Design of Two-Terminal Balancing Networks
By K. G. VanWYNEN

This paper describes a simple graphical method for designing a two-termi-
nal network, which will simulate a given line impedance to such a degree that
return losses of the order of 25 db or better will be readily obtained. The
method is particularly useful in those problems in which a reasonably accurate
balancing network is adequate, but a high degree of precision is not required.

GENERAL

T IS the purpose of this paper to describe a graphical method which

has been found useful in the design of simple two-terminal networks
to simulate the impedance of transmission lines or equipment. The dis-
cussion which follows is intended to emphasize the simplicity of the
method and the rapidity with which it may be employed to arrive at a
solution; it will also indicate the analytical background without at-
tempting to develop or establish the rigor of the procedure involved.
A solution can frequently be obtained in a fraction of an hour and it is
thought that the graphical analysis will appeal to the pragmatist and the
engineer who has a job to do, but very little time in which to accomplish
his aim, rather than the person interested in the rigor of the solution.

The problem which is considered may be stated as follows: Design a
two-terminal network with the minimum number of elements which will
give a desired degree of approximation to a given impedance function
Z(\), where Z()) is a fraction whose numerator and denominator are poly-
nomials in frequency in accordance with the customary usage in such prob-
lems.

ORIGIN OF PROBLEM

This problem has arisen most generally in providing balancing networks
which will give satisfactory return losses against various types of telephone
facilities. It is obvious that for a given impedance, (r + jx), at a given
frequency there are an infinite number of networks which will satisfy
the given impedance. It has also been pointed out that the network
which simulates a given impedance function is not unique. Hence there
are also a large number of networks which will satisfy a given impedance
function.

In designing networks for repeater circuits, it is generally satisfactory
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if the return loss is equal to or greater than some specified number of db.
This somewhat simplifies our problem and permits a double infinity of
solutions. A method has been given by Brune! for designing such networks,
in which it is pointed out that there is no unique selution to the problem of
designing a finite two-terminal network and also states that any network
which satisfies the impedance function may be considered a satisfactory
solution to the problem. It is thought that the method which is given
below will provide a solution which makes maximum use of the number of
elements employed. That is, it will provide a given return loss with the
minimum number of parts.

The required degree of approximation and the frequency range to be
covered determine the number of elements required in this solution. Inone
simple case which will be discussed below in the first example, the approxi-
mation between the impedance of a transmission line and a network designed
to simulate it is the approximation between the curvature of the impedance
function and the arc of a circle.

GENERATING FUNCTION

The method discussed here differs from that outlined by Brune in that
use is made of known generating functions which are added together in series
to approximate the total function, similar to the manner in which sine
functions may be added to approximate other functions. This series type
network can readily be converted to the ladder type by well known net-
work equivalence theorems and the solution will then have the Stieltjes
fraction form pointed out by Fry? and Cauer.?

The generating function used here is an impedance consisting of a resist-
ance in parallel with a pure reactance or a special case of this. This func-
tion plus a real corresponds to a bilinear transformation, the properties
of which have frequently been discussed elsewhere. This particular con-
figuration, for instance, has been pointed out both by Brune and by Guille-
min® at M.LT. and a discussion of the bilinear transformation has been
given by C. W. Carter! of the Bell Telephone Laboratories. The series
addition of such generating functions is similar to the form given in Foster's
reactance theorem except that there only pure reactances are dealt with.
The solution can also be worked out with admittances, but will not be dis-
cussed here since the average engineer is more accustomed to dealing with
impedances.

In many problems, particularly those involying dissipative transmission

1 Jour. Math. & Physics, Vol X, 1930-1931.

2 Bull. Am. Math. Soc., 35,1929.

3 Guillemin—Vol. II.
41 B.S.T.J., July 1925.
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lines, the entire impedance function is found in the fourth quadrant of the
complex plane. When this is so, the generating function is reduced to a
resistance in parallel with a condenser.

GRAPHICAL REPRESENTATION OF FuncrTIoNs

As a first step in utilizing the graphical procedure, it will be advisable to
acquire some familiarity with the generating function in its general form
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Fig. 1.—The impedance loci, Z()\), for several networks.

and some of its special cases. Plots of various cases are given in Figs. 1(a)
through 1(h) together with the network configuration and the impedance
function thereof. Obviously the summation of the properly selected gen-
erating functions corresponds to the addition of the partial fractions de-
rived by Brune’s method. For an accurate solution these partial fractions
when combined should approximate the given Z()).

