CHAPTER VI

Modes of Motion in Quartz Crystals, the Effects of Coupling and
Methods of Design

By R. A. SYKES
6.1 INTRODUCTION

ITH the recent extended use of Quartz crystals in oscillators and

electrical networks has come a need for a comprehensive view of the
various types of crystal cuts. In addition there has been a need for illus-
tration of some of the methods employed in choosing the proper cut for a
given requirement, the manner in which quartz crystals vibrate and the basic
principles governing the choice of a design to use certain cuts most advan-
tageously. In particular one of the greatest problems associated with the
recent large scale production of crystals for oscillator purposes has been that
of obtaining crystals the activity and frequency of which would not vary to
any large degree over a wide range in temperature.

It is the intention of this chapter to present a physical picture of the man-
ner in which quartz crystals vibrate in their simplest forms and then to show
what has been learned from these simple forms that will apply to the more
complex combinations of motion. The motion of a bar or plate is deter-
mined almost wholly by its dimensions and the particular type of wave gen-
erated, or frequency applied, and very little upon the driving system if the
coupling to the driving system is small. In the case of quartz the coupling
between the electric and mechanical system is small and hence we may study
the motion of rods and plates without always considering the effect of changes
due to the method of excitation (i.e., piezo-electric). However the ease of
exciting and measuring a particular mode does depend on the piezo-electric
constant driving it. Basically only three tvpes of motion will be considered;
flexural, extensional and shear. These three types of motion or combina-
tions of these can be considered to represent most of the cases with which
we will concern ourselves. In addition, the frequency equations will be
given for common types of motion and the effect of coupling between various
modes of motion. Finally the general rules relating to the dimensioning of
oscillator plates will be presented.

6.2 Types oF MoTioN 1N QUaRTZ RoDs AND PLATES
6.21 Flexural

The motion associated with flexure will be discussed first because this is
the type of motion that we see more commeonly in nature. This motion is
52
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the type which presents itself in the xylophone, the chime type door bell,
and various other vibrating reeds or bars. Fig. 6.1 shows the general type
of motion of a bar free to vibrate in flexure. The displacement takes place
in the direction of W and the wave is propagated along the length. A
flexure mode is one in which the center line does not change length. The
type of motion associated with the first order, or fundamental, of a bar free
to vibrate on both ends is shown in Fig. 6.1 with a dotted figure superim-
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Fig. 6.1—Motion of a bar in free-free flexure.

posed to show the motion in the opposite phase. The straight bar then
would be distorted first in one direction and then in the direction of the
dotted figure. In the case of the second mode of vibration, it will be noticed
that it consists essentially of two of the fundamental mode types joined end
to end. This is not strictly the case, but serves to illustrate the motion.
The dots shown at various points on the bar show positions of zero motion
or nodes. In the case of the fundamental mode, there are two nodes and in
the second and third there are three and four respectively. One point of
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interest in flexure vibration as seen in Fig. 6.1 is that the ends of the bar
.will be vibrating in the same direction for odd order modes and the motion
of the two ends will be in opposing directions for even order modes. The
frequency of a bar vibrating in flexure may be easily computed for low orders
when the width is small in comparison with the length. When the width is
appreciable other factors must be considered as will be shown later. In
general, the flexure frequency of a bar will be the lowest frequency -of
vibration.

In the case of a plate where we are concerned with flexural vibrations
propagated along the length with motion in the direction of the thickness it
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Fig. 6.2—Motion of a plate in free-free flexure.

is necessary to consider also the width. As noted in Fig. 6.1, our concern
was only for a bar of small third dimension. When considering the case ofa
plate in flexure along its length and thickness, then'the third dimension must
also be considered for more complicated types of motion. In a manner
somewhat similar to the vibration of a bar, we can consider a plate vibrating
in its thickness-length plane. Since a plate also has width, we must also
consider this dimension. The simplest type of motion would be that of a
simple flexure which would bend the plate into the shape of an arch. If
now, the third dimension is permitted to flex, the distortion of a plate
shown in Fig. 6.2 could be illustrated by a flexure in the £~/ plane and in the
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w—¢ plane. Considering the motion of the plate as a flexure vibration along
the length vibrating in the thickness, then we may also have a distortion
along the width and thickness corresponding to similar or higher types of
flexure motion. The illustration at the bottom of the figure shows a plate
vibrating in its second order flexure along the length and thickness and the
fourth order flexure along the width and thickness. The effect of these
higher orders in the w—¢ plane is to slightly modify the frequency of the
{-w mode.

A thorough treatment of this type of double flexure in plates will be given
in Chapter VIII by H. J. McSkimin.
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Fig. 6.3—Motion of a bar in {ree-free extension.

6.22 Extensional

The extensional or sometimes termed longitudinal motion of a bar free
to vibrate is shown on Fig. 6.3. This motion is somewhat simpler than the
flexure motion and consists simply of a displacement in the direction of the
length of the bar of a wave propagated along the length. This means that
the first mode of vibration will be simply an expansion and contraction of all
points with respect to the center of the bar. This motion will be along the
length. The displacements along the bar will then be in proportion to the
sine of the angular distance from the center. The distortion of a free bar
in its simplest mode is then illustrated in Fig. 6.3 labeled 1st. Since the
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motion must be dynamically balanced, a node will appear at the center of
the bar, and the bar will grow longer and shorter as shown by the solid and
dotted lines. In the case of the second order of motion, as shown in Fig.
6.3, it consists essentially of two 1st order modes joined together at their
ends and of opposite phase. That is to say, when one half of the bar is
expanding, the other half is contracting. In the case of the 3rd mode, as
can be seen from Fig. 6.3, the central element is contracting while the exter-
nal elements are expanding. From this we may state generally, that for
odd order types of motion, the extreme ends of the bar will be expanding
or contracting in phase and for even order modes, the extreme ends will be
expanding or contracting in opposite phase. Fig. 6.3 illustrates extensional
motion in its simplest form. Ina practical case an extension in one direction
is accompanied by a contraction in one or both of the other two dimensions.
This of course is due to elastic coupling and will be considered more in detail
later. If we consider a rectangular plate it is not difficult to imagine that it
would have three series of extensional modes of vibration due to the three
principal dimensions.

6.23 Shear

The low frequency of face shear type of motion of a plate is somewhat
more complicated than either the flexure or longitudinal and, as shown in
Fig. 6.4, consists simply of an expansion and compression in opposite phase
along the two diagonals of the plate. This motion is shown in Fig. 6.4
labeled m = 1, # = 1. The two phases are shown, one a solid curve and
the other a dotted curve to illustrate the distortion with respect to the
original plate. One peculiarity of shéar motion in plates is that it may
break up into motions similar to its fundamental along either the length or
the width. For example, if we take the motion associated with m = 1,
7 = 1, and superimpose two of these in opposite phase on the same plate,
we would get the type of motion illustrated by m = 2, n = 1. Ina similar
manner, the motion may reverse its phase any number of times along either
the length or the width. One particular case is shown for m = 6, n = 3.
As can be seen from the case of m = 1, # = 1, the distortion is not that of a
parallelogram as it is in the static case because here we are concerned only
with the dynamic case. While the equation of motion of a free plate vibrat-
ing in shear has not been completely solved, a microscopic analysis indicates
that the actual motion of the plate edges appear to be somewhat as shown
for the case m = 1, # = 1 when driven in this mode.

