid and plate.?
In 1921, Professor Cady at Wesleyan University first showed* that quartz
3 “Piezoelectric Crystal Resonators and Crystal Oscillators Applied to the Precision
Calibration of Wave Meters,” G. W. Pierce, Amer. Acad. of Arts and Sciences, Oct.

1923, 81-106.
4 “The Piezoelectric Resonator” W. G. Cady, Proc. I. R. E. 1922, 10 83.
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crystals could be used to control oscillators and that much more stable
oscillators could be obtained in this fashion. These were later applied to
controlling the frequency of broadcasting stations and radio transmitters in
general and about 1925 Mr. W. A. Marrison applied them to obtain a very
constant frequency and time standard, which is now used considerably by
the Bell System, by radio broadcasting systems, and by power companies.
The oscillators were subsequently improved by using crystals with small
temperature coefficients as described in Section V. At the present time
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Fig. 1.3—Nicolson’s oscillator circuit

crystal controlled oscillators are used very widely in radio military and
commercial applications.

Another large use for quartz crystals is their use in providing very selective
filters. Probably the first use of a crystal to select a narrow frequency
range was made by Cady.* Using the very sharp maximum in current
through a crystal at its resonant frequency, Cady proposed the use of such a
crystal as a wave standard. This is equivalent to the use of a crystal
as a tuned circuit. By incorporating a crystal in a three-winding trans-
former and balancing out the static capacity of the crystal by an auxiliary
condenser, W. A. Marrison® improved the selecting ability of a crystal used

5 Patent 1,994,658, filed June 7, 1927; issued March 19, 1935.
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as a narrow band filter. At about the same time, L. Espenschied,® taking
advantage of the knowledge of the equivalent electrical circuit of a crystal
given previously by Van Dyke,” showed how to combine other electrical
elements with crystals in ladder form to obtain band-pass filters. It was
not, however, until the crystals were combined with auxiliary coils and
condensers into the form of resistance compensated lattice type networks®
that much progress was made in achieving the wide pass-band characteris-
tics necessary for telephone and radio communication. Such filters have
provided very selective devices which are able to separate one band of
speech frequencies from another band different by only a small frequency
percentage from the desired band. This property makes it possible to space
channels close together with only a small frequency separation up to a high
frequency, and such filters have had a wide use in the high-frequency carrier
systems, and in the coaxial system which transmits more than 480 conver-
sions over one pair of conductors. In radio systems such filters have been
used extensively in separating one side band from the other in single side-
band systems. ‘

In conclusion we can say, that the science of piezoelectricity was born
about 62 years ago, lay dormant for nearly 40 years, but during the last 25
years has advanced at such a rate that it can be regarded as one of the foun-
dation stones of the whole communication art.

1.3. THEORY OF PIEZOELECTRIC MATERIALS

Piezoelectric crystals are of interest in communication circuits because
they possess three properties. These properties are: (1) the piezoelectric
effect provides a coupling between the electrical circuit and the mechanical
properties of the crystal; (2) the internal dissipation of most crystals and
particularly quartz crystals is very low, and the density and elastic constants
of the crystals are very uniform, so that a crystal cut at a given orientation
always has the same frequency constant; and (3), at specified orientations
crystals can be cut which have advantageous mechanical properties such
as a small change in frequency with a change in temperature, or a free-
dom from secondary modes of motion. It is the purpose of this section to
discuss the first property, the coupling between the electrical and me-
chanical properties of the crystal.

The piezoelectricity of quartz and other materials is due to the fact that

¢ Patent 1,795,204, filed Jan. 3, 1927, issued August 8, 1933.

7K. S. Van Dyke; Abstract 52, Phys. Rev. June 1925; Proc. I. R. E. June 1928.

8 See “Electrical Wave Filters Employing Quartz Crystals as Elements,” W. P. Mason,
B.S. T. J., Vol. XIII, p. 405, July 1934; “Resistance Compensated Band Pass Crystal
Filters for Unbalanced Circuits,” B. S. T. J., Vol. XVI, p. 423, Oct. 1937; “The Evolution

of the Crystal Wave Filter,” O. E. Buckley, Jour. App. Phys., Oct. 1936; and Patents
1,921,035; 1,967,249; 1,967,250, 1,969,571; 1,974,081; 2,045,991; 2,094,044,
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a pressure which deforms the crystal lattice causes a separation of the cen-
ters of gravity of the positive and negative charges thus generating a dipole
moment (product of the value of the charges by their separation) in each
molecule. How this separation can cause a coupling to an electrical circuit
is illustrated by Fig. 1.4 which shows a crystal with metal electrodes normal
to the direction of charge separation. If we short-circuit these electrodes
and apply a stress which causes the centers of gravity of the charges to
separate, free negative charges in the wire will be drawn toward the electrode
in the direction of positive charge separation, and free positive charges in
the wire will be drawn to the electrode in the direction of negative charge
displacement until the crystal appears to be electrically neutral by any test
conducted outside the crystal. When the stress is released the charges in
the wire will flow back to their normal position. If, during the process,
we connect an oscillograph in the short-circuited wire, there will be a pulse
of current in one direction when the stress is applied and a pulse in the oppo-
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Fig. 1.4—Method for transforming mechanical energy into electrical energy in a crystal

site direction when the stress is released. By putting a resistance in the
connecting wire and applying a sinusoidal stress to the crystal, an alternating
current will flow through the load and consequently mechanical power will
be changed into electrical power. Using the converse effect, a source of
alternating voltage in the electrical circuit will produce an alternating stress
in the crystal, and if this is working against a mechanical load, the electrical
energy will be changed into mechanical energy.

To apply this concept to quartz let us consider Fig. 1.5, which represents
the approximate arrangement of molecules in a quartz molecule. Lord
Kelvin’s explanation of the piezoelectricity of quartz is the following:

“The diagram (Fig. 1.5A) shows a crystalline molecule surrounded by six
nearest neighbors in a plane perpendicular to the optic axis of a quartz crystal.
Each silicon atom is represented by + (plus) and each oxygen double atom —
(minus). The constituents of each cluster must be supposed to be held together
in stable equilibrium in viture of their chemical affinities. The different clusters,
or crystalline molecules, must he supposed to be relatively mobile before taking
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positions in the formation of a crystal. But we must suppose, or we may suppose,
the mutual forces of attraction (or chemical affinity), between the silicon of one
crystalline molecule and the oxygen of a neighboring crystalline molecule, to be
influential in determining the orientation of each crystalline molecule, and in
causing disturbance in the relative positions of the atoms of each molecule, when
the crystal is strained by force applied from without.

“Imagine now each double atom of oxygen to be a small negatively electrified
particle, and each atom of silicon to be a particle electrified with an equal quantity .
of positive electricity. Suppose now such pressures, positive and negative, to
be applied to the surface of a portion of crystal as shall produce a simple elongation
in the direction perpendicular to one of the three sets of rows. This strain is
indicated by the arrow heads in Fig. 1.5A and is realized to an exaggerated extent
in Fig. 1.5B.

(A) (B)
Fig. 1.5—Kelvin’s model of quartz molecules

“This second diagram shows all the atoms and the centers of all the crystalline
molecules in the positions to which they are brought by the strain. Both diagrams
are drawn on the supposition that the stiffness of the relative configuration of
atoms of each molecule is slight enough to allow the mutual attractions between
the positive atoms and the negative atoms of neighboring molecules to keep them
in line through the centers of the molecules, as Fig. 1.5A shows for the undisturbed
condition of the systems, and Fig. 1.5B for the system subjected to the supposed
elongation. Hence two of the three diameters through atoms of each crystalline
molecule are altered in direction, by the elongation, while the diameter through the
third pair of atoms remains unchanged, as is clearly shown by Fig. 1.5B compared
to Fig. 1.5A.

“Remark, first that the rows of atoms, in lines through the centers of the crystal-
line molecules, perpendicular to the direction of the strain, are shifted to parallel
positions with distances between the atoms in them unchanged. Hence the atoms
in these rows contributed nothing to the electrical effect. But in parallel to these
rows, on each side of the center of each molecule, we find two pairs of atoms whose
distances are diminished.
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“This produces an electrical effect which, for great distances from the molecule,
is calculated by the same formula as the magnetic effect of an infinitesimal bar
magnet whose magnetic moment is numerically equal to the product of the quantity
of electricity of a single atom into the sum of the diminutions of the two distances
between the atoms of the two pairs under consideration. Hence, denoting by N
the number of crystalline molecules per unit bulk of the crystal; by b the radius of
the circle of each crystalline molecule; by g the quantity of electricity of each of the
six atoms or double atoms, whether positive or negative; by @ the change of direc-
tion of each of the two diameters through atoms which experience change of direc-
tion; and by u the electric moment developed per unit volume of the crystal, by
the strain which we have been considering and which is shown in Fig. 1.5B; we have

p=Ng4bocos30° = 24/3Nbqe (1.1)”
Kelvin’s model shows some of the symmetry properties of quartz. The

axis marked X is the X or electrical axis of the crystal. The Z or optic axis
is normal to the plane of the paper. The ¥ or mechanical axis is the axis

(A) (B)
Fig. 1.6—Longitudinal and shear strains applied to a quartz molecule

along which the stress is applied. It is obvious that if we rotate the direc-
tion of the applied stress by 120° a similar separation of charges at right
angles to the stress will occur. There are then three electrical axes and three
mechanical axes so that the optic axis can be regarded as an axis of threefold
symmetry for the crystal.