Figure 1(A) shows the impedance locus of the parallel R, L, C generating .
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function as frequency varies from 0 to . At 0 frequency Z(A\) = 0 + j0
and at © Z(A\) = 0 —j0. The locus is a circle and crosses the real axis at R
and the frequency at which L and C are anti-resonant. The special cases
will be readily apparent and without further discussion attention will be
shifted to Fig. 1-c which is the generating function applied to obtain solu-
tion of the examples listed below, all of which are located in the fourth
quadrant.

The impedance of this function (Fig. 1-c) at zero cycles is a real and has
the value R, and at infinite frequency its impedance is 0 — j0. The locus
traced by this function in the fourth quadrant of the complex plane as f
varies from zero to infinity is a semicircle of radius R/2 whosé center is at
R/2 on the axis of reals. Obviously, the impedance for any given fre-
quency depends only on C when R has been fixed.

One of the most useful networks for voice frequency work is that in which
two such functions are added together but the second function is the special
case in which C = 0. We then have a network which consists of a resist-
ance R, in series with the parallel combination R, and Cs, and is represented
by the semicircle just described but displaced to the right of the origin by
the distance R;. This form corresponds to a special case of the bilinear
transformation previously mentioned.

As stated earlier a given impedance function can be obtained from a large
number of networks but when the impedance is to be simulated for a limited
frequency range, such as the voice band, the selection of the best network is
reduced to sorting through a relatively small range of networks to select
that one which is the best compromise for the given conditions. This then
is a restatement of the problem: To find the network having the minimum
number of circuit elements which will give the desired approximation to a speci-
Jfied impedance function.

The other sections of Fig. 1 will be evident upon analysis.

MEgTHOD OF SOLUTION

The first step to be followed in finding the solution to a given problem
is to plot in the complex plane the locus traced by the given impedance
function as the frequency varies over the range which is to be considered
and to mark the frequency at those impedances which are essential to the
problem. Having done this, the next step is to draw a semicircle with the
center on the real axis such that an arc of the semicircle approximates part
or all of the locus of the impedance function. In many cases this semi-
circle is a sufficiently good approximation but where it is not, it will be
necessary to add other functions. The examples given below are illustra-
tive of cases requiring three-, four- and five-element networks.
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ExamprLE 1—104 ML OpEN WIRE

To demonstrate the method we will now consider the design of a net-
work which simulates a 104-mil copper open-wire line with 12 in. spacing
and CS insulators. The impedance function for this particular facility is
plotted on Fig. 2. It is perhaps rather obvious that this locus can readily
be approximated by a semicircle whose center is on the real axis and whose
intercept on the real axis is not at the origin. Such a semicircle has been
drawn, but it is recognized that the one shown is not unique, for it would be
possible to draw several others which might do equally well. However, they
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Fig. 2.—Graphical design of two-terminal balancing network for 104-mil. copper

open wire.

would in general be fairly close to that shown. Having selected this semi-
circle, which approximates the impedance function, it is evident that a net-
work consisting of a resistance, Ry , in series with a parallel RyCo combination
will provide a reasonable approximation above 200 ‘cycles. The series re-
sistance R, , is, of course, the left-hand intercept of the semicircle and the R
axis and the parallel resistance, R; , is the diameter of the semicircle. There
remains, then, the problem of determining C» which obviously governs the
distribution of frequencies along the semicircular locus. If C:is very small,
the 1000 cycle impedance will be near the right-hand end of the locus since
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R, is controlling and vice versa. The answer as to what value of C should be
selected depends on what frequency range we are most interested in approx-
imating closely. Suppose in this case that we say 1000 cycles is the fre-
quency at which we wish to have the best degree of approximation. C,
will then be determined by drawing a vertical axis passing through R; and
inscribing a semicircle passing through R; and the 1000-cycle impedance
of the open-wire line function and having its diameter on the vertical
axis. Thediameter of this semicircle represents X ¢ and therefore determines
the capacity, C,, of the parallel combination.