The shear mode of motion in the case of a thin plate is somewhat different
for the high frequency case than for the low frequency case. In the case of
high frequency shear modes of motion in thin plates, the motion of a particle
is at right angles to the direction of propagation which in this case would be
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the thickness. The simplest type of motion for high frequency shear is
shown in Fig. 6.5 where the top of the plate is displaced in the direction
along £ with respect to the bottom of the plate. This would then be termed
the length-thickness shear. When viewed from the edge of the plate, the
motion is very similar to that shown in Fig. 6.4 for the case of m = 1, n = 1.
In a manner similar to the previous case of shear the front edge of the plate
may be divided into segments along fand along . For example, we may get
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Fig. 6.4—Motion of a plate in low frequency shear.

a double shear along ¢ with a single shear along £. This case is illustrated
in Fig. 6.5 form = 1,n = 2and p = 1. In general, m and » may assume
any integral value. Asin the case of flexure we must also consider the third
dimension. The motion associated with the third dimension may be repre-
sented by simple reversals of phase as before. For example, in Fig. 6.5 the
case form = 1,n = 1, p = 2 is shown which simply means that the high
frequency shear on the front half of the plate is out of phase with that of the
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back half of the plate. This discussion relates only to the case of the high
frequency shear commonly assumed to be a single shear along the length and
thickness of the plate. Similar statements can be made if we consider
the high frequency shear as being along the width and thickness.
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Tig. 6.5—Motion of a plate in high frequency shear.

6.24 Type of Motion for Some Standard Filter and Oscillator Plales

To get a more complete picture of the applications of the various types
of motion, we will now take specific cases. The various crystals as com-
monly used for oscillators or filters are shown in Fig. 6.6. At the top of Fig.
6.6 are shown the various types of shear plates with their relative position
with respect to the crystallographic axis.

The AT and BT plates are termed high frequency shear plates and the
motion associated with them is that of a length-thickness shear as shown in
Fig. 6.5. Their use is found for the control of radio frequency oscillators in
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Fig. 6.6—Motions of typical cuts of quartz.

the range from 1 to 10 megacycles. The AT is most useful in the lower
range and the BT in the upper range since it has a higher frequency constant.
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Considerable use for the A7 plate has been found for filters on pilot channels
for the coaxial telephone system.

The CT and DT are analogous to the AT and BT but are termed low
frequency shear plates. The motion associated with these cuts is that of a
face shear as illustrated in Fig. 6.4. The CT and DT cuts are useful for
both filter and oscillator applications in the frequency range from 60 kilo-
cycles to 1000 kilocycles. Here again the DT would be most useful in the
lower range and the CT the upper range due to the higher frequency constant
for the CT cut.

The GT is similar to the CT except that it is rotated by 45° about the nor-
mal to the plate so that instead of a face shear type of motion there are two
extensional modes similar to that shown in Fig. 6.3. These two modes are
coupled to each other resulting in one of them having a zero temperature
coefficient over a wide range of temperature. This crystal is most useful
in the range from 100 kilocycles to 500 kilocycles for a primary standard of
frequency and in filter networks having extreme phase requirements.

The filter plates commonly called the —18° cut and 5° cut are shown with
their relation to the crystallographic axes in the central part of Fig. 6.6.
The — 18° cut commonly used in filters employs a simple extensional motion
along its length with small coupling to an extensional motion along its width
and practically zero coupling to a face shear type of motion. ~Since the width
is usually the order of half the length these modes are not troublesome. The
+5° cut is useful in filter work because it has a low temperature coefficient
and in spite of its strong coupling to the plate shear, it has been found quite
useful in both its extensional mode and its flexure mode. The —18° cut
is used over the frequency range from 60 kilocycles to 300 kilocycles and
forms the basic crystal used in the channel filters of the coaxial telephone
system. When driven in flexure the 5° cut may be made to operate as low
as 5 kilocycles and is used in oscillator and filter circuits.

The NT cut is shown at the bottom of Fig. 6.6 with its relation to the
crystallographic axis. This is obtained by a rotation of +8.5° about the X
axis with a second rotation of 4= 60° about the resulting ¥” axis. The pur-
pose of the second rotation is to give the shear modulus a positive coefficient.
This modulus enters into the equation for the flexure frequency and there-
fore the effect of the second rotation is to change the temperature coefficient
of the flexure mode from a negative value to zero. This crystal has been
used to some extent as a low frequency oscillator. Its main purpose so far
has been for the control of frequency modulation broadcast transmitters and
for low frequency pilot channel filters.

Another crystal called the M7 which is cut in a manner similar to the NT
but with angles of 8.5° and 36° respectively has been used for filter work
where an extensionally vibrating crystal of zero temperature coefficient is
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required. The motion associated with this crystal is similar to that shown
for the 4-5° cut of Tig. 6.6. The low temperature coefficient is obtained
through coupling to, and the effects of, a shear mode of positive temperature
coefficient. Its use has been mainly for pilot channel filters of rather
narrow frequency bands.

6.3 FREQUENCY EQUATIONS FOR FLEXUREL, EXTENSIONAL AND
SHEAR MoTtIONS

In determining the motion and resonant frequencies of a particular type
of vibrating system it is customary to consider an isolated type of motion in
order that the solution shall be in a simple enough form to be practical even
though it may not be too accurate. The more accurate type of solution
is often so complex that its use for practical solutions might be small. Since
any solutions so far obtained are not complete in every detalil, it is usually
necessary to resort to experimentally determined frequencies in any case,
and the solution can only be regarded as a guide to the complete result. In
the following treatment it will be assumed that the frequency equations are
given for isolated modes of motion and it will be later shown which of these
forms are coupled and the effect of the coupling.

6.31 FLEXURAL RESONANT FREQUENCIES
The simplest equation relating the resonant frequencies of a rod vibrating
in flexure is given by'

_ mt k

f=5p"

6.1

I

where » = velocity of extensional propagation = +/¥,/p
radius of gyration of cross section

¥y = Youngs modulus

{ = length

e
Il

m = (n + 1/2)x for free-free modes
= (n — 1/2)7 for clamp-free modes (n > 1)
n = order of mode (1, 2, 3, etc.)

This equation holds only for the case of a long thin rod. Measurements
of the resonant frequencies of a quartz crystal vibrating with both ends free
has shown the above equation to be true where m is defined approximately

as (n 4 1/2)7 provided n%v is less than .1. For values greater than this the

measured values are somewhat lower than that predicted. When the di-
mension in the direction of vibration is appreciable in comparison with the

L Rayleigh, Theory of Sound, Vol. 1, Chapter VIII,
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length, Mason” has shown that it is necessary to consider the effects of rotary
and lateral inertia. His solution leads to the same frequency equation as
6.1 but with a different evaluation of the factor m which is obtained from the
transcendental equations

tan m X = K tanh mX’ for even modes

6.2
tanm X = —rfl(—-, tanh mX'’ for odd modes
where

'ﬂl‘k‘ 1/2 ?n2k2 1/2

X = 1/2[(1““47) +om
4 74\ 1/2 2 ,2711/2

- mEy. _wk

X' = 1/2[(1+ 4:4) M]

4 4\ 1/2 232712 v

K=|(1+ mENT m kX!

4¢ 201X
Equation 6.2 holds only for the case of a rod free to vibrate on both ends.
The case of a clamp-free rod is somewhat more complicated since it cannot be

given by separate solutions for the even and odd modes. The interpretation
of m given in equations 6.2 will result in the same value as before [m =

(n 4+ %) for values of 1%0 less than .05 but decrease considerably for larger

values and ultimately as the bar becomes wider the effects of rotary inertia
result in the flexure frequency approaching the extensional mode as an
asymptote. As stated before measurements on quartz bars vibrating in
flexure departed from that predicted by the simple definition of m when the

width of the bar was such that g}v > .1. By using the value of m defined by

equation 6.2 it is possible to predict the frequency for widths as great as 'E;—U =

.5. For widths greater than this, experiment shows a frequency lower than
that predicted by equation 6.2. This then leads one to believe that the effect
of shear plays an important part in the flexure of bars with appreciable width.
An investigation of the effect of shear on the flexure frequencies of beams
has been made by Jacobsen® and his results lead to the same frequency
equation as 6.1 and to the same transcendental equations derived by Mason
(6.2) but with different values of X, X’ and K to account for the shearing

2W. P. Mason, “Electromechanical Transducers and Wave Filters,” Appendix A.