As can be shown from an extension of Kelvin’s model there are two other
types of stresses that will produce a charge separation normal to the axis.
Suppose that we stress the crystal along the X or electrical axis as shown by
Fig. 1.6A. Applying the same reasoning as before, we see that the apex
molecules are separated farther apart without changing the separation
between the other molecules. This results in a separation of the centers
of gravity of the positive and negative charges, with the negative charges
moving toward the left and the positive charges moving toward the right.
The separation is still along the electric axis, but is in the opposite direction
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to that caused by a stress along the ¥ axes. A detailed analysis shows
that the value of the electrical separation moment (dipole moment) for a
stress along either axis is the same value but the sign is reversed. A longi-
tudinal stress then can only produce a charge moment along the X or
electrical axis which is the origin of the name electrical axis.

If, however, we introduce a different kind of stress known as a shearing
stress, a separation of centers of charges can occur along the mechanical or
V axis of the crystal. A simple shear stress is one in which forces act normal
to the direction of space separation rather than along it as shown, for exam-
ple, by the two opposed arrows normal to the mechanical axis in Fig. 1.6B.
Such a shear does not occur in nature, but rather a pure shear which consists
of two simple shears which are directed in such a way as to produce no
rotation of the molecule as a whole about its axis. If we resolve these
force components along directions 45° from the crystal axes, a pure shear is
equivalent to an extensional stress along one 45° axis and a compressional
stress along the other 45° axis. Such a stress would cause the charges to be
displaced from their normal position, as shown in the figure. This causes
the center of positive charge to be displaced downward along the mechanical
or ¥ axis of the crystal while the center of negative charge is displaced up-
ward along the mechanical axis.

These three relations can be written in the form

Py = —dnX: + dllYu ) Py = Zany (1.2)

where P, is the polarization or charge per unit area developed on an electrode
surface normal to the X axis due to the applied longitudinal stresses X,
and ¥, while P, is the polarization normal to the ¥ axis caused by the shear-
ing stress X, . du is the piezoelectric constant and equations (1.2) show
that the magnitudes of all these effects are closely related. In addition
to these three major piezoelectric effects, quartz has two smaller effects
which, since they are connected with the distribution of molecules in the ¥'Z
and XZ planes, cannot be demonstrated by the figures given previously.
The complete piezoelectric relations are then

P, = —duX; + dn¥, — duY. ; P, = duZ: + 2duX, (1-3)

where ¥, and Z. are respectively similar shearing stresses exerted in the V2
and ZX planes respectively. The best values for the di, and di constants
are respectively

dy = —6.76 X 107 225 4y = 2.56 X 10
dyne
as obtained by recent measurements for a number of X cut and rotated X-cut
crystals discussed in appendix A.

—g €.5.U.
dyne

(1.4)
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Quartz is not the only type of crystal which is piezoelectric. In fact
there are hundreds of crystals that exhibit this property. Whether a
crystal is piezoelectric or not and the relation between the stresses and
charge displacements depend on the symmetry of the crystal. Whenever
there is a center of symmetry; that is, when the properties of the crystal
are the same in both directions along any line, no piezoelectric effect can
occur. This is illustrated by the simple arrangement of atoms shown by
Fig.1.7. It is obvious that no symmetrical application of forces can separate
the center of gravity of the charges and hence such a crystal will not be
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Fig. 1.7—Crystal with a center of symmetry

piezoelectric. Crystals can be classified into 32 possible classes on the basis
of the symmetry they exhibit; and of these 32 classes, 20 are piezoelectric
and 12 are not. As illustrated by the model for quartz, the response to
different types of force depends solely on the type of symmetry existing in
the crystal.

1.4. ELEcTRICAL IMPEDANCE AND Low DissipaTiON IN CRYSTALS

The first crystal used by Cady in controlling oscillators, was a crystal cut
with its major faces perpendicular to the X or electrical axis and with its
length along the ¥ or mechanical axis. Referring to Fig. 1.5B, we see thata
stretch along the ¥ axis will produce a charge displacement along the E
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or X axis. Conversely, a voltage applied along the X axis will produce a
charge displacement and consequently a mechanical stress along the ¥ axis
which will set up a longitudinal waye along the mechanical axis. As shown
by Fig. 1.8, the type of motion resulting when the crystal is free to move on
the ends is one in which the center is stationary and the ends move in and
out. The crystal can then be clamped at its center or mounted from leads
soldered to electrodes deposited on the surface.

In using a crystal in an electrical circuit it is desirable to have an electrical
equivalent circuit which will represent the electrical impedance as measured
from the terminals of the crystal. Such a circuit® is shown in Fig. 1.8. In
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Fig. 1.8—Longitudinally vibrating crystal and electrical equivalent circuit

this representation Cp is the static capacity of the crystal which would be
measured if the crystal were held from moving. C, is the stiffness of the
crystal transformed into electrical terms through the piezoelectric effect of
the crystal, while Z, is the effective mass of the crystal also transformed into
electrical terms. The resonant frequency of the crystal is determined by
the Young’s modulus and density of the bar according to the usual formula:

_ 1 ¥y
fo=1g 1/—:— (1.5)

9 Circuits of this type for representing the electrical impedance of a crystal were first
derived by Van Dyke; see reference (7). The method of deriving them from Voigt’s
equations is discussed in the appendix.
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where ¥y is the value of Young’s modulus along the bar, p the density, and
{ the length of the bar.

A significant feature of the equivalent circuit is that there is always a
definite ratio between Co and C for a given crystal cut. This is really a
measure of the ratio of electrical to mechanical energy stored in the crystal
under an applied constant voltage. The reactance characteristic of the
network is shown by Fig. 1.8 as a function of frequency. The reactance
starts out as a negative reactance at low frequencies, becomes zero at the
resonant frequency fr , becomes positive and very large at the anti-resonant
frequency f. , then again becomes a negative reactance. Due to the high
ratio of Cp to C; existing in a crystal the separation between f4 and fr be-
comes very small. For example, for an AT crystal this ratio is around 200
and the separation of f4 from fz is only a quarter of a per cent in frequency.
Since it can be shown that an oscillator will only oscillate on the positive
reactance part of the crystal characteristic, the narrow separation between
resonant and anti-resonant frequencies explains why a crystal can act as
such a good stabilizer for an oscillator. As long as the crystal resonance
itself does not change with temperature or other conditions, the very sharp
reactance frequency characteristic will not allow the oscillator frequency
to change much with a change in oscillator voltage, tube conditions, or any
other changes which are likely to cause a change in frequency for a coil and
condenser controlled oscillator.

Strictly speaking, a resistance should be added in series with the induc-
tance L; to represent the internal losses in the crystal, the loss of energy
at the clamping points and the loss of energy due to setting up of air waves
by the crystal motion. However, the value of this resistance and the
amount of energy lost is very small in a crystal compared to what the losses
are in purely electrical elements. A demonstration which shows this
effect and shows that most of the losses of a well mounted longitudinally
vibrating crystal are acoustic losses caused by setting up air waves in the
vicinity of the crystal, can be made by using two oscillators, one a fixed
oscillator and the other one controlled by a resonant circuit or a crystal.
The fixed oscillator may be set at 99 kilocycles and the crystal oscillator
controlled by a 100-kc crystal. The two will beat together giving the 1000-
cycle note. When the battery is taken off the crystal oscillator, it continues
to oscillate till the energy built up in the crystal is dissipated in the internal
dissipation of the crystal. A good electrical circuit which has a ratio of
reactance to resistance, or Q of the coil of 300 dies down almost instantane-
ously. For a crystal mounted in air it takes about half a second to become
inaudible. This corresponds to a Q of 30,000 where ( is defined as the ratio
of the reactance of the coil L, of Fig. 1.8 to the resistance. For a crystal
" mounted in a vacuum a much higher Q is obtained due to the elimination of
the loss of energy by acoustic radiation. For such a crystal it takes eight
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seconds to die down which corresponds to a Q of 330,000, which is about
1000 times as great as that for a good electrical circuit.

1.5. MopEs oF MoTioN AND CRYSTAL ORIENTATION To Propuce Low
TEMPERATURE COEFFICIENT CRYSTALS

As mentioned previously the first crystal cut used in oscillators was a longi-
tudinal vibration along the ¥ or mechanical axis excited by a field applied
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Tig. 1.9—Oriented quartz crystal cuts in relation to the natural crystal

along the electrical or X axis. This mode gives a good resonance free from
other modes and a modification of it is now used in crystal filters. This
modification, as shown by Fig. 1.9, (—18.5° filter crystal) consists in rotating
the direction of the length by 18.5° from the ¥ or mechanical axis, about the
X or electrical axis. As described previously', the effect of this rotation is
to eliminate the coupling between the desired longitudinal mode and the
undesired face shear mode, thus simplifying the motion and eliminating an

10 ¢“Electrical Wave Filters Employing Quartz Crystals as Elements,” W. P. Mason,
B.S.T.J., Vol. XIII, p. 405 July 1934 or patent 2,173,589,
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undesired resonance. However, to get a reasonably high frequency out
of a length vibrating type of cut requires-too small a length to be practical.

It was not long before crystal oscillators were controlled by thickness
vibrating crystals whose frequencies were determined by the thickness of
the crystals or by their smallest dimension. Referring to Fig. 1.06A, we see
that the same X cut type of crystal will generate a vibration along the elec-
trical or X axis when a field is applied along this axis. Since the thickness
dimension can be made very small, a high frequency is obtainable. How-
ever, when the smallest dimension is used to control the frequency, a diffi-
culty arises not present when the largest dimension is used to control the
frequency, namely, that harmonics and overtone modes of all the lower
frequency types of motion produce frequencies near the frequency of the
thickness mode and it is difficult to pick out the desired mode. This was

!
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Fig. 1.10—High frequency shear mode of motion

especially true for the thickness vibrating X cut crystal and led to its
abandonment in favor of ¥ cut crystals vibrating in shear.

