A Note on the Transmission Line Equation
in Terms of Impedance

By J. R. PIERCE

NCREASED familiarity derived in handling Maxwell’s equations,
especially in connection with problems arising at very high frequencies,
has resulted in a variety of forms for expressing certain laws and behavior.
Especially, work by Schelkunoff in extending the impedance concept' shows
that impedance can be quite as general and exact a means for expressing
electromagnetic relations as are current, voltage, electric and magnetic
fields, and vector and scalar potentials.

In reformulating certain problems in terms of impedance the content and
ultimate solution must of course be equivalent. There may, however, be
a considerable change of procedure and sometimes a simplification. For
instance, in many cases a single impedance condition can replace the usual
two boundary conditions for voltage and current.

One very simple case in which it is perhaps easiest to deal directly with
impedance is in the derivation of the transmission line equation on a dis-
tributed- constant basis. In the usual derivation, two linear second order
differential equations are obtained, one for voltage and one for current.
The impedance, in terms of which the engineer expresses many of his results,
is obtained as a ratio from solutions for voltage and current. In treating
the transmission line from the impedance point of view, without dealing
with currents and voltages, a first order non-linear differential equation in
terms of impedance and distance is obtained. This impedance equation
is a Ricatti equation and could be obtained from the usual line equations.
It is simpler, however, to derive it directly.

As the principal interest of such a treatment lies in the method and in
the fact that the line may be tapered, rather than in losses, the derivations
will be carried out for lossless lines. Losses can be taken into account by
allowing the inductance per unit length, L, and the capacitance per unit
length, C, to become complex quantities.

Consider the section of line dx long, shown in the figure, having an
inductance L dx and a capacitance C dv. We can write immediately

Z:+ dZ = Z=+dl=
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1 “The Impedance Concept and Its Application to Problems of Reflection, Refraction,
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Dropping the subscript x, the differential equation for the line in terms of
the impedance Z may be written?

dZ .w . 2 :

il e (R = Z7) (2)
R = (L/C)"* 3)
v = (LC)™" (4)

R is the nominal characteristic impedance, and v is the nominal phase
velocity, which is constant for many tapered lines with the same dielectric
material separating the conductors throughout their length. In such lines,
if the dielectric is air or vacuum, v is ¢, the velocity of light.

It should not be surprising that (2) is of the first order. Although there
are two boundary conditions, the impedances terminating the right and
left ends of the line, there are two impedances, that looking toward the right
and that looking toward the left. The impedance looking toward the right
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is unaffected by the left end termination, and that looking toward the left
is unaffected by the right end termination.

As R is real, it may be seen from (2) that the only case in which the im-
pedance can equal the nominal characteristic impedance R at all points
is for R constant. This tells us that the characteristic impedance of any
lossless tapered line is complex. For very gradually tapering lines the
characteristic impedance differs from the nominal characteristic impedance
principally by a small imaginary component.

The simplest solution of (2) is of course that for a uniform line, with R
a constant which will be called R,. In this case (2) can be integrated
directly. giving the familiar result

gﬂ — tanh (jur/v + K) (s)

1t is interesting to note that the equation for admittance ¥ can be obtained by re-
placing Z by ¥ and R by (1/R) = G in (2).
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Dr. L. A. MacColl has pointed out to the writer that (2) is the same as
the electrostatic electron optical equation for paraxial rays. To reduce (2)
to the standard form:

_Jw dx — ‘
S8 dz (6)
—R' = H(2) (7
dz _ 2
o = H@) + Z (8)
The electron optical equation for paraxial rays is
ar _ 3 V’(z):r .
& lﬁ[V(z_) +r ©
V()
r'=C- v (10)

Here z is distance along the axis, V(z) is potential on the axis, and C is
convergence, or the inverse of the focal distance.

It would seem, then, that from each solution of an electron optical
problem, a solution of a tapered line problem could be found, and vice versa.

While it cannot be claimed that anything new has entered the transmis-
sion line equation in expressing it interms of impedance, it does seem that
the approach may be stimulating in uncovering hitherto neglected material
and analogies.