D. Van Nostrand Company, Inc.
3 Jour. Applied Mechanics, March 1938.



MODES OF MOTION IN QUARTZ CRYSTALS 63

effect. These values are given by

1 m‘k‘( 1 )* mzkz( 1 )]*
= i (R | T

X 2[(1 + 464 cj:'sii ) + 252 C,'J'S,',' + 1

1 m' ( 1 ))* mzkz( 1 )]*
X =(1+2Z5(—-1)) - 1 :

2 [( + 4 Cii Sii 2£2 Cii Sij + 6.3

m‘k‘( 1 ))* m2k2( 1 ):r X’

K‘[(”? ase ) T e G T ] x0

where ¢;; is the shear constant in the plane of motion s;; is the elastic constant
in the direction of propagation. While it is true that these values will
result in a lower value of m than those associated with equation 6.2 and

hence fit the actual measured results more closely for bars wider than :% =

.5, there is some doubt in the minds of various investigators as to the actual
amount of correction necessary to apply to compensate for the shear. The
solution of equation 6.2 using the constants of equation 6.3 is a lengthy
process and could only be applied to a given orientation since the elastic
constants vary with direction in quartz. While the results of Jacobsen’s

work are difficult to handle for intermediate values of 7 where the correc-

tion of rotary and lateral inertia do not fit the measured results it does imply
nw
t
function of the length alone. Therefore when we are concerned with very
high orders of flexure in plates such as the case of high frequency AT and BT
shear crystals we may assume the interfering modes due to flexures will be
essentially harmonic in nature. Restating the general problem of determin-
ing flexure frequencies in quartz rods’ or plates we may assume that the
ratio of width to length is the controlling factor in deciding which method of

that for large values of that the flexure frequencies will be mainly a

attack is to be employed. For values of %—ﬂ less than .1 equation 6.1 will

. . nw - . .
give quite accurate results. For values of ~ P to .5 equation 6.1, using the

" values of m determined by equation 6.2 will give satisfactory results. While
the values of m determined by using equation 6.3 will give more accurate
results for the range .4 to .6, it is not desirable to carry it further because,
while 6.2 does take into consideration the effect of shear it does not account

for coupling to the shear mode of motion. Hence for values of %ﬂ > .6
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it is best to depend upon experimental measurements if accurate results are
a factor.

6.32 Extensional Frequencies

The resonant frequencies of a bar vibrating along its length, commonly
called an extensional mode of motion is derived quite easily from the wave
equation in one dimension and is given by

_n 1
f= NV ser 64
where ¢ = length

si; = elastic constant in the direction of propagation
p = density

n=1,2 3,4, cetc.
This is the case when the length is the greatest dimension. When we con-
sider extensional modes along the thickness of a plate, it can be shown that
the ¢ constants be employed to account for the lateral inertia in the two
directions at right angles to the direction of propagation, (provided that the
resulting motion is nearly along the thickness direction). Hence, for thin

plates
= fci '
I=3 ” 4/;; 6.5

As an example of the use of the above equation an X-cut bar vibrating along
its length would result in a series of resonant frequencies defined by equation
6.4. An X-cut plate vibrating along its thickness would result in a series of
frequencies defined by equation 6.5. Applying the appropriate constants

f _ .i 1014
t 77V 1279 X 2.65

272

= Vem) n  kilocycles 6.6
and
Jo= 2 /3605 X107
‘T X 2.65
= % n  kilocycles 6.7

This shows that although Young’s Modulus is the same in the two directions
the resulting frequency constants are different because of the conditions at
the boundaries.
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6.33 Shear Resonant F requencies

As shown in section 6.23 the low frequency face type shear mode results
ina doubly infinite series of frequencies due to the manner in which the plate
may break up into reversals of phase along its length and width. While
a solution for the low frequency shear motion that satisfies the boundary
condition of a free edge has not yet been accomplished, several approximate
solutions for the frequencies are available. A modification of the equation
developed by Mason® will give results which verify experimental data.

1 1 m? 5 12
=3 pro Iz + & e 6.8
where  p = density
s;i = shear modulus in fw plane

myn =1, 2, 3, etc.
{ = length of plate
w = width of plate

The value of £ so far remains experimental and for low orders of m and
may be assumed unity. Its use is mainly for high orders of m and »# where
Young’s modulus is different in the £ and w directions. Experimental data
in the case of BT plates indicates that it should be 1.036 to account for the
difference in velocity in the two directions.  When . or nis large the velocity

component, namely 1/—-% should be replaced by ,1/57—’ for reasons ex-
PSji P .

plained for the extensional case. Equation 6.8 holds for the case of a plate
vibrating in low frequency shear in regions where no highly coupled exten-
sional or flexural resonant frequencies exist. As will be shown later, these
regions are few. By assuming the frequencies are given by these equations
and then applying the normal correction for coupled modes, a fairly accurate
result will be obtained.

The high frequency case of a plate vibrating in shear is somewhat similar
to the face shear or low frequency case with the exception that three dimen-
sions must be considered since two are large compared to the third (the main
frequency controlling dimension). An experimental formula for this case
is given by

_ U Sy S »—1? )
fﬁzﬂ ;2+kgz+k1 - 6.9
where ¢;; = shear modulus in plane of motion
p = density
f,w, t = length, width and thickness

*“Electrical Wave Filters Employing Quartz Crystals as Elements,” W, P. Mason,
B.S.T.J. July, 1934,
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m, nand p represent reversals of phase along the three directions and may be
termed overtones. The values of & and k, are inserted to correct for the
change in shear velocity resulting from a change in Young’s modulus in the
three directions. For most work with oscillator crystals where the length
and width are large compared to the thickness, the following simplification
of equation 6.9 is most useful.

=" /% 6.10

l p

When high frequency shear type crystals are used in connection with selec-
tive networks, it is necessary to make use of equation 6.9 to determine where
the next possible pass regions will occur.

6.34 Effects of Rotation About the Crystallographic Axes on the Resonant
Frequencies and Coupling between Modes of Molion

Several of the elastic constants have heen used in equations expressing
the resonant frequencies. Since most of the crystal cuts now in use are
rotated at some particular angle about the X crystallographic axis, it is of
interest to know the effect of this rotation upon the elastic constants since
they determine the resonant frequencies and the coupling between certain
of the modes of motion. The general stress-strain equations for an aeolo-
tropic body are given in equation A.1 of Appendix A together with their
definitions. In the case of quartz where the axes of the finished plate are
aligned with the crystallographic axes the constants reduce to 7 and are
shown in equation A.8. Examination of these equations shows that there
are extensional and shearing strains resulting from dissimilar extensional
and shearing stresses through the elastic constants s; and ¢;;. Thisresults
in coupling between modes of motion where a so-called cross strain exists.
These couplings may be made zero or small by proper orientation of the
crystal plate about the X crystallographic axis. The mathematics of this
operation is simplified by the use of matrix algebra’.  Upon performing
this operation a new set of elastic constants are obtained and are plotted
graphically together with the piezoelectric constants on Tig. 6.7. From
this figure we may see that the coupling resulting from the sé; constant will
be zero if the crystal plate is orientated by —18.5° about X with respect to
the crystallographic axis. This constant determines the coupling between
the extensional mode along the length (¥’ dimension) and the face shear
mode (V'X’ dimensions). This analysis resulted in the use of the —18.5°
cut in the channel filters of the coaxial system. Two other crystal cuts
resulting in low coupling between different modes of motion are the AC and

5 “The Mathematics of the Physical Properties of Crystals,” W. L. Bond, B.5.1.J,,
Jan. 1943.
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BC cuts. The ss5 constant determines the coupling between the face and
thickness shear modes. As shown in Fig. 6.7 this constant passes through
zero at two values, namely 4+31° and —59° and the resulting angles have
been termed the AC and BC cuts. These angles are very close to the AT
and BT cuts and hence they also possess the benefits of low coupling between
modes. In addition to making the cross coupling constants zero, a rotation
of the crystal plate with respect to the crystallographic axes also results in a
change in the extensional and shear elastic constants. Notice that these pass
through maxima and minima at the zero values for the cross coupling con-
stants. This of course affects the resonant frequencies of isolated modes.
Changes as great as 509, increase in frequency constants may be obtained
by choosing the proper rotations. The equations relating the elastic con-
stants as functions of orientation are given in appendix B for more com-
plete use.

