Mathematical Analysis of Random Noise
By S. O. RICE

INTRODUCTION

THIS paper deals with the mathematical analysis of noise obtained by
passing random noise through physical devices. The random noise
considered is that which arises from shot effect in vacuum tubes or from
thermal agitation of electrons in resistors. Our main interest is in the sta-
tistical properties of such noise and we leave to one side many physical
results of which Nyquist’s law may be given as an example.'

About half of the work given here is believed to be new, the bulk of the
new results appearing in Parts IIT and IV. In order to provide a suitable
introduction to these results and also to bring out their relation to the work
of others, this paper is written as an exposition of the subject indicated in
the title.

When a broad band of random noise is applied to some physical device,
such as an electrical network, the statistical properties of the output are
often of interest. For example, when the noise is due to shot effect, its
mean and standard deviations are given by Campbell’s theorem (Part I)
when the physical device is linear. Additional information of this sort
'is given by the (auto) correlation function which is a rough measure of the
dependence of values of the output separated by a fixed time interval.

The paper consists of four main parts, The first part is concerned with
shot effect. The shot effect is important not only in its own right but
also because it is a typical source of noise. The Fourier series representa-
tion of a noise current, which is used extensively in the following parts, may
be obtained from the relatively simple concepts inherent in the shot effect.

The second part is devoted principally to the fundamental result that the
power spectrum of a noise current is the Fourier transform of its correlation
function. This result is used again and again in Parts IIT and IV.

A rather thorough discussion of the statistics of random noise currents
is given in Part ITI. Probability distributions associated with the maxima
of the current and the maxima of its envelope are developed. Formulas
for the expected number of zeros and maxima per second are given, and a
start is made towards obtaining the probability distribution of the zeros.

When a noise voltage or a noise voltage plus a signal is applied to a non-

1 An account of this field is given by E. B. Moullin, ‘“‘Spontaneous Fluctuations of
Voltage,” Oxford (1938).
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linear device, such as a square-law or linear rectifier, the output will also
contain noise. The methods which are available for computing the amount
of noise and its spectral distribution are discussed in Part IV,

ACKNOWLEDGEMENT

I wish to thank my friends for many helpful suggestions and discussions
regarding the subject of this paper. Although it has been convenient to
acknowledge some of this assistance in the text, I appreciate no less sincerely
the considerable amount which is not mentioned. In particular, I am in-
debted to Miss Darville for computing the curves in Parts IIIT and IV,

SuMMARY OF RESULTS

Before proceeding to the main body of the paper, we shall state some of
the principal results. It is hoped that this summary will give the casual
reader an over-all view of the material covered and at the same time guide
the reader who is interested in obtaining some particular item of informa-
tion to those portions of the paper which may possibly contain it.

Part I-——Shot Effect

Shot effect noise results from the superposition of a great number of
disturbances which occur at random. A large class of noise generators
produce noise in this way.

Suppose that the arrival of an electron at the anode of the vacuum tube
at time ¢ = 0 produces an effect F(¢) at some point in the output circuit.
If the output circuit is such that the effects of the various electrons add
linearly, the total effect at time ¢ due to all the electrons is

I0) = :ﬁm Ft — ) (1.2-1)

where the k' electron arrives at # and the series is assumed to converge.
Although the terminology suggests that I(f) is a current, and it will be
spoken of as a noise current, it may be any quantity expressible in the form
(1.2-1).

1. Campbell’s theorem: The average value of I(f) is

W =» [ FQ) di (1.2-2)
o
and the mean square value of the fluctuation about this average is

N +eo
ave. 1) = TOF = v [ F() (1.2-3)



284 BELL SYSTEM TECHNICAL JOURNAL

where » is the average number of electrons arriving per second at the anode.
In this expression the electrons are supposed to arrive independently and at
random. »e ' dt is the probability that the length of the interval between
two successive arrivals lies betweenf and ¢ + dt.

2. Generalization of Campbell’s theorem. Campbell’s theorem gives
information about the average value and the standard deviation of the
probability distribution of I(f). A generalization of the theorem gives
information about the third and higher order moments. Let

I0) = 3 aF — 5) NGRS )

where F(f) and #; are of the same nature as those in (1.2-1) and ---a1,
@z, - ax, --- are independent randem variables all having the same
distribution. Then the »' semi-invariant of the probability density P(I)
of I = I(t) is

A= v fn [FT dt (1.5-2)

The semi-invariants are defined as the ccefficients in the expansion' of the
characteristic function f(u):

log. f(u) = 2 22 (in)" (1.5-3)

“Zinl

where

+o2 i
f(u) = ave. e = P(De™dI

w

The moments may be computed from the A’s.
3. As » — =« the probability density P(I) of the shot effect current ap-
proaches a normal law. The way it is approached is given by

—4
Mo

PU) ~ ™) = M2 )
' S 2 (1.6-3)
2 o + B o |+
where the A’s are given by (1.5-2) and
2 _ _I- I (n) 1 d" ;zm
¢ =h 2= 7 (@) = \/21r iz ©

Since the N’s are of the order of », ¢ is of the order of »"* and the orders of
o, Mo Y, Mo and Ao are v % »7 v and v~ respectively. A
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possible use of this result is to determine whether a noise due to random in-
dependent events occuring at the rate of » per second may be regarded as
“random noise” in the sense of this work.