As seen from Fig. 1.6B, when a voltage is applied along the ¥ or mechan-
ical axis, a shear vibration is produced which tends to change a square into
a rhombus. For a large plate in which the edge dimensions are large com-
pared to the thickness, the motion occurs as shown by Fig. 1.10. For such
a plate the motion is perpendicular to the thickness, which is the direction
of transmission of the wave, and hence a shear wave is sometimes called a
transverse wave. The frequency of such a wave can be shown to be

1 few
=5 ) (1.6)

where ¢ is the thickness of the plate, cgs is the shear stiffness constant and p
the density. The use of ¥ cut plates considerably improved the per-
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formance of oscillators since the plates do not have as many secondary modes
of motion as do the X plates. They have, however, one drawback. The
frequency increases about 86 parts in a million for every degree Centigrade
increase in temperature. This requires regulating the temperature quite
closely.

In order to improve on the performance of the ¥ cut crystal, investiga-
tions were made by Lack, Willard and Fair, Koga, Bechmann, Straubel
and others™ on how the properties of such crystals varied as the orientation
angle of cutting blanks from the natural crystal was varied. As shown by
Fig. 1.9, the crystals investigated all had one edge along the X or electrical
axis with the normals making positive and negative angles with the ¥ axis.
All of these crystals will have a component of field along the ¥ axis, which
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Fig. 1.11—Frequency constant of oriented ¥ cut crystals

will produce a shearing motion until the angles of cut approach 90 degrees
from the ¥ axis. The smaller the angle A, the more strongly will the shear
mode be driven. However, advantageous elastic relationships can be ob-
tained by using oriented cuts. As shown by Fig. 1.11, Lack, Willard and
Fair found that the frequency constant of a rotated crystal expressed in kilo-
cycle millimeters varied with angle of cut and that there was a minimum fre-
quency at +31 degrees and a maximum at —359 degrees. It was subse-
quently pointed' out that these minimum and maximum points were signifi-
cant angles in the elastic behavior of the crystal for they were the angles for

11 “Some Tmprovements in Quartz Crystal Circuit Elements,” . R. Lack, G. W. Wil-
lard, I. E. Fair—B. S. 7. J., Vol. 13, pp. 453-463, July 1934; R. Bechmann—HF Techn. u.
El. Ak, 44, 145 (1934); I. Koga—Rep. of Rad. Res.i. Jap. 6, 1 (1934); J. Straubel, Z. tech.

Physik., 35, 179, 1934,
12 See patent 2,173,589,
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which the high-frequency shear mode had zero coupling with the trouble-
some low-frequency shear mode system of vibrations. Crystals cut at these
angles have a much cleaner frequency spectrum than ¥ cut crystals, Lack,
Willard, and Fair also found that the temperature coefficient of frequency
varied with angle as shown by Fig. 1.12, Starting from a high positive
value for the ¥ cut, the coefficient becomes zero at an angle of 435° — 15’
and —49°. The first angle cut is known as the AT cut and the second as
the BT cut. Since the AT angle is nearer the ¥ cut, the piezo-electric con-
stant is larger and it is more strongly driven than the BT. On the other

100

80 AT
N

® EXPERIMENTAL /
CHECK POINTS )
60 / \
40

/ AC-CUT
20 / r

BT-CUT AT-CUT
0 /

BC-CUT \
-20

e \
7 \

°c

/

TEMPERATURE COEFFICIENT IN PARTS PER MILLION.PER

-80
L
-100
-90 -75 -60 -45 -30 =15 (o] 15 30 45 60 75 20

ANGLE OF ROTATION ABOUT X AXIS IN DEGREES (8)
Fig. 1.12—Temperature coefficients of oriented ¥ cut crystals

hand, the BT has a higher frequency for the same thickness. Both crystals
are near enough to the AC and BC cuts so that the systems of low-frequency
shear modes are rather weakly driven. On the other hand, the shear mode
of both crystals is rather strongly coupled to flexure modes of motion, as
will be discussed by Mr. Sykes in a later chapter, and the crystal has to be
exactly dimensioned in order that the flexure frequencies and other disturb-
ing frequencies will not coincide with the desired shear mode.

Other oriented shear crystals for lower frequency work are the CT' and
DT crystals investigated by Willard and Hight. They are related to the AT
and BT crystals as shown by Fig. 1.13. The plate on the right shows the
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motion of an AT plate. If we were to increase the thickness dimension until
the plate was nearly square, the AT motion would correspond to a face shear
mode which should be controlled by the same elastic constants as the AT
motion. At the same time in order to drive the crystal efficiently we
could decrease the width until it became the thickness. This procedure
would be the same as cutting a crystal at right angles to the AT and would
suggest that by so doing we should obtain a low-frequency shear crystal
with a low coefficient. Actually, Willard and Hight found that a crystal
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Tig. 1.13—Relation of AT and DT low temperature coefficient crystals

at —52° or 87° from the AT would give a low coefficient. This crystal was
called the DT. Similarly, a crystal cut at +38° or 87° from the BT would
also give a low coefficient and this has been called the C7. It can be shown
that a component of the voltage applied along the mechanical axis will
drive the shearing type of motion. The CT is larger for the same frequency
and more strongly driven than the DT. Tt is extensively used in controlling
oscillators in the frequency range from 200 to 500 kilocycles. ’

Quite a few other crystal cuts have been discovered as shown by Fig. 1.9.
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Another important cut is the GT, which has a very constant frequency
over a wide temperature range. Asshown by Fig. 1.14, all zero temperature
coefficient crystals are zero coefficient at one temperature only and usually
vary in a square law curve about this temperature. The GT crystal repre-
sented an attempt to get a crystal in which the frequency remained constant
over a wide temperature range. As can be seen from the figure, when prop-
erly adjusted this aim is attained, for the frequency does not vary more than
one part in a million over a 100-degree Centigrade range of temperature.

This crystal makes use of the fact that a face shear vibration can be
resolved into two longitudinal vibrations coupled together. As shown by
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Fig. 1.14—Temperature frequency characteristics of a number of low temperature
coefficient crystals
Fig. 1.15, if we cut a crystal at an angle of 45 degrees from that of a shear
vibrating crystal, an expansion occurs along one axis and a contraction
along the other indicating that a face shear can be resolved into two longi-
tudinal modes that are coupled together. Now since it can be shown that
all pure longitudinal modes for blanks cut in all possible directions in a
quartz crystal will have zero or negative temperature coefficients,™ it follows
that if we have a shear vibrating crystal with a positive coefficient, that
13¢“A New Quartz Crystal Plate, Designated the GT, Which Produces a Very Constant
Frequency Over A Wide Temperature Range,” W. P. Mason, Proc. I. R. E., Vol., 28 pr.
220—223‘, May 1940
1 This can be proved as discussed in the appendix by combining the Voigt expressions

for the elastic relations in a crystal with the measured temperature coefficients of the six
elastic constants.
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coefficient must have been caused by the coupling between the two modes.
As a result of this observation it follows that if we have a shear vibrating
crystal with a positive temperature coefficient and cut another crystal at
45 degrees from this crystal, the strong coupled mode which corresponds to
“the shear vibration will also have a positive temperature coefficient. As
we grind down on the side, the two modes become farther apart in frequency
and less closely coupled. Then, since they both will have a negative coefh-
cient if separated far enough, it follows that for some ratio of axes, one of the
modes will have a zero coefficient. This was tested out for a series of orien-
tations near the CT and DT with the results shown in Fig. 1.16. Positive
angle crystals had zero coefficients at ratios of axes varying from 1 to .855

——
—_—

Fig. 1.15—Relation between a face shear mode and two coupled longitudinal modes

depending on the angle while negative angle crystals had zero coefficients
at ratios from .64 to 1.0. For positive angle crystals it was the higher fre-
quency mode that was the stronger and could be given the zero coefficient,
while for the negative angle crystals it was the lower frequency mode that
was the stronger and corresponded to the face shear mode.

Several of the positive angle crystals were measured over a temperature
range with the results shown by Fig. 1.17. Tor angles above 51°-30" the
curvature was positive, while for angles below 51°-30’ the curvature was
negative. Right at 51°-30’ the large square law curvature term disappeared
and the frequency was constant to one part in a million over a 100-degree
Centigrade range centered at 50°C. as shown by Fig. 1.18. Some further
experiments showed that this flat range could be moved around a bit by
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changing the angle of cut and the ratio of axes simultaneously. To go from
—25°C. to +75°C. with a mid-range at 25°C., a crystal cut at 51°-7.5'
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Fig. 1.16.—Relation between angle of cut and ratio of width to length for zero tem-
perature coefficient for G type crystals
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with a ratio of axes of 0.859 is required. The GT crystal has been used
quite extensively in frequency and time standards and in filters meeting
rigid phase requirements.
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Two other cuts not previously described are shown also by Fig. 1.9. They
are the M T low coefficient longitudinally vibrating crystal and the NT low
coefficient flexurally vibrating crystal. Both of these are related to the
+5° X cut crystal of Fig. 1.9. As shown by Fig. 1.19 a long thin 5° X cut
crystal is the best length direction for an X cut crystal to obtain a low-
temperature coefficient. Figure 1.19 plots the temperature coefficients for
long thin oriented X cut crystals, and this data is used in the appendix to
derive the temperature coefficients of the six elastic constants. However,
as the width of the crystal is increased the temperature coefficient becomes
highly negative as shown by Fig. 1.20.
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Fig. 1.20—Temperature coefficient of @ +5° X cut crystal (¢ = 0°; 8 = 90°;¢ = 85°)
as a function of the ratio of width to length. Ratio of thickness to length = 0.05.