6.4 CourLING BETWEEN Mobprs oF MorioN

As pointed out in thé previous section, the frequency equation of a given
mode of motion will give accurate results only in the case where the mode of
motion is isolated. This is very rarely the case since most quartz crystals in
common use are in the form of plates where the frequency determining di-
mension is not large in comparison with all other dimensions. Only in the
case of a long thin rod vibrating in length-thickness flexure of the first order
would this be true. It was also shown that the coupling between different
modes of motion could be related to the mutual elastic constants (si; and ¢;;)
and that some of these could be made zero by the proper choice of orientation
of the finished crystal plate. The elastic constants s;; and ¢;; only relate to
the coupling between the extensionals, the shears and the extensional to the
shear. For example sy relates to the coupling between the extensional
modes along the ¥ and Z axes, sg relates to the coupling between the low
and high frequency shear modes of a V cut plate and sy relates to the cou-
pling between an extensional mode along the ¥ axis and a shear mode in
the ¥Z plane. One other important coupling condition occurs and that is
between the flexure and the shear modes. There is at present no mathe-
matical theory relating this form of coupling except from simple assumptions
that may be drawn from the fact that the shear modulus enters asa control-
ling factor in determining the frequency of a bar vibrating in flexure and from
the similarity of the two types of motion near the boundaries. Since it is
possible to have a definite coupling between extensional and shear modes
there must be coupling between the extensional and flexure modes. It
would be expected that it would be proportional to the coupling between the
extensional and shear modes.
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6.41 Extensional to Shear and Extensional to Flexure Coupling

The coupling between the extensional and shear motion can best be illus-
trated by taking the case of an X cut plate the length of which lies along the
Y axis and the width along the Z axis. This is shown in Fig. 6.8 together
with two other cases, one in which the plate is rotated about the X axis by
—18° and the other a similar rotation but +18°. Also in Fig. 6.8 is shown
an enlarged view of the change in the elastic constants and frequency con-
stants as a function of the rotation of the plate about the electric or X axis.
For the case of an X cut plate the strains resulting from an applied exten-
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Fig. 6.8—Motion in an Y cut plate for different orientation about the X
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sional stress along the length according to equation A.8 would be
!
Xz = 512 Yll
!
Yo=s52Y,
' 6.11
2: = Sog Iy
!
Y. = 25 ¥y
where x; is an extensional strain along the thickness
yv {13 “ [13 113 113 length
Zs [{EN1] 14 13 113 113 “,.idth

v. ‘“ a shear strain in the length-width plane
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If the plate is thin we may neglect the x, strain as far as its effect on the
resonant frequencies associated with the length and width are concerned.
From the plot of the elastic constants on Fig. 6.8 we may determine the -
strains resulting from a stress along the length of an X cut plate for various
orientations about the X axis. In addition to the expected extension a.long
the length we have for a +18° cut, a large amount of length-width or y,
shear strain due to 324 and very little width or z, strain. For the 0° cut there
is also large length-width or y. shear strain and a w1dth or z, strain. In the
case of the — 18° cut the shear strain va.mshes due to 524 bemg zero, leaving
in addition to the expected length or yy strain a width or z. strain. These
relationships are more clearly shown if we plot the resonant frequencies
resulting from the three modes of motion namely, the extensional modes
along the length and width and the shear mode in the length-width plane
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Fig. 6.9—Effect of rotation about the X axis on the resonant frequencies
of an X cut plate.

A plot of measured resonances is shown in Fig. 6.9 for the above described
three cases as a function of the change in width. The resonant frequencies
for these three types of motion are given in section 6.3 as

fu, = 21 7 1/ 1, , extensional along £ 6.12
1 1
foo = — —- , extensional along w 6.13
pS3s
for = 1 [/ — ey 1 / f" el shear in {w plane 6.14

These equations specify only the uncoupled modes and do not take into
consideration the effect of coupling to other modes of motion. In the case
of Fig. 6.9 it is shown that when only the width is changed the extensional
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mode along the length (the y; mode) is unaffected only in the case of the
—18° cut. The effect of coupling between the extensional and shear ‘is
clearly shown in the case of the 0° cut by the change in the length-extensional
frequency. This is more pronounced in the 4 18° case not because of more
coupling but because the frequency constants of the two modes are more
nearly alike as indicated in Fig. 6.8.

The mode of motion associated with the line intersecting the extensional
y, mode is that due to the second length-width flexure mode. As mentioned
before it is strongly coupled to the shear mode in the same plane. The
coupling between this flexure and the extensional mode is directly related
to the coupling between the shear and the extensional mode. This is borne
out by Fig. 6.9, for in the case of the —18° cut, 534 is zero and as can be seen
the change in frequency of the extensional mode is very slight even when the
flexure mode is nearly identical in frequency.

We may state generally that the change in frequency of a particular mode
of motion from that of its uncoupled state is dependant on two factors;
the coupling to and the proximity to other forms of motion. This follows
well established mathematical procedures but to solve the case just discussed
would require the solution of a four mesh network with mutual impedances
the values of some of which are at best only approximate. This will serve
to illustrate that the use of formulae such as given in section 6.3 may be used-
more as a guide in establishing certain modes of motion rather than for accu-
rate determinations of resonant frequencies.

6.42 Flexure to Shear Coupling
1. Low Frequency Shear

As previously indicated there is no simple means of mathematically
determining the coupling between flexure and shear types of motion as there
is between the extensional and extensional to shear modes. Here we must
base our assumptions upon observed experimental evidence and simple rea-
soning. The relation between flexure motion and shear motion can be illus-
trated by the figures associated with Fig. 6.10. The forces that are necessary
to produce flexure and shear motion are shown by arrows in Fig. 6.10.
When the two arrows point toward each other, it indicates a compression
and when the arrows point away from each other, it indicates tension. The
diagrams on the leit of Fig. 6.10 illustrate the conditions for flexure motion
and the diagrams on the right indicate the conditions for shear motion.
Notice that in the case of the first flexure and the second shear that the
forces applied to the top and bottom of the plate are similar. Also in the
case of the second flexure and third shear, they are similar. Here again we
have certain similarities which in this case are important to remember.
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The motion of the ends of the plate in the case of the first flexure are similar
to those of the second shear. In the case of the second flexure the similarity
is observed in the case of the third shear. The end motion in the case of the
third shear is also the same in the case of the first or any odd shear. Like-
wise, the end motion of the first flexure is similar to the second shear or any
even shear. We may then generalize and say that it is very likely that an
odd order flexure would be coupled to an even shear; and also an even flexure
would be coupled to an odd shear.
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Fig. 6.10—Similarities in shear and flexure motions in a bar.