4. When I(t), as given by (1.5-1), is analyzed as a Fourier series over an
interval of length T' a set of Fourier coefficients is obtained. By taking
many different intervals, all of length 7, many sets of coefficients are
obtained. If » is sufficiently large these coefficients tend to be distributed
normally and independently. A discussion of this is given in section 1.7.

Part II—Power Spectra and Correlation Functions

1. Suppose we have a curve, such as an oscillogram of a noise current,
which extends from ¢ = 0 to# = «. Let this curve be denoted by I(2).
The correlation function of () is () which is defined as

¥ = Limit 1 [ 1016 + 1) a (2.1-4)

where the limit is assumed to exist. This function is closely connected
with another function, the power spectrum, w(f), of I(). I(t) may be
regarded as composed of many sinusoidal components. If I(f) were a
noise current and if it were to flow through a resistance of one ohm the
average power dissipated by those components whose frequencies lie be-
tween f and f + df would be w(f) df.

The relation between w(f) and ¢(7) is

w(f) =4 j;w ¥(r) cos 2xfr dr (2.1-5)
W(r) = j; " w(f) cos 2ufr df (2.1-6)

When 7(¢) has no d.c. or periodic components,
w(f) = Limit 3'_“5;_&‘2 (2.1-3)

where
S(f) = f.. 1006~ d,

The correlation function for
I{t) = A 4 C cos (2xfet — o)
is
c2
Y(r) = 4* + = cos 2afor (2.2-3)

These results are discussed in sections 2.1 to 2.4 inclusive.
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2. So far we have supposed I(¢) to be some definite function for which a
curve may be drawn. Now consider I(f) to be given by a mathematical
expression into which, besides ¢, a number of parameters enter. w(f) and
¥(7) are now obtained by averaging the integrals over the possible values
of the parameters. This is discussed in section 2.5.

3. The correlation function for the shot effect current of (1.2-1) is

+o0

+e0 2
F(t) dt] (2.6-2)

¥(r) =» . FO)F(t + 7) dt + [v

The distributed portion of the power spectrum is

wi(f) = 20| s(f) [*

where

s(f) = fn Fp)e ™" dt (2.6-5)

The complete power spectrum has in addition to wi(f) an impulse func-
tion representing the d.c. component 10).

In the formulas above for the shot effect it was assumed that the expected
number, », of electrons per second did not vary with time. A case in which
v does vary with time is briefly discussed near the end of Section 2.6.

4, Random telegraph signal. Let I(¢) be equal to either @ or —a so that
it is of the form of a flat top wave, and let the lengths of the tops and bot-
toms be distributed independently and exponentially. The correlation
function and power spectrum of I are

¥(r) = a’e ™" (2.7-4)
w(f) = ﬁﬁ (2.7-5)

where u is the expected number of changes of sign per second.

Another type of random telegraph signal may be formed as follows: Divide
the time scale into intervals of equal length % In an interval selected at
random the value of I(f) is independent of the value in the other intervals
and is equally likely to be +a or —a. The correlation function of 1 () is

zero for | 7| > hand is
a’(l — ljh_])

for 0 < | r | < kand the power spectrum is

w(f) = 2 (“_?:}T’Ur")z (2.7-9)
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5. There are two repres'entations of a random noise current which are
especially useful. The first one is

I() = ZN; (@, cos wnt + by sin w, 1) (2.8-1)

where a, and b, are independent random variables which are distributed
normally about zero with the standard deviation +/w(f,)Af and where

wn = 21fn, fa= nAf
The second one is

I(t) = ZZ‘,I €n €08 (wnl — ¢n) (2.8-6)

where ¢, is a random phase angle distributed uniformly over the range
(0, 27) and

Cn = [2":!"(fv't)A..f]”2

At an appropriate point in the analysis N and Af are made to approach
infinity and zero, respectively, in such a manner that the entire frequency
band is covered by the summations (which then become integrations).

6. The normal distribution in several variables and the central limit
theorem are discussed in sections 2.9 and 2.10.

Part IIT—Statistical Properties of Noise Current

1. The noise current is distributed normally. This has already been
discussed in section 1.6 for the shot-effect. It is discussed again in section
3.1 using the concepts introduced in Part II, and the assumption, used
throughout Part ITI, that the average value of the noise current (¢) is zero.
The probability that I(¢) lies between I and I + dI is

al —1%/2¢¢
a0 (3.1-3)
“where Yo is the value of the correlation function, ¥(7), of I(t) at r = 0
o=y = [ @ a, (3.1-2)
w(f) being the power spectrum of I(f). o is the mean square value of
I(t), i.e., the r.m.s. value of I(¢) is vl