This change of coefficient occurs due to the fact that as the crystal width
is increased, the face shear mode of motion becomes more strongly excited
and contributes to the elastic constant. Then since the temperature coeffi-
cient of the shear elastic constant is highly negative for this orientation
the temperature coefficient of the +5° X cut crystal becomes miore highly
negative as the width is increased.

The MT longitudinally vibrating crystal employs a rotation of the plane
of the crystal cut about the ¥’ or length axis. The effect of this rotation is
to change the temperature coefficient of the shear mode from highly nega-
tive to nearly zero. The result is that the temperature coefficient becomes
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very low and nearly independent of the width length ratio. The NT low
coefficient flexurally vibrating crystal is similar to the M T but requires a
somewhat higher rotation about the ¥* axis to produce a low coefficient.

The MT crystal has been used in narrow band filters such as pilot channel
filters of the cable carrier system and in oscillators having frequencies be-
tween 50 kilocycles and 100 kilocycles. The NT flexure crystal is capable
of producing frequencies as low as 4 kilocycles, and can be used to produce
filters and control oscillators in the frequency range from 4 kilocycles to 50
kilocycles. Crystals of this type have been used with the Western Electric
frequency modulation broadcast transmitter.’ Operating in the region
of 5 kilocycles, they maintain the frequency of the transmitter to +.0025
per cent without temperature regulation. These two crystals will be
described in more detail in a subsequent paper.

APPENDIX A

VOIGT’S ELASTIC AND PIEZOELECTRIC RELATIONS AND
THEIR APPLICATION TO THE DETERMINATION OF LOW
TEMPERATURE COEFFICIENT CRYSTALS

A.1 MATHEMATICAL EXPRESSIONS FOR PIEZOELECTRIC RELATIONS

As mentioned in the historical introduction, Voigt formulated a mathe-
matical relation between the stresses, strains, polarizations, and electric
fields existing in a crystal. For a general crystal devoid of symmetry these
relations take the form

—x. =Xz + 0V, + 5532 + su Ve + st Zs

+ sts X, — duE: — duE, — dn E:
—yy=suXe+ sV, + 52 + sn V. + s552:

+ 526 Xy, — di2E; — dnE, — dnE.
—z. = shXe F shV, + shZ. + sh V. + 55 Z,

+ 555Xy — duE: — dylFy, — dyuE.
—ye=saX: +su ¥V, + sinZ: + st V. + 555 Z:

+ 55X, — duE: — duF, — duE,

(A1)

15 A New Broadcast Transmitter Circuit Design for Frequency Modulation,” J. T.
Morrison, Proc. I. R. E., Vol. 28, No. 10, Oct, 1940, pp. 444449,
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—ty =SB X+ s ¥y + 5152 + st Vi + 55522

+ st X, — dwE. — duE, — d E.
—x, = s Xz + s ¥y + siZ, + s Ve + 565 22

+ ses Xy — dwEz — dnE, — dssE.
P = —duXs— dp¥y — dsZ. — du¥, — dwZ: — dw Xy + «1 E:
P, = —duX: — dnVy — dnZ. — du¥, — ds Z: — du X, + x1 E,
P, = —duX: — du¥, — duZ: — du Vs — dys Zs — d Xy + &5 Es

where % , ¥, , 2 are the three longitudinal strains, 9. , 7z, %, the three shear-
ing strains, X, , ¥, , Z, the three longitudinal stresses ¥, , Z. , X, the three
shearing stresses; Pz, P, , P; the x, y and z components of the polarization,
and E, , E, , E, the x, y and z components of the electric field. sy, -« , ss
are the 36 elastic compliances. The superscript E is added to show that
they must be measured when the field E is zero or the crystal plated and short
circuited. As shown from section C of this appendix they can be measured
from the resonances of completely plated crystals. From the principle of
conservation of energy it can be shown that there is the general relation
between the elastic compliances

Sf,' = S?,‘ (A..Z)

so that the greatest number of compliance moduli is 21. In equation (A.1)
the dy; are the piezoelectric constants measured by observing the propor-
tionality between the strains and the applied fields in the absence of external
stresses. k& are the“free” susceptibilities of the crystals in the three space
directions measured in the absence of stress. The susceptibilities are related
to the “free” dielectric constants K by the equation

K =1+ 4m! (A.3)

In addition to these equations we have also that the charge per unit area Q
on the surface is related to the field and polarization by

E,
Q==E+P:

_ E.Ky

. - dlle - dl! Yy - dlazz - du Yl - dlﬁzz - dlBXy

= &
Qe =4t P

<

i dn X — dp ¥y — dnZ, — du ¥V, — dpZ; — dp Xy
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These equations hold for the most general type of crystal. In addition
Voigt showed that if there was any symmetry existing in the crystal, a num-
ber of the constants were zero and certain relations existed between other
constants. For example quartz has a trigonal symmetry about the Z or
optic axis, and three digonal axes of symmetry (the three X or electrical
axes) about which it is necessary to turn through an angle of 180° before
the original pattern is restored. Voigt showed that by expressing the rela-
tions (A.1) in terms of rotated axes and imposing the symmetry condi-
tions, the following relations existed between the elastic and piezoelectric
coefficients

E_E_K__E_E_E_E’__E_E_O
S15 = S16 = S25 = S26 = §34 = S35 = S = S45 = S45 =

E _ E, E _ E, E __ E E E
S22 = 811, S23 = S13, Sag = —58)4; S44 = Sb5)
E E E E E
Spe = 2814; 566 = 2(511 — S12)
diy = dyy = die = dn = dny = dyg = doy = dyy = de (A.5)

=dy =dy =dys =dp =0
dy = '—du; dos = —'du; dyg = —2dy
F F
K1 = K2

Hence the relations between the stresses, strains, polarizations and fields for
quartz reduce to the simpler forms

—x, = snXe + SlE2Yy + suZ, + staV. — duFE.
—yy, = 512Xz + 0V, + suZ. — shV, + duE,
—z; = suXe + su¥y + 5wz,

—y: = 51: X, — suVy + sV, — duF;

—2; = suZ: + 251X, + duE,

—x, = 25142, + 2(s11 — s12)X, + 2duE, "~ (A6)
. o
0. ==K 4 x, 4 anv, — dur.
47
E,K¥
Qv = = - + duZ: + 2du X,
4 )
_E.K,
Q = 4

The superscripts have been left off the constants si, 533 and K3 since it
will be shown that their values are not affected by the way in which they
are measured.
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Equation (A.5) is not the only way of relating the elastic and elec-
tric quantities. For example if we substitute the values of the fields of the
last three equations of (A.6) in the first six equations, we can write

—x, = sAX, + shY, + suZ: + stV — guQs
—y, = shX, + sh¥, + s13Z: — sta¥e + guQs
—z, = sXg + ss¥Vy + saaZ:
—y. = Xz — stV + siYe — guQs
—z, = s$hZ, + 255X, + 210,
oy = 2587, + 268 — sL)X, + 2eu0, (A7)

4
B = ET% O: + uXe —gn¥, +gu¥:
1

47

Ey = —F Qy - gl4z:n - zglle
K
47
E,=—0(Q.
: =%, Q
where
4nd; 4nd; drdy d
Q E 11 Q E 11 Q B 11 14
s = S — ; Sz = S12 + — ; St = S14 — —
11 11 f 12 1 Kf ’ 14 14 Kf
§% = §F 4Tl'd%4' g = 4ardy . s = drdy
= Y4 T ——F 11 — ——7 14 = —=
* T Kl KF

The superscript Q is added to show that these are the elastic compliances
that will be measured when the free charge on the surface is zero. These
elastic constants are the ones measured when an unplated crystal is put in
an airgap holder with a large air-gap since then no charge can flow to the
surface of the crystal. The difference between the zero field and zero charge
clastic constants for quartz is less than 1 per cent. For rochelle salt, how-
ever, they may differ by a factor of 4. For rochelle salt the principal piezo-
electric constant dis and the “free” dielectric constant K r vary widely in
value and phase angle with variations in temperature and frequency, whereas
the piezoelectric constant g which is proportional to the ratio of these two
is nearly a constant for all frequencies and temperatures, so that the formu-
lation of equation (A.7) is more advantageous than that of equation (A.6).
For quartz, however, both forms are reasonably constant. Furthermore
the elastic constants of equation (A.6) are those for a plated crystal which
are usually the ones of interest for a crystal employed in an oscillator or filter.
Hence this formulation has been used in this appendix.
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Both the formulation of (A.6) and (A.7) can be expressed in terms of
the strains rather than the stresses. Since these are useful forms and are
used later in this appendix, they are given below. Equations (A.8) are
obtained directly from equations (A.6) by solving them simultaneously to
replace the strain by the stress, while equations (A.10) are obtained in the
same way from equations (A.7).