To illustrate the coupling between flexure and shear type motions, the
frequencies of flexure and shear modes in a Z-cut quartz plate as shown in
Fig. 6.11 have been measured. These measured frequencies are shown by
the solid lines for various widths of the plate. It will be seen that there are
no observed resonances following an unbroken continuous line to represent
the shear frequency, but they are interrupted by several other frequencies
which we must interpret as being various even modes of the flexure in the
plane of the plate. It is clearly shown here that only even order flexures are
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strongly coupled to the fundamental or odd shear. The strong coupling
shown between the X, shear and the second X, flexure explains why the
frequency equations given in section 6.3 for the frequency of flexure and
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Fig. 6.11—Shear and flexure resonances in a Z-cut quartz plate.

shear modes will not give even approximate results if applied to this case
for a square crystal. It will be shown later that if account is taken of
coupling, the shear mode for a square crystal of this type may be more accu-
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rately determined. Fig. 6.12 is a more detailed representation of the
conditions shown broadly in Fig. 6.11 except in this case an AC-cut quartz
plate was used and most of the observable resonant frequencies are shown
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Fig. 6.12—Shear and flexure resonances in an AC-cut quartz plate.

for various values of %. The plate shear is labeled Z, shear and occurs at

the frequencies predicted by equation 6.8 except in the regions wherea

flexure in the same plane exists. This is the type of motion shown in Fig.
6.4 for the case of m = 1, » = 1. It can be seen that as the difference

in order of modes becomes greater the effect on the shear frequency is less
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except where they are coexistant. We can then state generally that even
though there is coupling between particular modes of motion, if the difference
in order is great, the approximate frequencies may be computed as though
they were isolated. This is more clearly shown in the case of thickness
shear modes. The modes that are shown coupled to the face shear mode
are Z, flexures propagated in the direction of the length or X axis. The lower
orders can be shown to follow the general frequency equation discussed

in section 6.3 but the higher orders for a given 2-;-', it will be noticed, are regu-

larly spaced in frequency and show the effect of shear. The X, flexure modes
determined by the length and thickness are shown as nearly horizontal
lines since only the width was changed. Since these two groups of flexure
modes are propagated in the same direction, it would be expected that the

difference in frequency for the same ratio of dimension (i.e.,% = ;) would

be due to the differences of the shear coefficients in the two planes of motion.
The vertical dotted line indicates the ratio of thickness to length. When
the ratio of width to length is equal to this value it can be seen that the
flexure modes in the width-length plane are in all cases higher than the same
order flexures in the thickness-length plane. An examination of Fig. 6.7
shows that for an AC-cut crystal the shear modulus in the width-length

1
plane ( \/—) is greater than that in the thickness-length plane ( \/‘m).

This is in agreement with the observation made above. One other generality
may be drawn from the experimental data shown in Fig. 6.12. The coupling
between flexure modes and shear modes in planes at right angles to each
other is very small in comparison with that between modes in the same
plane,

As mentioned before the effect of coupling between modes of motion is
greatest when the orders are more nearly similar. In this particular crystal
this effect can be shown between the fundamental width-length Z; shear and
the second order width-length Z; flexure. This is shown in Fig. 6.13 which
is an extension of the data shown in Fig. 6.12 for a crystal nearly square
and shows the frequency range covered only by the second flexure and '
the fundamental plate shear. A computation of the uncoupled second flex-
ure mode propagated along the length and the first plate shear mode are
shown by the solid lines f; and f, respectively. Inserting the appropriate
constants the formulae of section 6.3 become

1 /785 X 100 , 2
=1 /18 x1on ,Z' 1
Ti 2/|/1:zx205’”x2 6.15

_ 1.8 X 100
f'_z"/ 2.65 1/X2 tzn 6.16
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In evaluating m, account was taken only of the rotary and lateral inertia so
that some error is expected at the larger ratio of axes. The curve of flexure
crosses the shear curve at 7% = .76, a condition which we know to be non-

compatible since these two motions are coupled. From the theory of coupled
circuits we can determine the displacement of two uncoupled frequencies as a
result of the coupling, through the relation

fa= 3 4=V — )+ L] 6.17
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Fig. 6.13—Effect of coupling on the plate shear and the second flexure mode in an
AC-cut quartz plate.

where f, = uncoupled shear frequency,
Ir “ flexure “
k = coefficient of coupling.

The coefficient of coupling in this case may be defined as the ratio of the
mutual to the square root of the self compliances of the two vibrating sys-
tems. As mentioned before no derivation has yet been made to indicate the
relation between the coupling between these two forms of motion and the
physical constants of the medium in which the vibration occurs. It is
necessary to assume some coupling factor which will produce that observed
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by experiment. Applying a coupling coefficient of 359, and computing the
values of f; and f, from equation 6.17 the results are the dotted curves
shown in Fig. 6.13. The observed points follow the computed values to a
fair degree of accuracy for all frequencies below 180 kilocycles. Above this
range there is a strong coupling to the fourth flexure and this would require
separate consideration. Based upon these results the equation for the low
frequency or face shear given in section 6.3 would not give the observed
results for a nearly square plate because of the high coupling to the second
flexure mode. For an approximately square plate, cut near the AC-cut
the plate shear frequency including the effect of coupling would be given by

849 /2 1/_1‘
=" Ve S 6.18
! 2d P5;5 ’

d=3}X + 2)

where

and .849 is the factor resulting from the use of equation 6.17. For crystal
cuts far different from the above it would be necessary to consider the flexure
and shear as uncoupled and then apply equation 6.17 to determine the
appropriate factor for square plates.

2. High Frequency Shear

The motion associated with flexure has been shown in Fig. 6.1 and in
order to determine the frequency of higher order flexures, measurements
were made on an AC-cut crystal. The results of these measurements are
shown in Fig. 6.12. The first flexure motion to be expected with this
crystal would be a flexure in the plane of the length and width. The various
orders of these flexures are shown by the curved lines labeled second z.
fourth, sixth, etc., all radiating from zero frequency (Primed values of z
and y indicate that these are not crystallographic axes). The equation
commonly determining the frequency of flexure states that the frequency
should be proportional to the width and inversely proportional to the
square of the length. If this were true, these curved lines representing the
resonances of this type flexure shown on Fig. 6.12 would then be straight
lines. Since the actual conditions show a wide departure from this, we must
assume that this departure is due to rotary and lateral inertia and the
effects of shear. It will be noticed that as we progressively increase the
order of the harmonic, that the actual frequency spacing for a given value of

% is very nearly linear instead of a square law. This point is more clearly

seen when we examine the frequency of higher orders of the flexures in the
length thickness or xy’ plane. As shown on Fig. 6.12 these frequencies
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labeled 6th x,, etc., change very little and are nearly horizontal straight lines.
Here again they appear to be simple harmonics of some common low fre-
quency. Also it will be noted that the coupling between the 2, flexures and
the z, shear is quite appreciable and in general decreases as the difference in
order of the two modes becomes greater. This plot of the various flexure
frequencies tells us a great deal about the behavior of progressively higher
order of flexure type motion. The important effect to be noticed is that for

high orders, and a fixed ratio of %, the flexure mﬁy be treated as though it

were harmonic so far as frequency is concerned. Some variations to this
rule will be observed and special cases will be discussed. So far we have
discussed the case of flexure modes of relatively low order. In the case of
high frequency shear modes of motion, we would expect that the order of
flexure which would interfere with this type of motion would be rather high.