The characteristic function (ch. f.) of this distribution is

ave, 'Y = exp — %’u! (3.1-6)
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2. The probabiﬁty that I(t) lies between I and I, + dI, and I(t + 7)
lies between I and J» 4+ dI» when £ is chosen at random is

2 2
WE — g dzzljrz i [—w, — dolz + 211«,1,12] (3.2-4)

24 — ¥2)
where , is the correlation function ¢(7) of I(#):
W) = f.-. w(f) cos 2ufr df (3.2-3)

The ch. {. for this distribution is

ave, ORI _ oy [_% (1 + o) — 1[:,1::;] (3.2-7)

3. The expected number of zeros per second of 7(f) is

[ rena]
" 1/2 w
o] - Tewa| &

assuming convergence of the integrals. The primes denote differentiation
with respect to 7:

" — d’
14 (x) = Ei?‘b(f)'

For an ideal band-pass filter whose pass band extends from f, to f} the ex-
pected number of zeros per second is

2 I:éj,f = ﬁ]w (3.3-12)

When f, is zero this becomes 1.155 f and when f, is very nearly equal to
fv it approaches fp + fa.

4, The problem of determining the distribution function for the length
of the interval between two successive zeros of I(¢) seems to be quite diffi-
cult. In section 3.4 some related results are given which lead, in scme
circumstances, to approximations to the distribution. For example, for
an ideal narrow band-pass filter the probability that the distance between
two successive zeros lies between 7 and 7 4 dr is approximately

z_i: a
2 [1 4 &*r — )"
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where

_ (f§+fu) o= 1 :
a=V3p— n=prg

f» and f, being the upper and lower cut-off frequencies.

5. In section 3.5 several multiple integrals which occur in the work of
Part ITT are discussed. ‘

6. The distribution of the maxima of 7(¢) is discussed in section 3.6. The
expected number of maxima per second is

2 Jw(f) df "
1[ ¥ ] f
f Ful) df

(3.6-6)

For a band-pass filter the expected number of maxima per second is

[sh-£]" s

For a low-pass filter where f; = 0 this number is 0.775 f,, .
The expected number of maxima per second lying above the line I(¢) = I,
is approximately, when I, is large,

¢ "0 % 1[the expected number of zeros of I per second]  (3.6-11)

where Yo is the mean square value of I(z).

For a low-pass filter the probability that a maximum chosen at random
from the universe of maxima lies between I and I + dI is approximately,
when 7 is large,

‘\/5 —-y".'2

\b; 3 (3.6-9)

where

1
Yy =12
0
7. When we pass noise through a relatively narrow band-pass filter one
of the most noticeable features of an oscillogram of the output current is
its fluctuating envelope. In sections 3.7 and 3.8 some statistical properties
of this envelope, denoted by R or R(t), are derived.
The probability that the envelope lies between Rand R + dR is

R

0

¢ gR (3.7-10)
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where Yy is the mean square value of 7({). The probability that R(¢) lies
between R, and R; + dR, and at the same time R({ 4+ 7) lies between
Ry and R: + dR; when ¢ is chosen .at random is obtained by multiplying
(3.7-13) by dR: dR;. For an ideal band-pass filter, the expected number
of maxima of the envelope in one second is

64110(fs — fa) (3.8-15)
When R is large, say ¥ > 2.5 where
R
y = ‘m, o/? = r.m.s. value of I(¢),
- .

the probability that a maximum of the envelope, selected at random from
the universe of such maxima, lies between R and R 4 dR is approximately

11307 — e o
Yo
A curve for the corresponding probability density is shown for the range
0 < y < 4. Curves which compare the distribution function of the maxima
of R with other distribution functions of the same type are also given.
8. In section 3.9 some information is given regarding the statistical
behavior of the random variable:
n+r

E = ') dt (3.9-1)

£

where #; is chosen at random and I(#) is a noise current with the power
spectrum w(f) and the correlation function y(7). The average value
myr of Eis Ty and its standard deviation ¢p is given by (3.9-9). For a
relatively narrow band-pass filter

ﬂ' ~ —14_-'__"__‘

mr '\/T( fb - fa)
when T(fs — f.) 3> 1. This follows from equation (3.9-10). An ex-
pression which is believed to approximate the distribution of E is given by
(3.9-20).

9. In section 3.10 the distribution of a noise current plus one or more

sinusoidal currents is discussed, For example, if 7 consists of two sine waves
plus noise:

I=Pcospt+ Qcos g + Iy, (3.10-20)

where p and ¢ are incommensurable and the r.m.s. value of the noise cur-
rent Iy is ¥s >, the probability density of the envelope R is

R fo ) rJo(R)To(Pr) Jo(Qr)e ™" dr (3.10—21)

where Jo( ) is a Bessel function,
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Curves showing the probability density and distribution function of R,
when Q = 0, for various ratios of P/r.m.s. Iy are given.

10. In section 3.11 it is pointed out that the representations (2.8-1)
and (2.8-6) of the noise current as the sum of a great number of sinusoidal
components are not the only ones which may be used in deriving the results
given in the preceding sections of Part III. The shot effect representation

+o
I(t) = Z; F(t — &)

studied in Part I may also be used.

