Response of a Linear Rectifier to Signal and Noise*
~ By W. R. BENNETT

HEN the input to a rectifier contains both signal and noise com-

ponents, the resultant output is a complicated non-linear function of
signal and noise. Given the spectra of the signal and noise input waves,
the law of rectification, and the transmission characteristics of the input
and output circuits of the rectifier, i# should, in general, be possible to
describe the spectrum of the resultant output wave. Before discussing the
solution of the general problem, we shall derive some results of 'a simpler.
nature, which do not require a consideration of the distribution of the signal
and noise energies as functions of frequency.

I. DIRECT-CURRENT COMPONENT OF OUTPUT

A quantity of considerable importance is the average value of the output
amplitude. This is the quantity which would be read by a direct-current
meter. Calculation of the average or d-c response can be performed in terms
of the distribution of instantaneous output amplitudes in time. The dis-
tribution of output amplitude can be computed from the distribution of
instantaneous input amplitudes and the law of rectification.

As an example, we shall compute the average current obtained from a
linear rectifier when the input to the rectifier consists of a sinusoidal signal
with random noise superposed upon it. The probability density function
of the signal voltage is first determined, and the result given in (3). The
corresponding probability density for the voltage of the noise is well known
and is given in (4). The distribution of occurrence of the resultant in-
stantaneous amplitudes of the combined noise and signal voltages is then
computed by the rules of mathematical probability, and the result is shown
in (7). The assumption that the rectifier is linear then leads directly to an
integral which yields the average current obtained from the rectifier.

Let the signal voltage, E,, be given by

E, = P, cos wl. (1)

The possible angular values of wt are uniformly distributed throughout the
range 0 to 27. The range E, to E, 4+ dE, corresponds to the range of values
of w! comprised in the interval.

arc cos %: < wf < arc cos ‘E%GZE'

*Published in Acous. Soc. Amer. Jour., Jan., 1944,
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The angular width of this interval is (P: — E))™'*dE,. There are two such
intervals in the range 0 < wt < 27. Values of E, outside the range — P, to
P, do not exist. Hence, the probability that the signal voltage lies in the
interval dE, at any particular E, is given by

—_ 0: [E0| > Pﬂ
®,(E)dE, = {2(P§'— B2 dE 2 | E| < Pf B D)

Random noise as discussed in this section may be characterized by the
fact that the instantaneous amplitudes are normally distributed in time; that
is, if @, (z) dz is the probability thatghe noise amplitude lies in the amplitude
interval of width dz at z,

1 —z2/202
‘bn(z) - a\/ﬂ € (4)
where ¢ is the root mean square noise amplitude. The mean noise power
dissipated in unit resistance is given by W, = ¢°. The corresponding mean
signal power is given by W, = P3/2. Let &,(z) represent the probability
density function of the instantaneous sum of the signal and noise ampli-
tudes. Then

®.(z)dz = dz[ ®,(\) P, (z — A)d\ )
- -]
or

1 Po g=(==W2/20% g}

b, = ——
() o\ 21 Lp, /P — N\ ©)
By the substitution A = P, cos 6, we may convert the integral to the form

1 L3
_ _ —(z—P, cos 6)2/202

B() = — = f K 6 o)

Suppose we insert a half-wave linear rectifier in series with the source of
signal and noise, so that the current 7 is given in terms of the resultant
instantaneous voltage E by

0, E<O0
I =

8)
leE, E>0
Then the average value of current flowing in the circuit is
I=a f z®.(z) dz
0
©)

a © "
f 2 dZ f e—(z-P,, cos 8)2/202 dﬂ
0 o

o\ 2T
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The value of this integral is shown in Appendix I to be

I=a 1/ % g2 {IO(W,/zwf.)
+i [ Gre) + 0 ) )

This form is particularly convenient for calculation since Watson’s Theory
of Bessel Functions, Table II, gives eI, (z) and eI (z) directly.

(10)
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Fig. 1—Variation of direct-current component in response of linear rectifier with ratio
of noise input to signal input.

Limiting forms of this equation may be expressed in terms of series in
powers of W,/W, when the signal power is small compared with the noise
power and in powers of W,/IW, when the noise power is small compared
with the signal power. The ascending series for small signal is:

_— W. 1w, , 1(—=1) (w,)?
[=a E[1+WW+22(2!)2(W)

R AR REPA T GRS

The asymptotic series, which is available for computation when the signal
is large, is

(11)

- _aVIw, (—1)Wa | (=1)-1° W)°
d T I:H' 114w, T @w,) 12
LEDREE ) (=TS ) ]
31 @w,) 41 @w,)

Curves of I have been plotted in three ways. Fig. 1 shows the ratio of
I to I, = aP,/, the average current in the absence of noise, as a function
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of ratio of rms noise input to rms signal input.