Figure 6.14 shows a plot of these flexure modes as observed in an 4 T-cut
plate. These are shown by dashed lines. The dots indicate actual meas-
ured resonances. This figure also shows the various other resonant fre-
quencies observed in this type of plate as discussed in section 6.2.  The solid
lines labeled mnp represent the type of shear motion shown in Fig. 6.5.
Here again we may observe certain statements made before with respect to
the coupling between shear and flexure type motions. Notice in this case
that the coupling between an even order flexure and an odd order shear is
high and increases as the orders more nearly approach each other. For
example, the 38th flexure mode is coupled to the fundamental shear labeled
mympy has very little coupling to the second order shear minsps, and again
is strongly coupled to the third shear mngpy and correspondingly higher
coupling to the fifth shear. When we speak of higher order shears, such as
nonang, they are not higher order in the sense of harmonics, but do differ by
a small amount in frequency. In the case of a plate where £ is not great
compared to #, these differences will be greater.

In actual practice in the case of AT plates, we are usually concerned
mainly with the fundamental high frequency shear and high even order flex-
ures along the length. This case is shown in Fig. 6.15 which gives experi-
mental results of measurements on actual A7 plates. It will'be noticed
that the flexure frequencies show a rather regular displacement as the ratio
of the length of the plate to its thickness is changed. In this case only the
odd order modes of shear and the even modes of flexure are shown. It will
be observed that as the ratio of the length to thickness decreases, the cou-
pling between these modes is quite high. This some state of affairs is illus-
trated again in the case of the third harmonic of high frequency shear and is
shown in Fig. 6.16. The near vertical dashed lines represent even order
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flexure frequencies and the curve labeled m3n; and the curve labeled mgn;
correspond to two different values of the high frequency shear near its com-
monly called third harmenic.

An examination of Figs. 6.14 and 6.15 indicates that a regular pattern
is formed of the ratios of axes at which the high frequency shear and succes-
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Fig, 6.14—High frequency flexure and shear resonances in an 4 T-cut
quartz plate,

sive even orders of the length-thickness flexure coincide. Rather than
define these points on the basis of specific ratios of axes it is more convenient
to place them on a frequency basis. Therefore we may say that for a given
size plate there will be specific frequencies at which some mode of the flexure
motion along the length will be the same as the high frequency thickness
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shear. For the case of AT plates experiment has shown these to be given by

1338.4
fzf = X

where X = length of X axis in millimeters,
nzy = order of flexure along X axis
=1, 2, 3, 4, etc.
In this equation as well as those of a similar nature to follow it is assumed
that the thickness is such as to result in the same frequency for the high

#qy, kilocycles 6.19
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Fig. 6.15—High frequency flexure and shear resonances in an AT-cut quartz plate.

frequency X, shear mode. As shown in Fig. 6.14 only the even orders are
strongly coupled to the fundamental thickness shear.

The coupling between high even orders of the flexure along the X axis and
the high frequency shear in the case of BT-cut plates is similar to that for
AT-cut plates. Fig. 6.17 shows the various resonant frequencies observed
in a BT-cut crystal as a result of changing the ratio of the length or X
axis to the thickness or ¥’ axis. The curve mm represents the high fre-
quency X, shear. Curves muns, mins, M and mny represent other X,
shear modes as discussed in section 6.23 resulting from higher orders along
the length or X axis. The dashed lines represent even order flexure modes
along the X axis. The same regularity is observed here as in the case of the
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AT-cut, When placed on a frequency rather than a ratio of axis basis the
frequencies at which flexure modes along the X axis would coincide with the
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Fig. 6.16—High frequency flexure and shear resonances in an AT-cut quartz plate near the
third harmonic shear mode.

fundamental X, shear mode are experimentally given by

Sz = 18;,8 nz; kilocycles 6.20
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where X is given in millimeters. In this case it will be noticed also that
only even order flexures are strongly coupled to the fundamental X, shear.

The dependence of the flexure frequency on the shear coefficient can be
seen from these two cases. The direction of propagation is the same in both
cases (along the X axis) but the direction of particle motion is nearly at right
angles. It would be expected then that the frequency constant would be
highest for the case of the highest shear coefficient. Examination of equa-
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Fig. 6.17—High frequency flexure and shear resonances in a BT-cut quartz plate.

tions 6.10 and 6.20 shows this to be true. In addition, the change in the
frequency constant is about the order of magnitude of the change in the
shear modulus in the respective planes of motion.

6.43 Coupling between Low Frequency Shear and High Frequency Shear

From an examination of Fig. 6.7 it can be seen that the coupling between
the low frequency shear (Z2) and the high frequency shear Xy’ is related
by the s;a constant. In the AC and BC-cuts this reduces to zero but for the
AT and BT-cuts it has a finite small value. According to section 6.3 the
frequencies of the plate shear modes are given by equation 6.8 but this
holds only for the case where m and nare small. When the third dimension
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becomes appreciable in comparison with a half wave length along w or /
it becomes necessary to use the ¢ constants. When considering high orders
of the low frequency shear equation 6.8 is modified to

1 -
f=§1/-°§ 12+k2" 621

Equation 6.21 shows that high orders of the low frequency or plate shear are
dependent upon both the length and width dimensions and it might be as-
sumed that this would lead to very complicated results in so far as analysis
of experimental data is concerned. The coupling between these modes and
the high frequency shear is a result of coupling in the mechanical as well as
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Fig. 6.18—High frequency shear resonances in an A4 T*-cut plate,

the electrical systems. The strongest coupling with reference to the length
axis would then be for high odd orders of m and unity for » with successively
smaller coupling for higher orders for » if the driving potential extends over
the complete surface of the crystal. In a similar manner when considering
high orders of plate shear along the width axis the highest coupling will
result from unit order for m. Based on these assumptions then to a first
approximation we can assume these modes to be functions of length and
width alone. Equation 6.21 then reduces to

fo. = % 1/%! S 6.22

k Cj; Mivs

ws = 7 _ — 2
! 7 > o 6.23
where n,¢ = order of shear mode along ¢ axis,

4, = order of shear mode along w axis.



84 BELL SYSTEM TECHNICAL JOURNAL

These modes have been measured in AT and BT-cut crystals. Fig. 6.18
shows the points at which these modes intersect the fundamental high fre-
quency shear mode in AT-cut plates. This is the case for high orders along
the Z' or width axis. A similar set of resonances can be shown to exist
when the X or length axis is varied. Experiment has shown that these
frequencies of coincidence between high order plate shear modes and the
fundamental high frequency X, shear mode for the case of AT-cut plates is

given by
254.2

fzs = M kilocycles 6.24
Jos = 2324,0 #ny, kilocycles 6.25

where X and Z’are givenin centimeters. Only odd ordersare strongly coupled
if the crystal plate has a symmetrical contour with respect to an applied
eqmpotentlal electrode. Upon substitution of the value of 655 for an AT-cut
crystal in equation 6.22 there results

| 1 fds 1 6T X 100 _ . 3
fo Xt = 5 > =2 e 251.0 kilocycle — cm.  6.26

which is within 1 per cent of that found experimentally. Since Young’s
modulus is nearly the same along the X and Z’ axis the value of £ in equa.tlon
6.23 is essentially unity. Fig. 6.19 shows measured values of high order Z.
shear modes near the high frequency X,  shear mode in a BT-cut crystal
for various values of the width or Z’ axis. More detailed measurements
have been made of the high order Z. plate shear modes in BT-cut plates
along the X axis. Fig. 6.20 shows both the shear and flexure modes along
the X axis near the vicinity of the high frequency X, shear mode. Since the
frequency constant for the Z. shear modes is different from that for the X,
flexures there are regions where, if no coupling existed, all three modes would
be at the same frequency. It is obvious from Fig. 6.20 that this is not the
case. Therefore, we must assume that not only are the high order Z.
shears and X, flexures coupled to the high frequency X, shear but that they
are coupled to each other.