Part IV—Noise Through Non-Linear Devices

1. Suppose that the power spectrum of the voltage V applied to the
square-law device

I=aV’ (4.1-1)

is confined to a relatively narrow band. The total low-frequency output
current I, may be expressed as the sum

It = Lo+ Ity (4.1-2)

where I, is the d.c. component and [¢; is the variable cofhponent. When
none of the low-frequency band is eliminated (by audio frequency filters)
2
Le= “TR (4.1-6)
where R is the envelope of V. If Vis of the form
V = Vy + P cos pt + Q cos ¢t, (4.1-4)

where Vy is a noise voltage whose mean square value is ¥, then

Le =a(¢o+1;+%-)

7o atfer 4 P 2, o PQ _
Ity = o' | o + ¢0+Q¢0+—2— (4.1-16)
2. If instead of a square-law device we have a linear rectifer,
0 V<o
I= {aV, V>0 (4.2-1)

the total low-frequency output is

Iy = — (4.2—2)
™
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When V is a sine wave plus noise, Vi -+ P cos #t,

lpl] 1/2
Iic = a(ﬂ) 1Fi(—3%;1; —x) (4.2-3)
C = (p” + 200) (4.2-6)

where 1/, is a hypergeometric function and

_ P* _ Ave. sine wave power

B m B Ave. noise power (4.2—4)
When « is large
A L 1
t~ = [ T ] (4.2-7)

If V consists of two sine waves plus noise, [4. consists of a hypergeometric
function of two variables. The equations running from (4.2-9) to (4.2-15)
are concerned with this case. About the only simple equation is

= 5‘; 240 + P* + ('] (4.2-14)

3. The expressions (4.1—6) and (4.2-2) for I, in terms of the envelope
R of V, namely

h2
ﬁ and EE,
2. T

are special cases of a more general result

Lt = AoR) = - f F(iu) JouR) du. (4.3-11)
In this expression Jo(#R) is a Bessel function. The path of integration C
and the function F(ix) are chosen so that the relation between I and V may
be expressed as

_ 1 4 ‘iVu .
I= ﬂ-’; F(iu)e'™™ du. (4A-1)

A table giving F(ix) and C for a number of common non-linear devices is
shown in Appendix 4A.
If this relation is used to study the biased linear rectifier.

[ o, V<B
1V—B V>B3B
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for the case in which V'is Vy + P cos pt, we find
B, P B+

Ty ~ + + 7P st
3-17

_ — 2

‘I?fNP B%

when P 3> | B|, P* 3> s where o is the mean square value of Vy .

4, When V is confined to a relatively narrow band and there are no
audio-frequency filters, the probability density and all the associated sta-
tistical properties of 7,4 may be obtained by expressing I,¢ as a function
of the envelope R of V' and then using the probability density of R. When
Vis Vx + P cos pt + Q cos gt this probability density is given by the in-
tegral, (3.10-21) (which is the integral containing three Bessel functions
stated in the above summary of Part ITI). When V consists of three sine
waves plus noise there are four Jo's in the integrand, and so on. Expres-
sions for R* when R has the above distribution are given by equations
(3.10-25) and (3.10-27).

Wken audio-frequency filters remove part of the low-frequency band the
statistical properties, except the mean square value, of the resulting cur-
rent are hard to compute. Insection 4.3 it is shown that as the output band
is chosen narrower and narrower, the statistical properties of the output
current approach those of a random noise current.

5. The sections in Part IV from 4.4 onward are concerned with the
problem: Given a non-linear device and an input voltage consisting of noise
alone or of a signal plus noise. What is the power spectrum of the output?
A survey of the methods available for the solution of this problem is given
in section 4.4

6. When a noise voltage Vy with the power spectrum w(f) is applied to
the square-law device

I=aV? (4.1-1)
the power spectrum of the output current 7 is, when f # 0,
+0
W) = o _[ w@)w(f — 1) d (4.5-5)
where w(—x) is defined to equal w(x). The power spectrum of 7 when V
is either P cos pt + Vy or

Q1 4+ k.cos pt).cos gt + Vy

is considered in the portion of section 4.5 containing equations (4.5-10) to
(4.5-17).
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7. A method discovered independently by Van Vleck and North shows
that the correlation function ¥(7) of the output current for an unbiased
linear rectifier is

2
v =% o[-, -5 Y (@.7-6)
0

where the input voltage is V. The correlation function y(r) of Vi is

denoted by ¢, and the mean square value of Vyisyo. The power spectrum
W(f) of I may be obtained from

w(f) = 4.£ ¥(7) cos 2mfr dr (4.6-1)
by expanding the hypergeometric function and integrating termwise using
Galf) = fo ¢ cos 2ufr dr. (4C-1)

Appendix 4C is devoted to the problem of evaluating the integral for Ga(f).

8. Another method of obtaining the correlation function y(r) of I, termed -
the “characteristic function method,” is explained in section 4.8. It is
illustrated in section 4.9 where formulas for ¥(r) and W(f) are developed
when the voltage P cos pt + Vi is applied to a general non-linear device.