Figure 2 shows the ratio

of T to I, = ag/+/ 2, the average current in the absence of signal, as a

function of ratio of rms signal input to rms noise input.

Figure 3 shows
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Fig. 2—Variation of direct-current component in response of linear rectifier with ratio

of signal input to noise input.
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the increment in d-c power output in decibels as varying
expressed in decibels relative to the signal are added.
ing result for power addition is given for comparison.

amounts of noise
The correspond-
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II. SpEcTRUM OF OUTPUT

A much more powerful method of attack on this problem is obtained by
the use of multiple Fourier series. In this section we shall use Fourier
analysis to obtain not only the direct-current output of the rectifier, but
also the spectral distribution of the sinusoidal components in the output of
the rectifier. We represent the input spectrum by

N
E = Pycos pot + 2, P, cos p,t (13)
n=1

This representation is more general than that given by (4) in that a frequency
spectrum as well as an amplitude distribution is defined; it may be shown
that the probability density for the sum of N sinusoidal waves with incom-
mensurable frequencies approaches (4) when N is large. The first term
represents the sinusoidal signal; the mean power which would be dissipated
by this signal in unit resistance is

W, = Pg/2. (14)

The noise is represented by a large number & of sinusoidal components with
incommensurable frequencies (or commensurable frequencies with random
phase angles) distributed along the frequency range f to f2 in such a way
that the mean noise power in band width Af is:

v(f+4af—f1) 2 )
w(Nf = 3 g:” Py = v P()/2 (15)
n=v(f=—f1
Here v is the number of components per unit band width and P(f) represents
the amplitude of a component in the neighborhood of frequency f. Note
also that the mean total noise input power, W, , is given by

wo= [ wna =3[ PO (16)

The linear rectifier is specified by the current-voltage relationship (8),
which is equivalent to

(24 iEz dz

I=—— f € - 17

2 c 22 ( )

where C is an infinite contour going from — % to -+ with an indentation

below the pole at the origin. We may expand I in the multiple Fourier
series’ '

1Bennett and Rice, “Note on Methods of Computing Modulation Products,” Phil.

Mag., Sept. 1934. The present application represents an extension to N variables of the
theory there given for two.
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o0 )
E E Qmgmy - -my COS My Xp COS M1 X1
m)=0 my=0 (18)

*++ COS My XN

Ms

my

where
ﬂ‘:k:pkt, kSOI,Z,"'N (19)

€mp€my " " "Emy
Amgmy - omy — _TW_ dﬂ.n d:n

f I cos mpxo COS My %1+ + +COS MyXy dXy (20)
(]
2,770
€ = (21)
,7j=0

The response of the rectifier is thus seen to consist of all orders of modula-
tion products of signal and noise. In a typical case of interest the band of
input frequencies is relatively narrow and centered about a high frequency
while the output band includes only low frequencies. In such a case the
important components in the output are the beats between signal and noise
components and between noise components. The d-c component is present
in the output only if the pass band of the system actually includes zero
frequency; we have already computed its value in Section I, but we will
derive it again by the method used here as a check.

The amplitude of the d-c component is in fact:

N .
o Jo(Po2) LII Jo(Pr2) @)
apo...0 = — ﬂ . o dz,

on substitution of the expression for E in the integral representation of 7,
substituting the result in (20) and interchanging the order of integration.
When N is large, P, is small, hence the principal contribution to the integral
occurs near small values of z, where J,(P,3) is nearly equal to unity, since
the product of a large number of factors, all less than unity, will be small
indeed unless each factor is only slightly less than unity. We therefore
replace J,(P,z) by a function which coincides with it near z = 0 and goes
rapidly to zero as we depart from this region. Such an approximation
(Laplace’s process’) is

Jo(Ps) = T (23)

2 Watson, “Theory of Bessel Functions,” p. 421.
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which is correct for the first two terms in the Taylor series expansion near
z = 0. Therefore, when P, approaches zero as N approaches infinity,

— - E PEztp
..o = [ = — ij Jo(Pyz)e n=t ds
27 c Zz
o —Wpz2/2 dz
= —— | Jo(Poz)e — (24)
27 J¢ z2

The contour integral cannot be replaced by a real integral directly because
the integrand goes to infinity at the origin. However, since

Jo() _ _Jl(u) _d Jo(2t)

2 u di u (25)
L) _ P _ A JP) _ TP _ L LIPD)
2 P d(Pz) Pz Pz Prdz 3

we can substitute (26) in the integral and perform an integration by parts
to give the result.