While it is difficult to see from Fig. 6.20 the relative coupling of flexures
to the X, shear, experiment has shown the flexure modes along X to have
the greater coupling to the X, shear. This is true when the ratio %, is
such that the flexure modes along X and high order Z; shear modes along X
have their maximum separation. When these modes approach each other
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and the X, shear such as is shown in Fig. 6.21 at % = 31.35 the relative
coupling of each to the X, shear is about equal. This arises from the fact
that the mutual coupling between them increases the apparent coupling
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between the X, shear and high orders of Z, shear along X. From this it
would appear advisable to avoid such regions in the dimensioning of crystals
for oscillator use over wide temperature ranges. Determination of the flex-
ure as well as high order Z. shears then must be made in regions where
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they are spaced so that the effect of coupling between them will not influence
the frequency constant that is determined experimentally. These regions
have been investigated and the result for the flexure modes is that shown
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Fig. 6.21—Flexure resonances in a GT-cut quartz plate.

in equation 6.20. From Fig. 6.19 the high order Z. shears along Z’ will be
coincident with the high frequency X, shear at frequencies given by

fon = 162;45 nes  kilocycles 6.27

From Fig. 6.20 high orders of the same Z. shear along X will be coincident
with the high frequency X, shear at frequencies given by
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_ 163514
X

Upon substitution of the value of css for a BT-cut in equation 6.22 there
results

1 Jds 1 /303 X 100 _ .
Jta X &= N N T S 169.0 kilocycles — cm.

which is 3.3%, greater than that observed in equation 6.28 and 1.6%, greater
than that shown in equation 6.27. The apparent difference in the observed
shear modulus in the X and Z’ directions for the BT-cut can be explained
from the fact that Young’s modulus is quite different in the two directions
for the BT-cut while it is nearly the same for the 4T-cut as verified by
equation 6.24 and 6.25.

From the discussion in this section it can be seen that a single theory that
would relate all the now known resonances in quartz plates together with the
effects of coupling would be prodigous indeed. In order to reduce the design
of quartz plates to a simple engineering basis it is necessary to take specific
examples and investigate the region in the vicinity of the frequency to be used
based on general theory and then apply approximations that fit the specific
cases.

fzs nz kilocycles 6.28

6.5 METHODS FOR OBTAINING ISOLATED MODES OF MOTION
6.51 GT Type Crystals

In the case of GT type crystals the modes that cause the greatest concern
are flexure modes in the two planes of the length and thickness and the width
and thickness. The desired mode is that of an extensional mode along the
width. To produce a low temperature coefficient it is also necessary that
this mode be coupled to an extensional mode along the length, a fixed fre-
quency difference from it. Therefore it will be necessary to prevent flexure
modes from occurring at either of these two frequencies. Fig. 6.21 shows
the frequency of various flexure modes that would be observed in GT-cut
plates for different ratios of thickness to length. In the case of the GT-cut
the elastic constants in the length and width directions are the same and
therefore it is only necessary to determine the flexures in one plane to get a
determination in both. From the plot of frequencies shown in Fig. 6.21,
it would be very easy to determine the proper thickness for any given GT
plate. Since in all practical cases there is a definite relation between the
length and width of this type of plate, it would be necessary to examine
the flexures in these two directions as a function of the change in thickness.
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Fig. 6.22 shows a plot of this for the case of a GT crystal designed to operate
at 164 kilocycles. All the information shown in this figure is obtained
directly from Fig. 6.21. Since a change in thickness will not have any
effect upon the length and width extensional modes of vibration and only
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Fig. 6.22—Flexure and extensional resonances in a 164 kc GT-cut quartz plate,

changes the flexure frequencies, it would be reasonable to suppose that some
thickness could be obtained where no flexure along the length or width
would be of the same frequency as the length or width extensional mode.
Examining the curves of Fig. 6.22, we find that a thickness of .06 cm.,
075 cm. or .085 cm. would meet these conditions.
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6.52 BT Type Crystals

As discussed in Section 6.4 the modes showing the greatest coupling to the
high frequency thickness shear are of two types: high orders of X, flexure
propagated along the X axis and high order Z, shears along the X and Z’
axes independently. Complex orders of the flexure and plate shear as illus-
trated in Fig. 6.2 and Fig. 6.4 do cause considerable difficulty and their
analysis calls for special treatment and is not within the scope of this text.
For the case of the BT-cut the three primary interfering series of modes are
given by

Je = 1818 n.y kilocycles
X
o = 163.514 1 kilocycles 6.30
166.45

Jora = zZr nys  kilocycles

where X and Z’ are given in centimeters and f, is the frequency at which
integral orders of flexure modes along the X axis would coincide with the
high frequency thickness shear mode. In a similar manner f;, and f.,
relate the same conditions for integral orders of the plate shear modes.
These equations are true only in the case where the thickness is of such a
value as to place the high frequency thickness shear mode at the same fre-
quency as the computed interfering mode. In most practical cases for oscil-
lator use the electric field is applied to the crystal by means of a flat electrode
on each side of the crystal plate. Under this condition only odd order X,
shear modes along the X axis are excited and hence the strongest couplings
to the X, flexure modes will be only for even order values of #.; in equation
6.30. In a similar manner the greatest interference between the X,- shear
mode and high orders of the Z. shear modes along both X and 2’ will occur
for odd orders. Therefore the strongest interference from these modes will
occur only for odd integers of #,, and #,, in equation 6.30, These assump-
tions of only even flexures and odd shears showing appreciable coupling
are based upon a crystal plate cut precisely along its proper axis and of
uniform contour assembled in a holder using electrodes of uniform air gap.
Deviations from these conditions will of course alter the ideal results de-
pendent upon the amount and type of deviation.

The relationships shown in equation 6.30 may be more clearly seen when
plotted graphically. Assuming a BT-cut crystal plate 1 centimeter square
we may determine the frequencies at which an interfering mode will coincide
with the high frequency X, shear by assigning even integers to #,; and odd
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integers to ., and 7.+,.  Fig. 6.23 shows a plot of these three types of inter-
fering modes on a folded frequency scale covering the range from 5 to 15
megacycles for a plate 1 centimeter square. Each abscissae covers a range of
one megacycle with dots at three levels. The first level shows the fre-
quencies at which successive even orders of flexure along the X axis occurs.
The second level shows successive odd Z. shear modes along X and the third
level successive odd Z, shear modesalong Z’. The circles shown on the three
levels indicate the results of actual measurements on BT-cut crystals as
resonating elements. It will be noticed that the circles and dots coincide
for most frequencies, the regions of departure occur only when a high order
shear mode and a high order flexure mode along the X axis approach each
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Fig. 6.23—Frequencies at which the Z; shear along X, the Zz shear along Z' and the X,
flexure along X coincide with the high frequency X, shear in BT-cut crystals,

other in frequency. The reason for this is obvious from the previous dis-
cussion on the coupling between flexure and shear modes of motion.

The chart of Fig. 6.23 is of course not limited to a crystal 1 centimeter
square or for that matter even a square crystal. In reality it relates the
product of the frequency and X and Z’ dimensions. For example a flexure
mode interferes with the high frequency shear mode at a frequency of 9.45
megacycles for a plate with X dimension equal to 1 centimeter. If the X
and ¥’ dimensions were doubled the same situation would exist at one half
the frequency. In determining the dimensions for a crystal at a given fre-
quency we know that the product of the frequency and X dimensions as well
as Z' dimension must not result in a frequency close to those given by the
circles of Fig. 6.23. In addition other interfering modes as previously
mentioned must be avoided. These at present may be determined experi-
mentally by choosing regions on the chart clear of the known flexure and
shear modes.
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On the abscissae are shown certain discreet frequencies as well as frequency
ranges which have been found to result in crystal units having no serious
dips in activity over a wide range in temperature. These are for square
crystals in the 18 millimeter size range and have been obtained by Mr. G. M.
Thurston of the Bell Laboratories and Mr. F. W. Schramm of the Western
Electric Company. It will be noted that no so-called ok regions have been
found at the frequencies of the three principal coupled modes.