9. Several miscellaneous results are given in section 4.10. The char-
acteristic function method is used to obtain the correlation function for a
square-law device. The general formulas of section 4.9 are applied to the
case of a »® law rectifier when the input noise spectrum has a normal law
distribution. Some remarks are also made concerning the audio-frequency
output of a linear rectifier when the input voltage V' is

Q(1 + rcos pt) cos gt + Vu.

10. A discussion of the hypergeometric function 1Fi(a; ¢; x), which often
occurs in problems concerning a sine wave plus noise, is given in
Appendix 4B.

PART 1
THE SHOT EFFECT

" The shot effect in vacuum tubes is a typical example of noise. It is due
to fluctuations in the intensity of the stream of electrons flowing from the
cathode to the anode. Here we analyze a simplified form of the shot effect.



MATHEMATICAL ANALYSIS OF RANDOM NOISE 295

1.1 TaE ProBaBIiLiTY OF ExacTLy K ELECTRONS ARRIVING AT THE
ANODE IN TiMe T

The fluctuations in the electron stream are supposed to be random. We
shall treat this randomness as follows. We count the number of electrons
flowing in a long interval of time T measured in seconds. Suppose there
are Ky. Repeating this counting process for many intervals all of length
T gives a set of numbers Ks, K3 - -+ Ky where M is the total number of
intervals. The average number », of electrons per second is defined as

i Ki+ K+ - + KEn
7 = Lim MT

where we assume that this limit exists. As M is increased with T being
held fixed some of the K’s will have the same value. Infact,as M increases
the number of K’s having any particular value will tend to increase. This
of course is based on the assumption that the electron stream is a steady
flow upon which random fluctuations are superposed. The probability of
getting K electrons in a given trial is defined as

(1.1-1)

Number of trials giving exactly K electrons
M

Of course p(K) also depends upon T. We assume that the random-
ness of the electron stream is such than the probability that an electron
will arrive at the anode in the interval (i, ¢ 4+ Af) is vA¢ where At is
such that »At << 1, and that this probability is independent of what has
happened before time ¢ or will happen after time ¢ 4 At

This assumption is sufficient to determine the expression for p(K) which is

_ (VT)K ~»T

pE) = "
This is the “law of small probabilities” given by Poisson. One method
of derivation sometimes used can be readily illustrated for the case K = 0.

Thus, divide the interval, (0, T) into M intervals each of length Al = %

(1.1-2)

p(K) = Lim
M=o

(1.1-3)

At is taken so small that »A7 is much less than unity. (This is the “small
probability” that an electron will arrive in the interval Af). The prob-
ability that an electron will not arrive in the first sub-interval is (1 — »A?).
The probability that one will not arrive in either the first or the second
sub-interval is (1 — »Af)®. The probability that an electron will not arrive
in any of the M intervalsis (1 — »Af)¥, Replacing M by T/At and letting
At — 0 gives

p0) = 7
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The expressions for p(1), #(2), -+ p(K) may be derived in a somewhat
similar fashion.

1.2 STATEMENT OF CAMPBELL’S THEOREM

Suppose that the arrival of an electron at the anode at time ¢ = 0 produces
an effect F(¢) at some point in the output circuit. If the output circuit
is such that the effects of the various electrons add linearly, the total effect

at time ¢ due to all the electrons is
+ow0

I(t) = ;.;E F(t — t) (1.2-1)

—00
where the &*" electron arrives at #; and the series is assumed to converge.

Campbell’s theorem® states that the average value of Z(f) is
40

I() = » F(t) dt (1.2-2)
and the mean square value of the fluctuation about this average is
—_— Y — 9 =
(I — 1) =» F(i) dt (1.2-3)

where » is the average number of electrons arriving per second.

The statement of the theorem is not precise until we define what we mean
by “average”. From the form of the equations the reader might be tempted
to think of a time average; e.g. the value

T
Lim L f 100) dt (1.2-4)
T—=ew 1 Jo

However, in the proof of the theorem the average is generally taken over
a great many intervals of length T with ¢ held constant. The process is
somewhat similar to that employed in (1.1) and in order to make it clear
we take the case of 7(z) for illustration. We observe I(¢) fcr many, say M,
intervals each of length T where T is large in comparison with the interval
over which the effect F(t) of the arrival of a single electron is appreciable.
Let I (') be the value of I(¢), ¢’ seconds after the beginning of the n'" in-
terval. ¢’ is equal to / plus a constant depending upon the beginning time
of the interval. We put the subscript in front because we wish to reserve
the usual place for another subscript later on. The value of I(#') is then
defined as

I®) = Limit LLI@) +00) + -+ +ud@)] (12-5)

M=
and this limit is assumed to exist. The mean square value of the fluctua-
tion of I(t') is defined in much the same way.