7 @ f 37“’1132/2 [_]_OJIZ(PO Z) 4+ W, Jo(Po Z)] dz
0

T

% N VRN U WS C G
_“1/72?[‘“(2’1’ I'Vn)+IVn1F1(2’2’ W,)] (27)

by Hankel’s formula.> But it may be shown that (see Appendix IT)
Y

1F1 (% Hi ’.'t) = Gium Iu (g) (28)
By (3525 — w) = ¢ P [T (u/2) — Ii(u/2)] (29)

Hence,

= E — 1 4 /2Wp 7 IV _]_I_/_‘
I=a 1/27r ¢ {Iﬂ(” /2 i

(30)

[Lo(1V./2W,) + Il(le/ZIV,,)]}

which is identical with the result of Section I, noting that o = \/Wn . We

point out that a resistance-capacity coupled amplifier will not pass this
component since there is no transmission at zero frequency.

3 Watson, “Theory of Bessel Functions,” p. 393.  As pointed out by Watson, in a foot-

note, the difficulty with singularities at lhc origin could be avoided by expressing Hankel’s

formula in terms of a contour integral instead of an ordinary integral along the real axis.
This procedure would lead directly to the hypergeometric function given in (11).
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The amplitude of the typical difference product between the signal and
the rth noise component is

— 1
A = 7 010...000---0

Ef di Jl(PuZ)Ju(Plz)Jﬂ(Pzz)' . 'Jl(P"Z)' . ‘Ju(PNZ) (31)
T 22

Using the same process as before, we replace J1(P,2) by
Tu(Pu) = P_z,.z Pl (32)

and obtain in the limit as N becomes indefinitely large

P [ I g,

Am =

_ ﬂ{Pn VV 1 . Wl
= 1/ﬂ_”, 11“1( ; I_fV,.) (33)
_ CVI)H 7“’),7 — W, /2wy, IfV, )]

2 1/ W, ° I:I (ZW ) +h (ZW,.

Relations between the £ function and Bessel functions are discussed in
Appendix 1I.

The shape of the spectrum of the beats between Py and the noise input
evidently consists of the superposition of the noise spectra above and below
Po , 50 that if we write w,,(f) Af for the mean energy from this source in that
part of the filter output lying in the band of width Af at f,

vAf

wan(f)Af_ “n (A ) + (Aan)I (34)
A-:n = [Am]pnmpo+2r! (35)
Au_n = IAm]p,.=p072:r! (36)

Py = 1/ 20t @37
We o pw ( W, )]2 '
47 W, ¢ [I (2"1717) Th 2W, (38)

X [w(fo + 1) + w(fo = /)]

The total noise from this source in the output of a particular filter of transfer
admittance ¥ (f) is obtained by integrating w,.(f) ¥ (f)df throughout the band
of the filter. In the particular case in.which the original band of noise is

Wen (f) =
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symmetrical about f, and occupies the range f, — fato fo + fa and an ideal
low pass filter cutting off at f = f, is used in the rectifier output, the
total noise output from beats between signal and noise is

e = 2 f walf) df = ‘”—"i' T (W 2W,) + Ti(Wo/2W)1 (39)

Next we shall caiculate the spectrum of the energy resulting from beats
between individual noise components. We write

Ann = % 6. ..00...00...0

f-:!_fdZJo(PuZ)Ju(Plz)'"J1(P,—z)'"J1('P.z)"'fu(Pyz)
wTie 2

b, Py f To(Poz)e™ "™ dz
27 Qo

_ aP, P, F 1 1 W,
= 22w, ! T Wa

aP, P,
2N/ 2aW,
To find the resulting spectrum w,.(f)df produced at f by the resultant of
all such components, we note that we may sum over all components by

beating each component of the primary band with the frequency f above it
and adding the resultant power values. The result is

(40)

e WAV [o(W/2W,)

wan(f) = ﬁﬁ TV [ (WL/2W,) _£ i w\)w + f)dn  (41)