—X. = Cflxz + Cf?)’y + iz + quyz — enkE.
-V, = c1a%z + Cflyy + cizz. — Cﬁy: + enk:
—Z: = (¥ + cu¥y + 3%

— V. = claxz — ety + ciay: — eubs

E E
_Z:: = (4421 + 6141’" + eléEy

_U=$h+@ﬂ;%%+ma (A8)
Q: = % + P. = l‘lsz + enx: — eny, + euy:
Qy = f—;':_ + P, = Eiflc — euZ — ey
0.=Typ =B

where the relations for the elastic constants are

sh St 53 51 §
E a3 44 E 33 44 —S13
dw=oh s Ie=m g m= o
E E E E

— 814 st + S1e E S11 — 812
C1qy = 75 H Caz = p 3 4 = .8 3

E E E

E €11 — (12 S44 E E 2

Cos = 3 = 273; @ ssa(s11 + s12) — 2513

2
g = Sf4(-\'fl - Sfe) - 23124 .

Conversely we can also write the useful relation

cs: c- cs: ci.
E 33 44 E 33 44
s = —S + —5; 2s12 = — — —;
a B @ B
E E E
_ —t E _ —C14 _¢tn + c2 .
8= W= g =
i — i 2c4s
E 11 = 12 E E E 4
Sq4 = T ) Se5 = 2(s11 — S12) = ?- ;

E E 2 E E E E2
a' = Ca:;(Cu + 612) - 2613; .3’ = 644(611 - 612) — 2¢14 .
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For the piezoelectric constants
en = dulch — ci2) + ducts ; e = 2duets + ducts ;
and conversely
—dn = 8[1(an - sz) + 814Sf4 3 —du = 2811354 + 8usf4 .

The dielectric constant K denotes the clamped dielectric constant, i.e.,
the constant measured when the crystal is free from strain. This is related
to the free dielectric constant K; by the equation

K{ = K{ — 4xlduen + 2duen]. (A.9)

In a similar way if we solve equations (A.7) simultaneously, for the stresses
in terms of the strains, we have

— X, = iz + by, + cuz + oliy: — fuQ=;
—¥, = chx. + chiy, + cuz — Fiys + fuQs;
—Z, = g%z + vy + omz:;

—Y, = ofixs — iy, + cfiy: — fuQs ;

—Z, = chiz. + ctaxy + fuQy;

Q Cfl - 6‘?2 .
—X, = cluz: + —3 xy + fuQy ; (A.10)
41r
E, = — fux: + fuw — fu}'z H
K1

4
E,, = k;zrc-.Qy +fuZ; +fnxy ’
1

_ 4

2 Ks
where the ¢@ constants are related to the s@ constants as in equation (A.8).
The piezoelectric relations are

fu= gu(ch — i) + gucts;  fu= 2gucts + guchs ;

or conversely

—gn = fulsh — s%) + eusts; —gie = 2usti + fush;
while the dielectric relation between the free and clamped crystal
4
— (gufu + 2811_7.11) (A.11)

K&E
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Equations (A.10) might also have been obtained directly from equations
(A.8) by substituting the charges from the last three equations in terms of
the fields. This substitution yields the additional relations

)
Q 411'8:1 Q E dmen . Q E .
1 = 611 + — Sl T 02 T C13 = (13,
1 1
Q _ 41!'611814 Q E
Cig = 614 + - €33 = (33,
1
F 3‘"'&11 (A.12)
4 Q Q 11 — 612 + ¢
Q 1"614 Q _ (i1 — €12 __ .
C4qy = 44 + Cep = = ’
K¢ 2 2
fu= e f
1= —c €n; u = j €14 .
Ky K

(A.2). VALUES OF THE ELASTIC AND P1EZOELECTRIC CONSTANTS

The first and one of the best determinations of the elastic constants of
quartz was made by Voigt. Using static deformations of unplated crystals
he determined the elastic constants to be

cu = 85.1 X 10 dynes/cm?; ci2 = 6.95 X 1019,
a3 = 14.1 X 10%; oy = 10.8 X 1010
= 1053 X 10, cu = 57.1 X 10" (A.13)

(“——” - "”) = 391 X 10"

From these the moduli of compliance can be calculated and are
sn = 129.8 X 107" cm?/dyne; s = —16.6 X 1014,
s;p = —15.2 X 10714 su = —43.1 X 1074
s33 = 99.0 X 10714, s = 200.5 X 10714;
sgp = 2(s11 — $12) = 292.8 X 10714,

Ces

(A.14)

Whether these are zero field or zero charge constants is not known. If
they were measured in a room with high humidity, the polarization produced
by strain would soon be annulled by a current flow through the leakage re-
sistance of the adsorbed moisture, and the constants would be ¢f; or s7; .
On the other hand if the displacements were measured in a very dry room,
the leakage resistance is very small and it may take hours to annul the polari-
zation through a leakage current flow. In that case the constants measured
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would be ¢%; or s% . Inany case the difference was probably less than the
accuracy of measurement.

Later measurements by Perrier and Mandrot for two of the constants sy
and s33 give the values

su= 127.3 X 1074; s = 97 X 101 (A.15)

By using the measured resonance frequencies of known modes of motion,
the uncertainty of the type of elastic constant can be removed, for the
alternations occur so fast that the leakage resistance has little effect. If a
crystal is lightly plated, it is shown in the next section that the resonant
frequency of a length vibrating bar will be determined by the zero field -
elastic constants s%; . On the other hand if an unplated crystal is measured
in an air gap holder with a large air gap it has been shown that' the fre-
quency measured will be determined by the zero charge elastic constants
s% or ¢¥;. A careful measurement of the elastic constants of quartz has
recently been made by Atanasoff and Hart®. Using thickness modes for

1 The resonances of length vibrating crystals have been discussed by Cady, “The Piezo-
electric Resonator and The Effect of Electrode Spacing on Frequency,” Physics, Vol. 7,
No. 7, July 1936, pages 237-259; and by the writer, “Dynamic Measurement of The Con-
stants of Rochelle Salt,” Phys. Rev., Vol. 55, pages 775-789, April 15, 1939; while the
resonances of thickness vibrating crystals have been discussed by Cady (above paper) and
Lawson “The Vibration of Piezoelectric Plates,” Phys. Rev., Vol. 62, July 1, 1942, pp.
71-76. For alength vibrating crystal Cady shows that the resonant frequency for no air
gap (plated crystal) is controlled by the constant 1/sE,. For a crystal with a large air
gap, the frequency is controlled by the constant.

/st + 4rd1f/Kf5F12 = 1/sf .

Starting with equations of the form (A.10), the writer showed that the frequency of a barirﬂl
an air gap holder would be controlled by the constant 1 /58, while the frequency of a plated

crystal is determined by
d,}4r E
-‘?1 /(1 - IEC—SE) = S

Tor a thickness vibrating crystal for which the field is applied in the direction of wave
propagation, Cady and Lawson find that the resonant frequency is controlled by the elastic
constant

r

4'"'81_12 8

= b+ 1‘7[1“0(” )]
x? Il
i

where D is the total separation between electrodes and ¢ the thickness of the crystal.
When the separation is infinite, the controlling elastic constant is c& + 4xe?/KE which,
from equation (A.12) is ¢¥,. When the air gapis zero or D = /, the controlling constant is

4-1!'8“_2 8
E

1_ —
ot ke ( ,,2)

which, for all practical purposes, can be taken as cis for quarta.

. ?“Dynamical Determination of the Elastic Constants and their Temperature Coeffi-
cients for Quartz,” Phys. Rev., Vol. 59, No. 1 (85-96), Jan. 1, 1941,
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relatively thick pieces of quartz, and determining the asymptotic value for
high order harmonics, they obtained the elastic constants

cn = 87.55 X 10 dynes/cm?;  ca = 6.07 X 101 ¢ = 13.3 X 10
e = —ow=17.25 X 1019 = 106.8 X 1019 ¢ = 57.19 X 1010,
(A.16)

In addition they came to the conclusion that cs had a value of 18.4 X 101,
which was different from the value of ci as required by theory. Their
measurements were made with high harmonics in air gap holders so that the
values measured should determine the ¢¥; constant. To explain the dis-

crepancy found, Lawson® has suggested that the ¢{; constants

& = ofj + dmevey/KY (A17)
do not obey the same symmetry relations as the ¢;; constants. This sugges-
tion does not seem to be borne out by equations (A.10), from which the sym-
metry relations of the ¢f; constants can be determined. If we start with a
generalized form of these equations applicable to any crystal and apply the

symmetry relations for quartz, we find that it is still necessary to satisfy the
symmetry relations between the constants found previously and in particular

s = ¢t (A.18)

In order to investigate this matter further, and to obtain more reliable
values of the elastic constants, an analysis has been made of a number of
measurements previously obtained for oriented crystals. In particular two
families of oriented crystals were investigated. One family was a set of
oriented X cut crystals vibrating longitudinally. They were cut with their
major faces normal to the X axis and with their lengths at angles 4, of from
+43° to —79° with respect to the ¥ or mechanical axis. They were
oriented similarly to the +5° and —18.5° filter crystals shown by Fig. 1.9.
When these crystals are 7 to 10 times as long as they are wide or thick it
has been shown previously? that their length resonances are determined
very accurately by the equation

1 1
= 1/# A.19
T ey (A.19)

where £, is the length of the crystal, p the density and sz the inverse of
Young’s Modulus along the length for a plated crystal. This is related to
the angle of cut 4, by the equation

sk = st cos' 4y + s sin® Ay + 257 cos® As sin A,
+ (253 + qu) sin’ A cos® As
3 A. W. Lawson, Phys. Rev., 59, 838 (1941).