2 Proc. Camb. Phil. Sec. 15 (1909), 117-136, 310-328. Our proof is similar to one given
by J. M. Whittaker, Proc. Camb. Pkil. Sec. 33 (1937), 451-458.
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Actually, as the equations (1.2-2) and (1.2-3) of Campbell’s theorem
chow, these averages and all the similar averages encountered later turn
cut to be indepencent of the time. When this is true and when the M in-
tervals in (1.2-5) are taken consecutively the time average (1.2-4) and the
average (1.2-5) beccme the same. To show this we multiply both sides of
(1.2-5) by di’ and integrate from 0 to T':

I(Y) = lelt— Ef oI dt’
M=o m=l

(1.2-6)

MT

1
Limit g7 ), 1@ at

and this is the same as the time average (1.2-4) if the latter limit exists.

1.3 Proor orF CAMPBELL'S THEOREM

Consider the case in which exactly K electrons arrive at the anode in an
interval of length T. Before the interval starts, we think of these K elec-
trons as fated to arrive in the interval (0, T') but any particular electron is
just as likely to arrive at one time as any other time. We shall number
these fated electrons frcm one to K for purposes of identification but it is to
be emphasized that the numbering has nothing to do with the order of ar-
rival. Thus, if /; be the time of arrival of electron number £, the probability
that # lies in the interval (¢, ¢ 4 dt) is dt/ T,

We take T to be very large compared with the range of values of ¢ for
which F(¢) is appreciably different from zero. In physical applications
such a range usually exists and we shall call it A even though it is not very
definite. Then, when exactly K electrons arrive in the interval (0, T) the
effect is approximately

K
I(l) = %} F(t — 1) (1.3-1)

the degree of approximation being very good over all of the interval except
within A of the end points.

Suppose we examine a large number M of intervals of length 7. The
number having exactly K arrivals will be, to a first approximation M p(K)
where p(K) is given by (1.1-3). For a fixed value of # and for each interval
having K arrivals, I x(t) will have a definite value. As M — «, the average
value of the Ix(¢)’s, obtained by averaging over the intervals, is

0 = f‘i’fo d"ZI‘(z—m

S %F(z-r,,)

k=1 0

(1.3-2)
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andif A < ¢ < T — A, we have effectively
— K [*
“w=T£ F(t) dt (1.3-3)

If we now average I(¢) over all of the M intervals instead of only over
those having K arrivals, we get,as M — =,

OB WD

_ © K(I’T)K - +e0
=27 Kl € . F(t) di

4o
=y F() dt (1.3-4)

-]

and this proves the first part of the theorem. We have used this rather
elaborate proof to prove the relatively simple (1.3-4) in order to illustrate a
method which may be used to prove more complicated results. Of course,
(1.3-4) could be established by noting that the integral is the average value
of the effect produced by one arrival, the average being taken over one
second, and that » is the average number of arrivals per second.

In order to prove the second part, (1.2-3) of Campbell’s theorem we first
compute 72(f) and use

U@ - 1) = FG) — 21010 + 10
= @) - I0)° (1.3-5)
From the definition (1.3-1) of Ix(?),
K K
I = k}; 21 F(t — t)F(t — tm)
Averaging this over all values of £1, f2, - - - £x with ¢ held fixed as in (1.3-2),
R T
) = f ., f UK B4 — 4)F( — tn)
k—l m—l 0 T

The multiple integral has two different values. If £ = m its value is

fr(t t)‘”"

and if £ ¥ m its value is

fﬂhm Lm*m%
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Counting up the number of terms in the double sum shows that there are K
of them having the first value and K* — K having the second value. Hence,
ifA <t <T— A wehave

—_— — +o0 2
Ix(t) = ;—( [:‘ F (1) dt + K(LTZ—I—) [ . F(1) dt]

Averaging over all the intervals instead of only those having K arrivals
gives

W = 3 p(6) Q)

K=0
=y fn F'(t) dt + I(t)?

where the summation with respect to K is performed as in (1.3-4), and after
summation the value (1.3-4) for I(#) is used. Comparison with (1.3-5)
establishes the second part of Campbell’s theorem.

14 Tue DisTRIBUTION OF I(f)

When certain conditions are satisfied the proportion of time which I(¢)
spends in the range I, I 4 dI is P(I)dI where, as v — w0, the probability
density P(I) approaches

1 -
61-\/'2—,,- e—(r—n!.'zc} (1_4_1)
where I is the average of I(£) given by (1.2-2) and the square of the standard
deviation ¢, i.e. the variance of I(f), is given by (1.2-3). This normal
distribution is the one which would be expected by virtue of the “central
limit theorem” in probability. This states that, under suitable conditions,
the distribution of the sum of a large number of random variables tends
toward a normal distribution whose variance is the sum of the variances
of the individual variables. Similarly the average of the normal distribu-
tion is the sum of the averages of the individual variables.