Carrying out the procedure just described it will be seen by reference to
Fig. 2, that X, = 145 ohms at 1000 cycles and therefore C; = 1.1 mf.
The 3-element network thus determined is a resistance of 654 ohms in
series with the parallel combination of 1800 ohms and 1.1 mf. By arbitrary
choice the 1000-cycle impedance of the line and network are in good agree-
ment. It is now necessary to determine the network impedance at other
frequencies in order to compare them against the open-wire line impedance.

As is well known the parallel impedance at any other frequency is the
intersection of the corresponding X and R, semicircles. At 200 cycles X¢
= 725 ohms. Drawing a semicircle of diameter 725 ohms on the vertical
axis through 654 ohms the network impedance is located at the intersec-
tion of this semicircle and the R, semicircle, i.e., at 900 — 7 620.

Thus the network impedance locus as a function of frequency may be
completely determined over the desired frequency range and compared with
the given impedance locus of the open wire.

This may be done visually. If corresponding points on the two loci are
close together, the simulation will be a good one and vice versa. If it is
found that the simulation is too good at one frequency and not good enough
at other frequencies, it will be possible to alter the distribution of frequencies
along the locus by changing C; or the locus may be shifted by changing R,
or both C; and R; may be changed. No specific rule can be stated for this
but with a little experience considerable dexterity may be acquired in this
sort of juggling and a locus found which will give an approximately con-
stant approximation over a reasonably wide frequency range. As may be
seen by referring to Fig. 2, it was found that a network consisting of a 654-
ohm resistance in series with the parallel combination of 1800 ochms and
1.10 mf. gives a very good simulation of a 104 mil copper open wire line over
the voice range. As is obvious from the graphical method, the simula-
tion rapidly deteriorates below 200 cycles due to departure of the network
locus from the impedance locus of the open wire line. If it were necessary
to improve this low-frequency simulation, it would be necessary to add
further generating functions to the design or compromise at the higher
frequencies.

Since this network was intended for use as a balancing network, it was
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then tested in the laboratory against the open-wire impedances and found
to give fairly high return losses as listed in Table I. The corresponding
return losses were also computed and tabulated. The impedances are
given for both the network and the theoretical line at typical frequencies
over the range from 100 cycles to 20,000 cycles.

The impedance function for an open-wire line is given by the equation

_ (R+ In\!
Z\) = (m) (1
Expanding this function by the binomial theorem and taking the first

approximation and further letting G = 0, the impedance function becomes

TasLE I
104 Mil Cu Open Wire, Dry Weather, 12” Spacing, CS Insulalors

Imipedsuce Return Loss of Net-
Freq. - work vs Line-db
Cycles Network Line
Rect. Polar Rect. Polar Measured | Computed
100 | 1360—j878 1620/32.9 | 1101—j883 | 1410/38.8| 20.9 | 21.3
200 | 904—j623 1097/32.7 865—j562 | 1032/33.0| 27.4 | 29.4
300 ' 34.4
500 | 699—j281 754/21.9 712—j273 764/21.0| 37.8 | 39.6
1000 | 665—j143 681/12.2 | 674—jl144 689/12.0| 42.3 | 43.6
2000 | 656— j72 660/ 6.3 662— j74 666/ 6.4 | 45.2 | 47.8
5000 | 654— j28 654/ 2.4 658— j32 659/72.8| 43.1 | 48.4
10000 | 654— j14.5 | 654/71.0 653— j12 653/ 1.1| 39.5 | 55.5
20000 | 654— 7.2 | 654/70.5 652— j10 652/70.9 51,2

| L\ 11
2 = (¢) + ey 2

Applying the method of Brune, this equation yields a network consisting of
646.4 ohms in series with a condenser of 1.09 mf. It will also be apparent
that eq. (2) has the same form as that of Fig. 1(f), i.e.,
11
Z\) =R + b

and by a 1 to 1 comparison of terms it is evident that

R, = (g)l (3-2)

Ci = (LC)! (3) - Gb)

and
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Including G, the expression for the first approximation of the impedance
function may be written in the form

[ .69
Z(\) = (g) 1+ 2;+—2é5 @

Following Brune’s method or noting the correspondence with the impedance
function given in Fig. 1(c), it is apparent that the network is a resistance,
R, of 646.4 ohms in series with a parallel R.C> combination. C, is 1.09
mf as before but R, computes as 312,000 ohms which is so large compared
to 1.09 mf. that the additional resistance provides negligible improvement
over the previous network for the voice frequency range.