In the particular case of a flat band of energy extending from f to fa,

fo—f 2 f2 fl f R
[t +nan= [ Al a <5 w0
0< f <fo—hf
_a(fe=fi=Wa /T
wnl) = =G = BOVIW), gy
0<f<fo—fi

The total mean power of this type lying in the band 0 to f is

r — T . _ ﬂ2Wn(f2 f1 fb/z)fb —W./W“
Wanl) = [ ) df = s n

Ia(W./2W.,)
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provided f, < f» — fi. The spectrum is confined to the region 0 < f < fo —
fi. Iffyisequalto fo — fiso that the output filter passes all the noise of
this type, we have

2
Wonlfo = £1) = Won = “S'f YR LT J2W,) (45)

This result seems to hold approximately for a considerable range of input
spectra. For example, if we assume that the original noise is shaped like
an error function about f, , ie.,

wa(f) = Wa/afx e V7" (46)
with f taken from — e to 4+ e with small error for large f, ,

f WOk + ) d\ = 17 \/af2e e (47)

f " f w\w(\ + ) d\ = 117,/2 (48)
0 )

which is in agreement with (45).

The output of a half-wave linear rectifier contains fundamental compon-
ents and all even order modulation products. In general, the amplitudes
of the higher order products are small compared with the lower order. In
a particular problem some consideration of where the principal products
fall in the frequency band is required. The products just considered give
a fair approximation for the problem of detection of a radio frequency band
of signal and noise followed by audio amplification. Contain other products
should also be added to obtain higher accuracy. We have calculated the
products of order zero and two; the next ones of importance are the fourth
order, since the third order products vanish in a perfectly linear rectifier.
The fourth order products in this case which fall in the audio band are of
frequency 2p, — #r — Ps, bo + o — Pr — b and p. + p, — p. — p., where
the subscripts #, ¢, r, s refer to the original noise component frequencies.
The latter is, however, less important than the sixth order product 3p, —
pa — pr — ps, which involves only three noise components, Expressions
for the contributions from these products are given in Appendix III.

Figure 4 shows computed curves for the noise produced in an audio band
by the various components. Curve A is W, + W,, and includes what are
usually regarded as the principal contributors, the difference frequencies
between signal and noise, and between individual noise components. Curve
B is obtained by adding to Curve A, the contribution from the fourth order
products 2p, — p, — p,and p, + p, — p. — ps and the sixth order products
3po — pg — pg — p» - Thus all products which include three or less noise
fundamental components are included. The curves are plotted in terms of
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fraction of noise power received compared to the limiting noise when the
mean signal input power is made indefinitely large compared to the mean
input noise power. Some experimental points given by Williams® are shown
for comparison. Williams gives the intercept at zero signal power as 35%;
the theoretical value deduced here is 7/8 or 39.27%,. It will be noted that
the inclusion of the higher order products improves the agreement between
experimental and theoretical curves, even though the value of the intercept
is unaffected by them. It shold also be stressed that our analysis applies
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Fig. 4—Calculated noise power in audio band of output of linear rectifier when noise

and signal are applied in a relatively narrow high-frequency band. The direct-current
component is excluded.

strictly to purely resistive networks. The conventional radio detector
circuit (which was used by Williams), in which a condenser is shunted across
a resistance in series with a diode, departs from the conditions here assumed
because of the reactive element, the condenser. The customary approxima-
tion made in treating this circuit is that the condenser has infinite impedance
in the audio frequency range and zero impedance at the radio frequencies.
This leads to a bias on the detector which depends on the signal. The
methods given here may be applied, but the resulting formulas are much
more difficult from the standpoint of numerical computation.

A recent paper by Ragazzini’ gives an approximate solution based on

4F. C. Williams, “The Response of Rectifiers to Fluctuation Voltages,” Journal I.
E. E., 1937, Vol. 80, pp. 218-226.

% John Ragazzini, “The Effect of Fluctuation Voltages on the Linear Detector,” Proc.
I. R. E., June 1942, Vol. 30, p. 277-288.

.
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expanding the envelope of the input wave by the binomial theorem and
retaining only the first two terms. The validity depends on the noise
amplitude being small compared with the sum of signal and noise, and hence
the result should agree with our solution in the neighborhood of W, /W, = 0,
which it does. 'When W,/ is small, the error is appreciable. Ragazzini’s
result (Equation 15 of the paper) expressed in our notation is

LW+ F W)
Wlfl + Wﬂﬂ - F 1 + I’Vﬂ/W, (49)

It will be seen by comparing the limiting values for W,/W, = 0 with that of
W./W, = = from (49) that the intercept of the curve of Fig. 4 would be

509, instead of our value of 39.27%,.