So far, we have been speaking of the limiting form of the probability
density P(I). Itis possible to write down an explicit expression for P(I),
which, however, is quite involved. From this expression the limiting form
may be obtained. We now obtain this expression. In line with the dis-
cussion given of Campbell’s theorem, we seek the probability density P(I)
of the values of I(f) observed at ¢ seconds from the beginning of each of a
large number, M, of intervals, each of length T.
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Probability that I(¢) lies in range (I, I + dI)
= Y. (Probability of exactly K arrivals) X

K=0
(Probability that if there are exactly
K arrivals, Ix(t) lies in (I, I + dI)).
Denoting the last probability in the summation by Px([)d!, using notation
introduced earlier, and cancelling out the factor dI gives

P(I) = éo p(K) Px(I) (1.4-2)

We shall compute Px(I) by the method of “characteristic functions”® from
the definition

Iu() = X B¢ = 1) (1.3-1)

of Ix(f). The method will be used in its simplest form: the probability that
the sum

LT T e 2

of K independent random variables lies between X and X 4 dX is

40 K
axX - ¢ ] (average value of ¢"™**) du (1.4-3)

27 b k=L
The average value of ¢ ™ i.e., the characteristic function of the distribution
of x; , is obtained by averaging over the values of x; . Although this is the
simplest form of the method it is also the least general in that the integral
does not converge for some important cases. The distribution which gives
a probability of } that 2; = —1and } thatx; = +1is an example of such a
case. However, we may still use (1.4-3) formally in such cases by employ-

ing the relation

+w .
£ e du = 2nd(a) (1.4-4)

where 8(a) is zero except at ¢ = 0 where it is infinite and its integral from
a = —etoa = +eis unity where e > 0.
When we identify a) with F( — ) we see that the average value of

LET T

is
1 T
= f exp [iuF (¢ — &)] dix
Th

® The essentials of this method are due to Laplace. A few remarks on its history are
given by E. C. Molina, Bull. Amer. Math. Soc., 36 (1930), pp. 369-392. "An account of
the method may be found in any one of several texts on probability theory. We mention
“Random Variables and Probability Distributions,” by H. Cram?r, Camb. Tract in
Math. and Math. Phys. No. 36 (1937), Chap. IV. Also “Introduction to Mathematical
Probability,” by J. V. Uspensky, McGraw-Hill (1937), pages 240, 264, and 271-278.
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All of the K characteristic functions are the same and hence, from (1.4-3),

Px(IdI 1s
I +oo —iIu 1 T . K
dIﬂ'-Ln e (?,‘L. exp [iuF(t — 7)] a'-r) du

Although in deriving this relation we have taken K > 0, it also holds for
K = 0 (provided we use (1.4-4)). In this case Po(I) = §(I), because I = 0
when no electrons arrive.

Inserting our expression for Pg(I) and the expression (1.1-3) for p(K)
in (1.4-2) and performing the summation gives

1 [+ .
PO = - L exp (—uu — T

T
+ vf exp [iuF(t — f)]dr) du (1.4-5)
0
The first exponential may be simplified somewhat. Using
T
vT = v j dr
[)
permits us to write
T T
—vT +» f exp [iuF(t — r)]dr = vf (exp [iuF(t — 7)] — 1) dr
o (]
Suppose that A < ¢ < T — A where A is the range discussed in connection

with equation (1.3-1). Taking [F(t — 7)| = O for |t — 7| > A then
enables us to write the last expression as

+oo
y _[ [ — 1] a1 (1.4-6)

Placing this in (1.4-5) yields the required expression for P(I):

T to
S P(I) = 7 L exp‘(—iIu + v L [eFY —Al]a’t)du (1.4-7)

An idea of the conditions under which the normal law (1.4-1) is ap-
proached may be obtained from (1.4-7) by expanding (1.4-6) in powers of
u and determining when the terms involving #° and higher powers of
may be neglected. This is taken up for a slightly more general form of
current in section 1.6. :
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1.5 ExTENSION OF CAMPBELL’S THEOREM

In section 1.2 we have stated Campbell’s theorem. Here we shall give
an extension of it. In place of the expression (1.2-1) for the I(¢) of the shot
effect we shall deal with the current

+o

I(t) = Z aF(t — t) (1.5-1)
where F(¢) is the same sort of function as before and where - -+ a1, a2, -
ax, - -+ are independent random variables all having the same dlstnbutmn
Itis assumed that all of the moments g» exist, and that the events occur at

random
The extension states that the #th semi-invariant of the probability density
P(I) of I, where I is given by (1.5-1), is

A = va" [Lm [F()]" dt (1.5-2)

where v is the expected number of events per second. The semi-invariants
of a distribution are defined as the coefficients in the expansion

log, (ave. &™) = i %’-; ()" + o(u™) (1.5-3)

n=1

i.e. as the coefficients in the expansion of the logarithm of the characteristic
function. The \’s are related to the moments of the distribution. Thus if
my , ma, - -+ denote the first, second - -+ moments about zero we have

Xom
ave. €™ =1+ 2 ;—i‘ ()" + o(u")
n=1

By combining this relation with the one defining the N’s it may be shown that

r_=m1=ll
{_’=mg=7\2+7\1m1
B = mas = As + 2 + Atz

It follows that \; = I and Az = ave. (I — I)’. Hence (1.5-2) yields the
original statement of Campbell’s theorem when we set # equal to one and
two and also take all the a’s to be unity.