Obviously then, the analytical method requires at least a second order
approximation entailing considerable additional analytical work and com-
putation which will not be carried out here. This points out the advantages
of the graphical method; namely, it is rapid, requires no special skill, and
gives a reasonably accurate answer.

ExaMPLE 2—SIiRAL Four CaBLE—1320 Foor SPACING—6 MILHENRY
Loapimng (SP4-1320-6)

In order to indicate the procedure when two complete RC regenerating
functions are required, another example is given which covers an impedance
simulation of a SP4-1320-6 line. A plot of this impedance function is
shown on Fig. 3, and it is at once obvious that two semicircular generating
functions should give a reasonably good approximation to the given im-
pedance function.

The method of selecting these functions may be somewhat as follows:
Consider first the simulation in the low-frequency range, i.e., 200 cycles to
500 cycles. For this region a semicircle may be selected much as in the
first example and the one chosen yields a network consisting of R; = 480
ohms in series with the R,C, parallel combination in which R, = 1460
ohms. C, was found by choosing an X ¢, at 500 cycles close to that of the
line and from which C; was found to be 1.38 mf.

It is evident that to provide high-frequency simulation a condenser must
be placed in parallel with R, = 480 ohms. Its value is determined by the
intersection of the R, and X ¢, semicircles at 10,000 cycles and C; is found
to be .0161 mf, The construction lines involved in these determinations
are shown as light weight solid lines.

Since there are now two impedance functions to be added in series the
locus will depart somewhat from the two semicircles. However, the de-
parture will not be great since the effect of Cy is small at low frequencies,
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TFig. 3—Graphical design of two-terminal balancing network for spiral four cable.

TasLe I
Spiral Four Cable—1320 Foot Spacing—6 Milhenry Loading—Full Section Termination
Impedance Return Loss vs :
Theoretical Mﬁ“f“'ed
Freq. Network Line Line-db Lgs:l;:i
Cycles Artificial*
Rect. Polar Rect. Polar Meas- | Com. | Line-db

ured | puted

100 | 1046—j713 | 1266/34.3 | 810—j670 | 1051/39.6 | 14.8 | 19.8 | 21.8
200| 701—j528 | 878/37.0 | 630—j430 | 763/34.3 | 22.8 | 22.6 | 22.9
500 | 516—j239 | 569/24.9 | 500—j220 546/23.8 | 33.2 | 33.0| 25.2
1000 | 488—j139 | 507/15.9 | 470—j130 488/15.5 | 37.1 | 33.9 | 26.2
2000 | 479—ij108 | 491/12.7 | 470—j100 481/12.0 | 41.2 | 38.1 | 26.6
3000 26.2
5000 | 456—ij125 | 473/15.3 | 460—j120 475/14.6 | 39.9 | 43.4 | 26.3
7000 | 430—j163 | 460/20.8 | 450—j150 475/18.4 | 36.7 | 31.8 | 25.1
10000 | 389—j201 | 438/27.3 | 420—j200 465/25.5 | 32.4 | 29.3 | 23.5
12000 23.6
15000 | 328—ij231 | 401/35.1 | 380—j280 | 472/36.4 21.8

* 120 sections terminated in 450 chms.

and that of Ry is small at high frequencies. In this case the two functions
may be thought of as virtually independent.
Table II gives the theoretical impedance of this facility and the computed
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impedance of the network at frequencies from 100 cycles to 15,000 cycles
and, as may be seen by the comparison, a fairly good simulation exists
throughout the range. This fact has been verified by making return loss
measurements in the laboratory against the theoretical line with the results
indicated in the table. Return loss measurements have also been made be-
tween the network and an artificial line consisting of 120 sections of this
facility terminated in 450 ohms. These results show a fairly constant re-
turn loss of about 25 db throughout the frequency range. This seems to
indicate that the simulating network is a fairly close approximation to the
artificial line so far as frequency is concerned and differs from it by a con-
stant multiplying factor which is of the order of 1.12. Tt is therefore ap-
parent that whenever it is necessary only to simulate the impedance of this
particular facility, this four-element network will provide a fairly adequate
simulation. The analytical derivation of this network will be omitted.