The.results given in the present paper have been compiled from unpub-
lished memoranda and notes by the author extending back as far as 1935.
Discussions with colleagues have been of great aid, and in particular ac-
knowledgment is made to Messrs. S. O. Rice and R. Clark Jones for many
helpful suggestions.

APPENDIX I
EVALUATION OF INTEGRAL FOR I

Interchanging the order of integration in (9), we have

I = :/;— Wj; dﬂj.. g+ Focos D2Wn ; gz (50)

By substituting z = Py cos 8 + u \/2W,, , we may evaluate the second inte-
gral in terms of the error function, obtaining

_ a T L) —u? —
I=1T'T,vz_£ dﬂf_meﬁe (u \/2W,, 4 Py cos 0) du

'\/m fr 6—1-102 cos? §/2W, do
2w Jo

_a
™

+a2—1:£ erf (P, cos 6/+/2W,) cos 6 df

N ‘\/Wn 6-—?5/4;?,. fr g0t WHhWn g
T 2r 0
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+aPoj‘ d[ of Pncosﬂ) . ]d8 aPof sin 6

27 2r Jo
i(erf Pocosﬂ) 0

de 2W,

- 2 \/I’Vn --w,/2w,. j2 G—W, cos wzw,,d@
2r 27 o
C!W. 27

* o2y,

=a ﬂ g e/ n (ID(W./ZW,,)
27

+ 3 W' : [1W./2W,) + L(W./2, )]) (10)

e Mt a1 cos ®) dd

In the above we have made use of the relations:

2 : —z2 i
erf g2 = \/;rj; € dz (51)
d 2 »
ﬁ erf z = ‘\/;I' [ (52)

2r
j; €% cos md dd = (=)"27Ia(3) (53)

APPENDIX II

RELATIONS BETWEEN HYPERGEOMETRIC AND BESSEL
FUNCTIONS

The modulation coefficients appearing in the linear rectification of noise
are expressible in compact form in terms of the hypergeometric function:

ale+1) 2 .
T e c(c +1) 2!
I‘(c) T'(a + m) m
T T(a) rnzs{) I'(c + m)m! (=2)
The 1F; function is a limiting case of the more familiar Gaussian hypergeo-
metric function oF (g, b; ¢; 2), viz.

1Fi(e;c,2) = Lbimit oFi(a, b; ¢; 2/b) (35)

a z
1F1 (a;¢; —2) = 1—;1—!

(54)

In certain special cases this function may be expressed in terms of ex-
ponential and Bessel functions. For example, by a formula given by
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Campbell and Foster, Fourier Integrals for Practical Application, Bell
System Monograph B-584, p. 32 (also Watson, Theory of Bessel Functions,
p. 191), we may show that

_ 2T + e

=D (56)

1F1(P +%;21‘+ 1; --z)
or setting v = 0
1Fi(35 1; —z) = e Io (2/2) (57

which is one of the functions appearing in our work.

We have also encountered the function 1/ (1/2; 2; —z) which is not
directly reducible by the above formula. The reduction may be effected
in a number of ways. By making use of the relation obtained from (56)
by setting » = 1,

_ 4

F1(3/2; 3; —2) = - ¢ I(z/2) (58)

and noting that
1F1(1/25 25 —2) = 1Fi(1/25 15 —2)

1 &<Tm+1/2), w1 STmA+1/2), i
5172 i F 11 2 r(1/2),§, e ¥

-1 & T(m+1/2)m (—2)"
T(1/2) & mim + D1 - (59)

_ 2 $Tm+3/2)  m
hr(l/z)fgﬁ(m-l-z)gmg( z)

1106/2;3; —9),
we find that®
Wy (1/252; —2) = e [To(z/2)+11(2/2)] (60)

It may also be verified by integrating the series directly that
j; F1(1/2; 1; —32) ds = 21F1(1/2; 25 —3) (61)

Combining this relation with (57) and (60) above, we deduce the indefinite
integrals .
6 The relation (60) was brought to the attention of the author by Mr. R. M. Foster.
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f e“Io(x) dx = xe"[Io(x) — Ii(x)] W
f ¢ Io(x) dx = xe “[Io(x) + L(x)]

(62)
fe’I;(x) dx = €[(1 — x)Io(x) + x@(2)]

f e "I(x) dv = € *[(1 + x)Io(x) + 2L (x)]
J

These integrals may be derived by differentiating the right hand members,
and could, therefore, serve as a basis for an alternate derivation of (60).