4 “Electrical Wave Filters Employmg Quartz Crystals as Elements,” W. P, Mason
B.S.T.J., Vol. XIII, pp. 405-452, July 1934, Sce Figs. 25, 31 and 32.

(A.20)
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Since the resonant frequency of the plated crystal was measured, it was the
zero potential elastic constant that was determined. These crystals were
lightly plated with aluminum and it had been previously shown that the
added plating would affect the frequency by considerably less than 0.1 per
cent. The crystal orientations, their dimensions, the frequency constants
and the values of s3»: are shown by Table I.

These measured variations satisfy equation (A.20) for the variation of
32 with angle very well if we take

sE = 1279 X 10 " cm®/dyne;  sm = 95.6 X 107,
sty = —44.6 X 107, (A.21)
sty + 2513 = 175.8 X 107",

TasLE 1
Dimension, mm Resonant | Frequency
ésfledo’[ - Frequency Constant Value of 5252,
’ Length | Width Thick- 25°C KC cms
ness
—79.5° | 24.03| 2.50 | .502 | 130,700 | 314.1 95.6 X 1071 cm?/dyne
—18.5° | 20.00 | 2.50 .502 | 127,710 | 255.4 144.5
—13.14° | 19.99 | 2.97 .505 | 128,390 | 256.8 143.0
—12.33 19.98 | 2.95 .500 | 128,590 257.0 142.7
— 5.6 20.02 | 2.92 .500 | 132,130 264.5 134.7
- 1.4 20.03 | 3.02 .502 | 134,050 | 269.2 130.2
— .9° |19.97 | 2.99 .502 | 135,240 | 270.5 128.9
4 .36° | 20.03 | 3.03 .508 | 135,890 | 272.0 127.5
+ .54 | 19.96 | 2.98 .506 | 135,920 | 272.1 127.3
4+ 1.44 |20.02 | 2.98 .505 | 136,800 | 274.0 125.7
+ 2.61 | 19.97 | 3.00 .505 | 138,400 | 276.5 123.3
+ 4.05 19.95 | 2.97 .510 | 139,900 279.0 121.2
+11.8 19.11 | 3.01 .500 | 154,600 | 295.4 108.1
+18.0 20.02 | 2.95 .500 | 155,380 | 311.1 97.5
+42.6 20.00 | 2.95 .500 | 174,750 349.5 77.25

This gives three of the constants directly, and a relation between two more.
To obtain the remaining constants and to test out the hypothesis that there
are seven elastic constants rather than six, use has been made of measure-
ments made for thickness vibrating shear crystals obtained by rotating one
edge about the X axis. These are the AT and BT series shown by Fig. 1.9.
As shown by a former paper®, the frequency of such crystals depends on
the edge dimensions as well as the thickness dimensions. However, as the
edge dimensions become large compared to the thickness dimension the
principal frequency approaches an asymptotic value which is taken as that
for the infinite plate. For the AT, BT and ¥ cut crystals these asymptotic
values have been determined to have the values shown by Table II.

5 «Low Temperature Coefficient Quartz Crystals,” B. §. T. J., Vol. XIX, pp. 74-93,
Jan. 1940. See Fig. 5.
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If we make the assumption that there are seven elastic constants and cig
differs from 1y , the frequency of this series of crystals will be®

1 cE . .
f = 57 %6’ where cgo = ¢ cos” Az + iy sin® As — chgsin 24, (A.22)
p

The determination for the ¥ cut gives directly

cas = 40.5 X 10" dynes per square cm. (A.23)
The other two cuts give the values

css = 18.2 X 10", ¢f, = 58.65 X 10" (A.24)

To test out the hypothesis that cgy differs from cfy or sfs from 2sf; we
can make use of equation (A.8) writing cg in place of ¢y . Then solving
these equations simultaneously we find

E E B
E Ce6 E —Cs8 E Cay
Si4 = 557 66 = 55— 515 S = 55— 5= (A25)
(€14 €as — Cfe (Cf4 Cos — Cs (qu cos — Cfﬁ
TasrLe II
Asymytotic Fre-
Crystal Angle of Cut 42 quency constant Ve'veof c& ,
C mms Ll
AT +35° 15 1661.5 29.39 X 10" dynes/cm?
Y Cut 0 1954 40.50
BT —49° 2549 68.86

Substituting in the values from (A.23) and (A.24) we find
st = 197.8 X 107" em®/dyne; s = —89.0 X 107;

N (A.26)
sts = 2(sh — sh) = 286.5 X 107"

Comparing the value of sg; with 2sf; given in equation (A.21) we see that
they are equal within the experimental error, so that these measurements do
not indicate that there are seven elastic constants but only the customary
six. Using these values all the elastic constants can be evaluated as shown
by Table III.

Measurements have also been made to determine accurately the piezo-
electric constants. This was done by using the ratios of capacities of two
standard rotated X cut crystals for which these ratios have been accurately
determined. Asshown by section C of this appendix, the ratio of capacities
r of a crystal is related to the piezoelectric constant dys , the elastic constant
s22- and the free dielectric constant Ki by the equation

.. =1 —F
r = ratio of capacities = 5 (T) (A.27)
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where k the electromechanical coupling is given by

4
k=diod/ —r. A28
A g (A.28)

The two crystal cuts and their constants are given in Table IV.
Only the numerical value and not the sign are determined for dy5 .

TasLe IIT
Elastic Compliance Moduli Elastic Stiffness Moduli
sf, = 127.9 X 107 cm?/dyne ¢k, = 86.05 X 101 dynes/cm?
sF = —15.35 = 5.05
sy = —11.0 ¢y = 10.45
sf, = —44.6 cF, = 18.25
S33 = 95.6 C3z = 107.1
sk, = 197.8 ¢E, = 58.65
E _ _ — E _— cfl - c'152 —
sk = 2(sf, — sfo) = 286.5 =7 = 40.5
TasLE IV
Angle of Cut, A2 Cl:;:ﬂﬁis Value of "ZEZ' Value of K{? Value of d;z
—18.5° X cut 137 144.5 4.58 6.85 X 10®
0° X cut 125 127.9 4.58 6.76 X 1078
TasLE V
Piezoelectric Value in cgs electrostatic Piezoelectric Value in cgs electrostatic
constant units constant units
d]]_ '—6.76 X 10-8 | gu —18.55 x 10_.
d[.‘ 2.56 X 10-8 £14 7.02 X 108
€11 -5.01 X 104 fu —13.85 X 104
e1s — .97 X 10¢ Jia — 2.68 X 10¢

The variation of dy» as a position of angle has been shown to be®
ds = —3[du(l + cos 24s) + du sin 24, (A.29)
The two values of dys of table IV are satisfied by
dy = —6.76 X 1078;  dy = +2.56 X 1078 (A.30)

8 Sec “Electrical Wave Filters Employing Quartz Crystals as Elements, " W. P. Mason,
B.S.T.J., Vol. XIII, 405 (July 1934).
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From these values and the elastic constants of Table III we can calculate
all the different forms of the piezoelectric constants. These are given in
Table V.

(A.3). DErRvATION OF EQUIVALENT CIRCUIT OF CRYSTAL

The electrical impedance and electrical equivalent circuit for a fully
plated crystal can be derived from the piezoelectric relations of equation
(A.6) taken together with Newton’s law of motion

2
F, = ma = (p dx dydz) %IE (A.31)
where m is mass of an elementary volume dx dy dz, @ the acceleration, and
£ is the displacement of the element in the y direction. If we consider a
long thin X cut crystal with its length in the y direction, the piezoelectric
relations of interest are

—Yy = Sf2Xz + Sfl Yy + 31322 - 5124. Yz + d!lEz;

E.KF ) (A.32)
= %‘ —duX.+ du¥, — duYe.

For a long thin crystal with its long dimension in the ¥ direction we can set

X.=2Z,=Y.=0 (A.33)

Q=

This follows since the crystal is free from external forces, and hence these
stresses on the edges of the crystal must be zero. On account of the small x
and z dimensions, the rate of change of these stresses with x or z will have
to be high in order that the stresses shall differ appreciably from zero, and
there are no mechanical strains causing a high stress gradient. Then for a
long thin bar the piezoelectric equations can be written

Yy = 5181 Yy + dll E:;
E.K7
0= = “4rn

Let us next consider a small cross section of the crystal with a dimension
dy along the crystal length. The total force on the section is a resultant of
the difference in stresses on the two faces or equal to

(A.34)
+ du ¥,

3y,
bV, — Vo) = — Lol .a_yv dy = F, (A.35)

where ¥, the stress is considered as a compressional force acting on the faces
of the element. By Newton’s law of motion (A.31) we have
d't ay, _ _ d%

a! a7, a s A.
@ " oy vap (430

Y
—lolidy = Laldyp
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For a completely plated crystal such as we are considering, the potential
gradient E. will be independent of the y direction, since any charge distribu-
tion will be equalized with the speed of light which is much higher than
the speed of sound in the crystal. Then equation (A.34) when differentiated
by y becomes .

av, Ot g Oy
0ty = TS o =, A.37

dy ayr~ M oy (850
Introducing equation (A.36), the equation of motion for a plated crystal
becomes
Ot _ x4
6}2 = sup i (A-38)
For simple harmonic motion the variation of £ with time can be written in
the usual form

£ = g, (A.39)
so that for simple harmonic motion equation (A.38) becomes
&t ew , _dE_
@2—w.¥110£ =&§2— ﬁi":O (A.40)
where v the velocity of sound in the plated crystal is given by the formula
7 = LE (A.41)
P11

A solution of equation (A.40) with two arbitrary boundary conditions is
E=Acosgy+Bsin%2. (A.42)

To determine the constants 4 and B, use is made of equation (A.34).
Differentiating (A.42)

o0& w LW w
= —y, = ;’I:Asmay—BCos—giI

—5
When y = 0 and y = { the bar length
¥, =7, and v,=1Y, (A.44)

Il

5151 Yy + duE;. (A43)

provided the crystal is driving a load. For most electrical cases the only
load driven is an air load and this is usually very small so that it is customary
toset ¥,, = ¥,, = 0. TUnder these conditions

~9B = duE, and ‘:[4 sin%g — Bcos “’{] — dyE, (A45)
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Solving these equations for 4 and B and substituting in (A.43) we have

—yy = duE: I:tan wt sin & + cos Ciy:l =snV, + duE:
29 ? ?