ExamprLE 3A—NON-LOADED ExcHANGE AREA CABLE

Another case will be cited to show the application of the graphical
method. This is the simulation of non-loaded cable of which the local
plant is largely composed in urban areas. A first approximation of the
analytical method does not yield a useful network but the graphical method
provides a three-element network of the type discussed above which gives a
return of about 20 db in the 300 cycles to 3000 cycles range. The graphical
derivation of the three-element network is shown on Fig. 4 which also gives
the impedance function for 22 ga. BSA non-loaded cable. This latter func-
tion is virtually a straight line in the voice range whereas the network is the
arc of a circle. Hence it would be impossible to obtain an appreciably
closer approximation throughout the range with a three-element network.
However, the addition of elements will improve the match as will be shown
in example 3B.

The network just derived can be expressed in terms of the 1000-cycle
impedance and applied for any gauge of non-loaded cable as follows:

R = 42K (5-a)
Xe, = 9K (5-c)

where K is the magnitude of the 1000-cycle impedance and

1

Xe, = m

(5-d)

Table IIIa gives a comparison of the network and line impedances and the
computed return loss for frequencies through the 200 to 3000 cycle range.
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ExampLE 3B—19-GAUGE QuapDED NoN-LoaDED Torl CABLE

Two complete RC functions plus a resistance are required to give a good
simulation for non-loaded toll cable when the simulation is carried through
the voice and carrier frequency ranges. The impedance function for 19 ga.
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Fig. 4—Graphical design of two-terminal balancing network for 22-ga. non-loaded
exchange area cable.

TasLE III-a
22 Gauge Non-Quadded Non-Loaded BSA Exchange Area Cable

Frea Line Impedance Network Impedance Cﬁ?&‘::‘“‘
ke Loss—
Rect. Polar Rect. Polar db
0.2 915—j905 1287/44.7 1380—j725 1555/27.8 15.0
0.5 580—j565 808/44.2 705—j725 1010/45.8 19.1
1.0 415—j400 576/42.0 390—j460 603/49.7 25.2
2.0 295—3280 407/43.5 285—j245 376/10.7 26.6
3.0 250—j220 333/41.3 260—ij165 308/32.4 21.2

toll cable is plotted on Fig. 5. The method followed in determining the
elements is somewhat as follows: R; will be given by the intercept of the
function on the R axis and is 130 ohms. Next look at the low-frequency range
determined by RsC; and draw a semicircle which approximates the given
function in the range of 200-500 cycles. The diameter of this semicircle
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determines R; as 2100 ohms and R» is then automatically determined as the
difference between the R-intercept of the R; semicircle and R, hence R,
=420 — 130 = 290 ohms. To determine C3, choose the X ¢, semicircle at 500
cycles to intersect the R; semicircle at a point near the 500-cycle impedance
of the cable impedance function, but make some allowance for the added
negative reactance of the RyC, generating function. The determination of
C, can be made in either of two ways. First an X, semicircle can be drawn
at 5000 cycles which intersects the R» semicircle at an impedance near the
5000-cycle impedance of the cable. The impedance at 1000 cycles can then
be found graphically for R,Cs and R;Cs and added together to R;. This
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Fig. 5—Graphical design of two-terminal balancing network for 19-ga. quadded
non-loaded toll cable.

total impedance at 1000 cycles should provide a good simulation of the 1000-
cycle impedance of the cable. A second procedure for finding C; would be
to follow a somewhat reverse process: Determine the 1000 cycle Z for the
R,yCy function and subtract it from the 1000 cycle Z of the cable. Choose Cs
such that the intersection of the R.C. semicircles is near the point deter-
mined by the subtraction of R;C; from the cable.