While the use of the chart shown in Fig. 6.23 will often lead directly to
the proper X and Z’ dimensions for a given oscillator it cannot be overem-
phasized that only the three principal interfering modes are shown and only
the odd orders for the shears and only the even orders for the flexure modes.
Since the even order shear modes are excited due to slight variations which
would produce wedge shaped air gaps or quartz blanks, it is advisable to
avoid these regions also. Complex combinations of the three principal
modes as shown in Figs. 6.2 and 6.4 are also driven. Therefore when it is
necessary to produce a crystal unit possessing the highest activity for a
given area of quartz plate over an extended temperature range it is necessary
to scan the supposed desirable regions shown in Fig. 6.23 by complete meas-
urements on finished units of a given size and varying frequency or of con-
stant frequency and varying size. As an illustration the region shown in
Fig. 6.23 between 10.025 and 10.080 megacycles was determined in this
manner with the use of crystal plates approximately 18 millimeters square.
The use of crystals with other than square dimensions could undoubtedly
have increased the range of this region but their use is undesirable from a
manufacturing standpoint. Assuming that the electrodes and crystal
holder permit a variation in size of the quartz plate from 17.20 millimeters
to 18.20 millimeters this approved region will immediately specify the
dimensions of crystals to cover the frequency range from 5508 to 5727 kilo-
cycles. This also assumes crystal blanks cut to precise orientations with
controlled contours and electrodes of uniform flatness and constant airgap.
While the theory would indicate that the frequency range given above could
be expanded to considerably higher values by utilizing a smaller crystal
blank this has not been proven so far since most crystals produced by the
Western Electric Company require large area plates to meet high activity
requirements.

As an illustration of the effect on the behavior of oscillators of changing
the X and Z’ dimensions of BT-cut quartz plates measurements have been
made of the activity, in a conventional tuned plate circuit with the crystal
connected between grid and cathode of quartz plates of constant thickness
and varying X and Z’ dimensions. Fig. 6.24 shows the effect of changing
the X dimension of a quartz plate on its activity as an oscillator. By taking
the product of the frequency and dimension we can determinethe dimen-
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sions from Fig. 6.27 for this case where the X, flexures and Z. shears will
interfere to produce poor characteristics. These are shown in Fig. 6.24
for flexure modes as X and for the shear modes as X, and do in general cor-
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respond to the dimensions resulting in low or no activity. This illustrates
quite clearly the necessity for grinding the edges of plates not dimensioned
for a specific frequency. Fig. 6.25 shows the same conditions when only
the Z’ dimension is changed. In this case the dimensions shown at regular
intervals as Z, were derived from Fig. 6.25 as before and correspond to the
zero activity dimensions found experimentally. It will be noticed that low
activity regions are found halfway between the dimensions designated as
Z,. These correspond to even orders of the Z. shear and are the result of a
slight wedge in the airgap. This was intentional to show the existence of
this condition.

Figures 6,24 and 6.25 show the necessity for avoiding certain dimensions
for oscillator plates at specific frequencies. This can be accomplished by
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Fig. 6.26—Frequencies at which the Z; shear along X, the Z: shear along Z’ and the X,
flexure along X coincide with the high frequency X, shear in AT-cut plates.

individually adjusting the X and Z’ dimensions by hand grinding of each
plate or by predetermining the proper dimensions and using mass production
methods of precise machine grinding. The advantages of predimensioned
crystal units is the insurance of proper operation over a wide temperature
range and uniformity of activity. The experience of most manufacturers
of low frequency crystal units in the broadcast range and high frequency
crystals requiring high activity over a wide temperature range has been
that it is necessary to use specific dimensions to insure low rejects in the final
tests.

6.53 AT-Type Crystals

The modes of motion encountered in the AT-cut crystal are the same as
that of the BT-cut. The effects of coupling between most modes is greater



%4 BELL SYSTEM TECHNICAL JOURNAL

due to the increased piezo electric constant for this particular cut, and the
frequency constants are different due to the change in angle with respect
to the crystallographic axes. The three series of interfering modes as de-
scribed for the BT-cut have been measured for this crystal and as shown
in Section 6.4 are

133.84

Jer = — "
Juo = 25}” then 6.31
254.00

fl’l = VA MNgte

In a manner similar to the BT case a chart has been developed of a folded
frequency scale showing the frequencies at which even order X, flexure
modes propa.gated along X and odd order 7! shear modes along X as well as
odd order Z. shear modes along Z’ will interfere with the high frequency
X, shear mode for a crystal 1 centimeter square. This is shown in Fig. 6.26.
Its use is the same as that described for the BT case. Insufficient experi-
mental work has been done to indicate the relative shift in the flexure and
shear modes along the X axis when they approach each other in frequency.
Also, most of the use of square plates and experimental work has been con-
fined to the BT-cut crystals and hence no ok regions are shown for this
chart.

APPENDIX B

Equation of elastic and piezoelectric constants for rotation of axes about

the X axis. (5 = sin 8; ¢ = cos 6)

611 = (n

coe = cuc + cxs' + 2(2cu + c)s’c + densc®

cas = cus' + cac' + 2(2cu + cw)s’e — deus’c

o = cu+ (cn + oz —dcu —209)s°C — 2eu(d — ) sc
css = cuc” + cans” + 2cusc

cos = cus + cosc” — 2cus¢

c12 = cuc” + c1gs® — 2cusc

' 2 2
c13 = ¢S -+ cu¢” + 2ousc

cu = culc® — %) + (e — cw)se
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cos = ca(c + 5 + (en + oz — dou)s’ — 2cu(c — sH)sc

cos = cu(ds® — 1) + [end® — caas® — (2eu + 1s)( — sH)lsc
e = —cu(dc® — 1)5* + [ens® — cac” + (2eu + ) — $)se
s = culc® — 5°) + (cos — cu)sc

C’w = Cia = 625 = C;n = C:’m = C:’m = Cin = C:e =0

5;1 =

sa2 = suc' + ssas® + (51 + 251)5°C + 25156

s1s = sus' + szt + (sas + 2513)5°C — 2sus’c

S = su + A(su + Sz — su — 2s)s°c” — dsul(c® — 5°)sc

S5 = Suc” 4 Sees” + dsusc

ses = sus’ + sesc” — ds1e5c

S12 = Sl + S195° — Susc

s13 = su5” 4 s + susc

si = su(c® — s*) 4+ 2(s12 — sw)sc

sas = sl + 5 + (u + s13 — su)sE — su(d® — $7)se

sa0 = su(ds” — 1) + [2(suc® — sus”) — (su + 250)(c* — %)]s¢
s = —su(d — 1)s° + 20u5® — suc’) + (su + 2s) (" — 5%)]se
st = 2su(c” — ) + (ses — su)sc

S16 = S18 = S35 = S28 = S35 = S36 = S35 = S4e = 0

din = dn

diz = = (dus + duc)c

dis = (duc — dus)s

dis = du(c® — 5) —2dusc

dag = — (duc + 2dus)c

das = (dus — 2duc)c

dgs = — (duc + 2dus)s

d = (dus — 2duc)s

dip = dig = doy = dag = dyg = doyy = dyy = dgg = dyg = dgs = 0
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