I_ 0s 90 — 5/2)-‘ (A.46)
_ du E,; v
or Vy=—-—->%5-\1-—

29

The electrical impedance measured at the terminals of a plated crystal is
then determined by substituting the value of ¥ in the last of equations
(A.34) and integrating the charge Q) over the whole surface. The current
into the crystal is then

Kl d11 COS w('y - f/Q)

1'—]wQ—"jwl’f ———1— dy
i oS wl
20
wl
tan -
K{  dy 20 —[
= jwE;{y fL i 1 — J (A47)
2
wl
ta
= jwE. M(‘ Lt T 2”—’
[41[’ 511 f‘if -|
20
2
where K¢ = K7 — 4—1751 is called the longitudinally clamped dielectric
S

constant, i.e. the dielectric constant that would be measured if we suppress
the longitudinal strain along the y axis but not the other strains. The
admittance of the crystal then is

[ tanm—g

1 ) Juwl, £ Ki® | dn 2v

—-—= — = — — =, A48

E Edt& & [4« + sE ot (A48)
2

This consists of two terms which represent parallel branches in the equiva-
lent circuit. One of these is the capacitance

£, LK€ 6, LK1 °

Co= "ppg, CBSUNL = £ 5% 100

farads (A.49)
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The other branch contains the impedance

—it SE -zw—g _75.-,511 x 9 X 1011
_ELE d_llz v . cgs units = ; ohms  (A.50)
e u tan @ wly d112 tan v

20 29

This branch will have a zero impedance or will resonate when the tangent is
infinite or when

2afpt =
2 2

orfe=5,= ——F— (A.51)
Hence for a fully plated crystal it is the zero field elastic constant that
determines the resonant frequency.

Near this resonant frequency, the impedance of equation (A.50) can be
represented by a series capacitance and inductance having the values

2 E2 11
C, = { £ 8 du - L = pS11 44; X 9 2X 10 (A52)
t ﬂ"su X 9 X 10 8f, du
Taking the ratio between Cq¢ and C, we have
1 41[' du
Co_ ) (KILL 35) S T S _’ff(}. kg) (A.53)
Cl 8 47|- d112 8 41!' dn_ 8 k2

Ki sti

where % the coefficient of electromechanical coupling is equal to

4T
k=d 1/—. (A.54)
"V KTk

These values are used in equations (A.27) and (A.28) to evaluate the piezo-
electric constants of quartz.

A.4. Usk oF Vorer’s ReLations IN LocaTiNG REGIONS OF Low TEMPERA-
TURE COEFFICIENT CRYSTALS FOR SIMPLE MoDES oF MoTIoN

In Section 1.5 of the text, the statement is made that all longitudinally
vibrating crystals of quartz have a zero or negative temperature coefficients.
This can be proved from Voigt’s relations for quartz and a knowledge of
the temperature coefficients of the six elastic constants of quartz. Since
the same method can be used to locate the regions of low temperature coeffi-
cient for other simple modes of motion a short discussion of the method is
given here.

The Voigt relations given in equation (A.6) give the values of the piezo-
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electric and elastic constants for crystals with their three edge dimensions
along the three crystallographic axes. Most low-coefficient crystals, how-
ever, are oriented crystals with one or more of their edges lying along
directions not parallel to the crystallographic axes. The theory of elasticity,
however, provides methods for calculating the values of the constants for
rotated axes. If the rotated axes X’, ¥’, Z’ are related to the crystallo-
graphic axes X, ¥, and Z by the relation

XY Z
X‘ £1M1ﬂ1 ASS
V| &y my ma (A.55)
Z'| b5 m3 ng

where &, , - -+ , 13 are the direction cosines between the axes indicated, the
theory of elasticity provided relations between the stresses of the rotated
axes and the stresses of the crystallographic axes, between the strains of
the rotated axes and the strains of the crystallographic axes, and between
the field, polarizations, or charges of the rotated axes and the same quantities
for the crystallographic axes. Then if we express the relation between the
stress, strain and fields for the rotated axes, the elastic and piezoelectric
constants are determined.

Two shorthand methods are also available for calculating the constants
of rotated crystals. One method® is the matrix method which is based
upon the fact that relations in (A.6) can be expressed in a matrix equation

—e = 58X + dE (A.56)

where € are the strain components, X the stress components, s¥ the elastic
compliance matrix, d the piezoelectric matrix and E the field components.
By applying the rules of matrix multiplication the s and d matrices can be
transformed to rotated axes having the direction cosines of equation (A.57)
with respect to the crystallographic axes. The other method is the method
of tensor analysis. Equations (A.6) can be expressed in the form’

—€&j = SijapXap + dipEs (A.57)

where ¢; is the second rank strain tensor, Xas the second rank stress tensor,
5:jap the fourth rank compliance tensor, E, the field vector, and dy;, the third
rank piezoelectric tensor. By employing the geometric rules for tensor

7 This method of determining the constants for rotated axes is discussed in a former
paper “Dynamic Measurements of the Constants of Rochelle Salt,” Pkys. Rev., April 15,
1939, Appendix I.

8 This method is discussed in a recent paper by W. L. Bond, “The Mathematics of
The Physical Properties of Crystals,” B. S. T. J,, Jan. 1943.

% The tensor method of writing the elastic and piezoelectric relations is discussed by
Atanasoff and Hart and by Lawson. See references (2) and (3).
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transformation of axes, the components of the rotated tensors are easily
calculated and the elastic and piezoelectric constants for rotated crystals
determined.

The variation of Young’s modulus as a function of orientation was first
worked out by Voigt. In terms of the FRE angles specifying the orientation
of a crystal plate, the s compliance modulus (inverse of Young’s Modulus)
is given by the equation

st = sti(cos” Bcos’ ¥ + sin® ¢)* + (2513 + s5) sin® 6 cos™ ¢
X (cos® 6 cos’ ¢ + sin’¢) 4 sz sin® @ cos® ¢ — 251, sin fsiny cosy (A.58)
X [3(cos ¢ cos f cosy — singsiny)” — (sine cos @ cos Y — cos ¢ sinY)’]

As discussed in Chapter IT by W. L. Bond," the 7RE angles are meas-
ured as follows: Taking the X’ axis along the length of the crystal, the ¥’
along the width, and the Z’ along the thickness, the angle 8 is the angle
between the Z or optic axis and Z’. ¢ is the angle between the projection
of the Z’ axis on the XV plane and the X axis, while ¥ the skew angle is
the angle between the length and the tangent to the great circle which con-
tains the Z and Z’ axes and the length of the crystal X’. A crystal having
its thickness along the X axis (X-cut crystal) will have the angles

8 = 90°% ¢ = 0° ¢ variable but equal to 90° when the length coincides

with the ¥ axis. Under these conditions
st = st osin® ¢ + (2515 + s§) sin® ¢ cos® ¢
. - (A.59)
+ s33 cos ¥ — 2574 sin” Y cos ¢

This equation has been made use of in evaluating the elastic constants of
quartz as shown by equations (A.20). For this equation 4, was measured
from the ¥ axis rather than from the Z as in the TRE angle and

Ay = — 90° (A.60)

Since from equation (A.19) the frequency of a long thin crystal in longitudi-

nal motion is known to he
1 /1
= —%7 A.19
f 2¢ Psﬁ ( )

the longitudinal frequency of any oriented crystal can be calculated from
equations (A.58) and (A.19).

It is the purpose of this section to show also that the temperature coeffi-
cient of the longitudinal frequency of any oriented crystal can be calculated
provided we know the temperature coefficient of the six elastic constants of

1 Methods for Specifying Quartz Crystal Orientation and their Determination by
Optical Means,” this issue of the B. 5. T. J.
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quartz, and that regions of low temperature coefficient crystals can be located
for this and other simple modes of motion for which the frequency can be
calculated in terms of the elastic constants.