To avoid confusion of lines the construction circles have been omitted
from this last drawing except to show the addition of the 1000-cycle im-
pedances. As may be seen this network shown in Fig. 5 provides a rather
good simulation throughout the frequency range above 200 cycles.
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As pointed out earlier, if the first guess is not a sufficiently good approxi-
mation a second try can be made based on the evident shortcomings of the
first try. In this case if a closer approximation is required up to 20 kc the
next step might be to change Cs to .8 mf which would make the Z3 contribu-
tions above .1 kc somewhat less negative and would therefore raise the net-
work locus. Then changing Ry to 140 ohms would shift the locus 10 ohms
to the right. The resulting locus would be somewhat closer at the upper
frequencies but the change would not be necessary unless a rather high
degree of balance is required.

Tasre III-b

19 Ga. Quadded Non-Loaded Toll Cable
Com-
Network Impedance Line Impedance Ezttﬁsn
Fisq‘ Loss vs
. Theo-
retical
Rect. Polar Rect. Polar Line-db
1| 1515 —j1064 1852 /359 1103—j1093 1554 /44.7 | 18.3
2| 867 — j893 1244 /158 783— 770 1097 /445| 24.8
5| 488 — j493 693 /453 501— ja82 696 /43.9| 38.2
1.0] 376 — j340 507 /421 361— j335 492 /428 | 36.0
2.0 271 — j254 371.6/43.2 265— j229 350 /30.8| 29.0
3.0 217 — j203 297.2/43.2 223— j180 287 /38.9| 27.8
5.0 166.5— j139 211.3/38.0 187— j131 228 /35.1| 26.1
8. 145.5— §96.8 | 172.0/32.2 164— 94 189 /29.8| 25.8
10.0| 140.0— j74.4 | 158.0/28.0 155— j79.2 | 174 /271 26.5
16.0| 134 — j47.2 | 142.1/19.5 145— §55.0 | 155 /20.8| 27.9
20.0| 132 — j37.9 | 137.9/16.0 141— j45.1 | 148 J17.7| 27.9
100 131 — 7.3 | 131.0/73.2 130— j14.0 | 131 /6.2| 31.7

In general the success of a trial of the graphical construction may be
determined immediately by comparing about three frequencies of the line
and network.

Table ITIb gives the computed network impedance and the line imped-
ance. The computed return loss is also given and equals or exceeds 25 db
at all frequencies above 200 cycles.

Tt is apparent that the resistance and condenser elements of the generat-
ing functions are in descending order of magnitude with increasing fre-
quency for the non-loaded cable the impedance locus of which is essentially
a straight 45° line. As pointed out earlier, the series addition of such gener-
ating functions may be converted to a ladder structure®, whose sections will
have a tapered characteristic rather than repetitive.

s Appendix D of Transmission Circuits by K. S. Johnson.
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RETURN Loss

When designing such networks for balancing purposes, it has been found
convenient to plot the function on a sheet such as Fig. 6 which divides the
right half of the complex plane into circular regions such that all points on
" or within the boundary of a given region have a return loss against the
network 1 4 70 equal to or greater than that corresponding to the boundary.
These circles are determined by the return loss voltage ratio % and the ratio
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Fig. 6—Curves of constant return loss for the network 1 20 = 1+ 0.

S

of the line and network impedances. They may be computed from the
equation

(t+ L/M)/(t — L/N) = & ©)
By plotting the line and simulating network loci on such a sheet it is

generally possible to observe visually whether or not a given network meets
the specified return loss requirement. If visual accuracy is not adequate,
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it is always possible to measure off N and L and the angle between them,
spot the complex ratio L/N on the complex plane and read immediately the
approximate return loss.

CONCLUSION

The examples of the foregoing discussion have been confined to the fourth
quadrant. It was shown that by graphical means a number of parallel
resistance-condenser functions could be determined which when added
together would yield a close approximation to the given function. In the
most general case these functions would involve the generating function of
R, L and C in parallel; the locus of which is a circle having impedance
+-70 at zero frequency and —;0 at infinite frequency, and crossing the axis of
reals at R and the frequency at which L and C are anti-resonant. A case
which has been found useful in simulating such things as telephone sets and
other inductive elements is the parallel combination of R and L which, of
course, is the special case for C = 0 and occurs in the first quadrant.

The foregoing has been discussed with the thought that it may be useful
where there is limited time and where the required degree of simulation
is consistent with a graphical method. At some future time it may be
possible to pursue the problem further and devise the analytic counterpart
to the somewhat heuristic graphical method.