In addition it was noted in Eq. (11) that the constant term in the modula-
tion spectrum could be expressed in terms of 1F; (—1/2; 1; —z); from the
equations given, it follows that we must have the relation:

1y (—1/2;15—2) = ¢ [(1 4 2) Io(s/2) + 5 T(2/2)] (63)
Another interesting set of formulas which can be obtained as a by-product

from (62) by setting & = 7y is:

f Jo(y) cos ydy = y[Jo(y) cos y + Ji(y) sin y]
[ 74) sin v dy = 317u(3) sin 3 = 1i) cos ]
(64)
f.fl(y) cos ydy = yJ1(y) cos y — Jo(v)(y sin y — cos y)

f Ji(y) sin ydy = yJi(y) siny + Jo(y)(y cos y — sin y)

The hypergeometric notation is particularly convenient in determining
series expansions for the coefficients to be used for calculation when the
variable 3 is either very small or very large. For small values of z, the form
(54) suffices; for large values of z, we may use the general asymptotic expan-
sion formula’ for the real part of z positive:

1Fia; ¢; —3z) = 1“(611——(6)0);“2%(6’ 14+a—c¢1/2)
I'(c — a)z° a(l 4+a—¢)

I'(e) [1 + 11z
+ﬂ(a+1)(l+d—6)(2+a—c)+ ]

212

Copson, “Functions of a Complex Variable,” pp. 264-5.

(65)
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The series expansions required here could also be obtained from the appropri-
ate series for Bessel functions. It will be noted, however, that the typical
modulation coefficient can be expressed in terms of either a single /1 function
or several Bessel functions, so that manipulations must be performed on the
series for the latter to give the final result. The Bessel functions on the
other hand are more convenient for numerical computations because of the

excellent tables available.
Reduction formulas for certain other hypergeometric functions are needed

in evaluating the higher order products. They are:
WFi1(3/2;1; —5) = ¢ *[(1 — 2)o(2/2) + I(3/2)] (66)
F1(3/2; 2; —2) = ¢ *[L(z/2) — I(z/2)] (67)

Fi(5/2;4; —3) = %e"'"z [(% + 1)11(3/2) - Io(z/Z)] 68)

Derivation of these is facilitated by the use of the easily demonstrated
relations:

1Fi(a; 1; —z) = -a%[zdﬁ(a; 2; —2)] (69)
22,Fy(a; 2; —3) = ;Z- [2*1F1(e; 3; —2)] (70)

Fi(3/2;3; — 5) — 1Fi(3/2;2; —3) = 51F1(5/2;4; —z)  (71)

APPENDIX III

HIGHER ORDER PRODUCTS
The methods described in Section II may be applied to calculate the gen-
eral expression for the general modulation coefficient. The result is for the
amplitude of the term cos mpot COS Pl COS Pyl =+ + COS Pryl:
m+M

— (=) 2 T Py Pay v Puy o (m+ M — 1) (W)™
T T (Wl /2) MR m] 2 S
m+ M -1 =W,

X 1F1 (——2—' ,m + 1, _'h?:)

The coefficient of the term cos (mpo == pn, &= Pry == « « « Pnyy) 118 amu divided
by 2¥ ¢, . Thenumber of terms of a particular type falling in a particular
frequency interval can be calculated by a method previously described by
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the author.® Under the assumed conditions that the original noise spectrum
is either flat throughout a limited range, or falls off like an error function,
and that the audio amplifier passes all the difference components in question,
we find the following results:

2po — pr — Ps:
Wansn = 2002 /s B0, /207, @
Pot Pg— pr— Pu:
Wonsn = S0s (1 /200,) = LOV/2W)F
3po — pg — Pr — Ps:
Wansn = 02 P08 (L AW/ WAL/ 2V.) 73)

— L(W./2W )]

This includes all beats containing not more than three noise fundamentals.
The reductions of hypergeometric functions to exponential and Bessel func-
tions given in Appendix II have been used in deriving the above results.

8 Bennett, “Cross-Modulation in Multichannel Amplifiers,” Bell Sys. Tech. Jour., Oct.
1940, Vol. XIX, pp. 587-610.