Differentiating equation (A.19) with respect to ¢ the temperature

+ dat dp dsty
df 1 /1 d 1| dt dt
a= "l ol Tl Tl
(A.61)
df
il . ,
7= Ty = =Ty — 3T+ TuF]

where T, the temperature coefficient of the quantity « is defined as the rate of
change of @ with temperature divided by the value of @. The temperature
coefficient of the length £ = X" is 7.8 parts per million per degree centigrade
along the optic axis, and 14.3 parts per million perpendicular to it. For a
general orientation, the temperature coefficient of length varies as

Ty = 14.3 — 6.5(sin” 8 cos’ ¢) (A.62)

Since the total mass remains the same when the crystal expands, the tem-
perature coefficient of the density is the negative of the sum of the coefficients
of the three axes or

T, = —364 (A.63)
Hence the temperature coefficient of frequency becomes
. v 2 2 1 dt

Ty =394 6.5sin" 6 cos” ¢ — I\ /- (A.64)
S11

Differentiating equation (A.58) we have as the temperature coefficient of a
general orientation

Ty = 3.9+ 6.5 sin® @ cos® ¢

st Tuf (cos’ 0 cos’ y + sin® ¥)° + (2517, + stTaf) X
sin® 8 cos” Y(cos’ 6 cos’ ¢ + sin’ ¢) + 55T, X
sin' 6 cos' ¢ — Ilsf'.,T.,B4 sin @ sin ¢ cos ¢ X

sE(cos’ 8 cos® ¢ + sin® ¥)’ + (2513 + sks) sin® 6 cos’ ¢ X
(cos’ 0 cos” ¢ + sin’ ) + s34 sin* 6 cos' ¢
—2sF, sin 6 sin ¢ cos ¥[3(cos ¢ cos 8 cos ¢ — sin ¢ sin )’
— (sin ¢ cos 0 cos ¥ + cos ¢ sin ¢)°]

[3(cos ¢ cos § cosy — sing siny)* — (sing cos § cos ¢ 4 cose sin )’ (A.65)
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Hence since the elastic constants are definitely known, the temperature
coefficient of any longitudinally vibrating crystal can be obtained when
the separate temperature coefficients are evaluated.

The temperature coefficients appearing in equation (A.65) can all be evalu-
ated from the temperature coefficient angle curves for X cut rotated crystals
shown by Fig. 1.19. For an X cut crystal equation (A.65) reduces to

Ty = 3.9+ 6.5 cos™ ¢
SuTa SlIl ¥+ (2513T-1, + S-MT-ﬁ) sin’ 4’ cos’ ¥
1 + 533T gy cOS' ¥ — 2s14T,“ sin® ¢ cos ¢

2| s sint ¥+ (2s1s + s5a) sin® ¢ cos’ ¢
+ 53 cos® ¢ — 253y sin® ¥ cos ¥

(A.66)

The value of T, is obtained directly for A2 = 0 ory = 90° for Ty = —2
and hence

T.5 = 11.8 (A.67)
Taking three other angles and solving for the remaining constants we find

Taﬁsu = —5310; (25137, + sf4T.44) 45,130; (A 68)
TsnaSHS = 17:400 '

Inserting the values found for the elastic constants, two temperature coeffi-
cients are determined, and one relation is given between the others,

Ty, = +119; T, = 182;  Tuf, — 1112 T, = 2282 (A.69)

The values of (A.68) are sufficient to determine the temperature coefficient
of long thin crystals cut at any angle, for inserting these values in (A.65) the
temperature coefficient for any oriented crystal in longitudinal vibration
is given by

T; = 3.9 + 6.5 sin’ 8 cos’ ¢
4755 (cos? 0 cos? ¢ + sin®¢)? + 22,565 sin® 6 cos® ¢

(cos? @ cos? ¢ + sin?y) 4 8700 sin* 6 cos* ¢
+5310 sin @ sin ¥ cos ¥ [3(cos ¢ cos 6 cos ¢ — sin ¢ sin ¢)?
_ — (sin ¢ cos 8 cos ¥ + cos ¢ sin ¥)? (A70)
127.9 (cos? 8 cos? ¥ + sin®y)? 4 175.8 sin® 6 cos? ¢ ’

(cos? 0 cos? ¢ + sin®y) + 95.6 sin' 8 cos’ ¥
4-89.2 sin 6 sin ¢ cos Y[3(cos ¢ cos 8 cos ¥ — sin ¢ sin ¥)?

— (sin ¢ cos 6 cos ¢ + cos ¢ sin y)*]

The only regions of low temperature coefficients are the regions for which
the two big middle terms are small which requires that § — 0, or ¢ — 90°,
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The first region would be a Z-cut crystal with its length somewhere in the
XY plane and would result in a temperature coefficient of two parts per
million negative. Such a crystal is not of much interest since there is no
piezoelectric constant for driving it. The other region ¥ — 90° would also
result in the length being near the XV crystallographic plane, but would
allow the major surface to be made perpendicular to the X axis and hence
would allow the crystal to be driven piezoelectrically. By allowing ¢ to
be slightly greater than 90°, the fourth term in the numerator can be made
slightly negative and of a value greater than the two positive terms, This
results in the +5° X-cut crystal having nearly a zero coefficient and this
angle is the most favorable one for a low coefficient longitudinal mode of
motion. All other directions have a negative temperature coefficient.

The remaining temperature coefficients of the six elastic constants can be
evaluated from Fig. 1.12, and equation (A.22). The frequency temperature
coefficient can be expressed by the equation:

Ty = 3.9+ 6.5 cos’ 6

e [5;_’. T.5 sin’ 0 + ciy T % cos’ 0 + T.% cf, sin 29] (A.71)
2 ces Sin° 8 + cis cos” 6 + ciy sin 20
since in terms of the TRE angles the series of crystals is given by ¢ = —90;

0 =90 — 4 ;¢ = 90°. Taking the AT, BT, and ¥-cut, whose coefficients
have accurately been determined, we have

TaBLE VI
v | |
CE‘)';:.&I Value of 42 Value of 8 Ty Tf“ ':68(;
AT +35.25° 54.75° 0 —12.0 29.39 X 10" dynes/cm?
Y 0 90 +86 164.2 40.50
BT —49 139 or —41 | 0 —15.2 68.86

From these data and equation (A.71), the three temperature coefficients can
be evaluated as

T.p = 164.2; Tk = 165.7; T.& = +90.2 (A.72)

C14

To convert these into compliance temperature coefficients we have to
make use of the relations of equations (A.8)

E E

E E E Ci4 E —C14

sge = 2(s11 — s12) = F B E2 S14s = — 5 g gis
C44Cs6 — C14 2(cs4 Ges — €14

E
E Coo
S44 = g Ee-
C44Ce5 — C14
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Differentiating these with respect to ¢, we have

E?
Ca4 Cop 2¢14
T, =T — [TE—_TZ (Tek, + Te, ] + == T8
C44 Cgg — C14 €14 Cog — C14
st it
11 12
= & 3 T — — = T,
S11 — Si2 S11 — S12
42 (A.73)
€31 Cos 2¢14
T’IB'I = T'—'ﬁ - l: E E? (T‘-'H + Tfﬁs)] + g—gi T'—‘ft
Ca4 Cse — Cu4 Ca4Cgs — C14
Cii G 265
44 Cg6
TsdEl = Tﬂ!ﬁ: - [—E E (Tcu + TCM)] E 2 Tcﬁ
Cy4 Co6 — 614 644 Cep — C14
TasLE VIL
T t P i
Cocficient Determination Determisation Bechmann
Tf” +11.8 +12 +11.5
P —1352 — 1265 —1125
T —294.8 —238 —148
S13
fue +120 +123 +113
s +182 +213 +180
33
Tf“ +195.4 +189 +175
TE —134.2 —133.5 —119
Soa
TasrLE VIII
T r Previ A f
Coatictent” | Determination | Determination | & Hart Bechmann Koga
Tfu —46.5 —54 —49.7 —48 —61.1
fw —3300 —2350 —3000 —2115 —
—697 — 687 —580 —530 —_
€13
fu 490.2 +96 +107 482 4110
—204.5 —251 —213 —208 —
€33
E —165.7 —160 —169 —151 —199
Cad
TCEM +164.2 +161 +4170.1 +144 +199

Inserting the numerical values for the elastic constants and the tempera ure
coefficients we have

T,5, = 883T.%

811

+ 10717,k =

412

—134.5;

T‘ lxq =

121.4;
T.E =

844

(A.74)

195.4
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The value of T,%, provides a check on the accuracy of measurement since
it has been measured in two ways. The agreement is within about 2 per
cent which shows the probable accuracy of the measurement. Combining
the coefficients of (A.69) with those given by equation (A.74), the complete
temperature coefficients are given in Table VII together with previous
determinations'". The present determination differs from a previous
determination by the writer due to the use of the elastic constants found
here rather than Voigt’s constants.

The temperature coefficients of the c;; elastic constants are easily obtained
from the sf; constants by employing the relations of equation (A.8). These
result in the temperature coefficient values for the ¢ constants given in
Table VIII.

By using the elastic constant data, the temperature coefficient data, and
the equations of transformation for rotated axes it is possible to calculate
the frequency and temperature coefficient of any simple mode for any
orientation. Examples are given for a face shear mode and a thickness
shear mode in a previous paper “Low Temperature Coefficient Quartz
Crystals.””" This paper shows contour maps for low temperature coeffi-
cient crystals of these types.

1t The first determination of the temperature coefficients of the writer was given in a
paper “Electrical Wave Filters Employing Quartz Crystals As Elements,” B, §. T. J.,
July 1934, p. 446. A redetermination using better temperature coefficient data was given
in a paper “Low Temperature Coeflicient Quartz Crystals,” B. S. T. J,, Jan. 1940. The
present determination uses the same temperature coefficient data but slightly different
elastic constants which results in slight changes in the temperature coefficients.

12 A partial determination of the coefficients was made by Koga, Rep. Rad. Research,
Japan 6, 1 (1934). Other complete determinations are R. Bechmann, Hoch: tech. U. Elek.
Akus. 44,145 (1934) and Atanasoff and Hart, Phys. Rev., Vol. 59, No. 1, Jan. 1, 1941,

pp- 85, 96.
8RB, S T J, Vol XIX, 74 (Jan. 1940).