The extension follows almost at once from the generalization of expression
(1.4-7) for the probability density P(Z). By proceeding as in section 1.4
and identifying % with aiF(t — #:) we see that

. + T
ave.e © = -11—, [ q(a) da i exp [iuaF(t — #)] diy
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where g(a) is the probability density function for the a’s. It turns out that
the probability density P(I) of I as defined by (1.5-1) is

P(I) = 1 ‘[H exp (—iIu + v _[“ q(a) da

27l' ]
+n 5
l [P _ q) dt) du  (1.5-4)

The logarithm of the characteristic function of P(I) is, from (1.5-4),

+o0 +o0

v g(a) da _[ [T — 1] dt

i R Y

n=1

Comparison with the series (1.5-3) defining the semi-invariants gives the
extension of Campbell’s theorem stated by (1.5-2).

Other extensions of Campbell’s theorem may be made. For example,
suppose in the expression (1.5-1) for I(¢) that &y, %, « -+ &, - - - while still
random variables, are no longer necessarily distributed according to the
laws assumed above. Suppose now that the probability density p(x) is
given where x is the interval between two successive events:

b=hHh+mn (1.5-5)
s=bh+t+x=hL+ 2+ 22
and so on. For the case treated above
p(x) = ve " (1.5-6)

We assume that the expected number of events per second is still ».
Also we take the special, but important, case for which

F(t) =0, t<0 (157
Fit) =¢, t>0.

For a very long interval extending from ¢ = ¢ to¢ = T + ¢, inside of which
there are exactly K events we have, if £ is not near the ends of the interval,

1) = aF(t — 1) + aaF (¢ =ty — @) + -+
+ agpF(t —th — 21+ 4+ — xx)

= alF(t’) + ﬂzF(l’ - xl) + - + GK+1F(5’ il e R .’tx)
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where ¢(a) is the probability density function for the a’s. It turns out that
the probability density P(I) of I as defined by (1.5-1) is

00

1 [+ .
P(I) = 2—7“[ exp (—z[u + v g(a) da

fﬁ [er _ I]dt)du (1.5-4)

The logarithm of the characteristic function of P(I) is, from (1.5-4),

+0 +e0
v q(a) da[ [eF P — 1]dt

=3 @, fﬁ @daa [ P

n=1 N

Comparison with the series (1.5-3) defining the semi-invariants gives the
extension of Campbell’s theorem stated by (1.5-2).

Other extensions of Campbell’s theorem may be made. For example,
suppose in the expression (1.5-1) for I({t) that #y,4, --- &, - - - while still
random variables, are no longer necessarily distributed according to the
laws assumed above. Suppose now that the probability density p(x) is
given where x is the interval between two successive events:

bh=Hh+mn (1.5-5)
bh=b+n=Ht+u+xn
and so on. For the case treated above
plx) = ve . (1.5-6)

We assume that the expected number of events per second is still ».
Also we take the special, but important, case for which

F(it) =0, <0 - (1.5-D)
Fity=¢%, t>0.

For a very long interval extending from ¢ = ¢1to ¢ = T + ¢, inside of which
there are exactly K events we have, if £ is not near the ends of the interval,

If) =aF@t —h) + @F@ —th— x0) + -+

]

+ GK_HFG -l - Xy e — xx)

alF(t’) + GQF(V - xl) + e + GK+1F(t’ —_—x — e — xx)



304 BELL SYSTEM TECHNICAL JOURNAL

I’() = aiF*() + e’ — ;) + -+ + axaF (' — %1+ — xx)
4+ 20 FAVFW — x) + -+ + 2a1axnF()F{E — 21+ —2x)
+ 20003F(t' — a)F(l' — 21— @) + - F -0

where#’ =t — #;. If we integrate I°(t) over the entire interval 0 < ¢ < T
and drop the primes we get approximately

fu P@)dt = (@ + -+ + ak4)e(0)

+ Zalaw(xl) + Zawstp(ﬂil -+ '-‘62) + e+ 2016114»110(3?1 + 4+ xx)
+ 2asas¢(x2) + -+ + -+ + 20xerpe(2E)

where
4o
olx) = F()F(t — x) dx

When we divide both sides by T and consider K and T to be very large,

Kai+ -+

2
T K T 0(0) = vaPe(0)

%[al az 0(%1) + @203 0(22) + + -+ + axax10(xe)] = I,; average @y, @41 @(2z) -

= vé?fﬂ ¢(x)p(a) dx
K —_

1
T [arase(ar + ®2) + -+ -] = ! ave. ax args (X + Xrg1)

= [ an [ dnperpetn + m)
Consequently

T
2O = Lima [ Poya
Th :

T=re0

— vate(0) + 20 [ fu ) plado(x) dz

-I-j; d.‘n’[; dxsp (x)p (v) (s + a2) + - :'

For our special exponential form (1.5-7) for F(¢),

—Qr

¢(x) = %;
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and the multiple integrals occurring in the expression for I?(¢) may be written
in terms of powers of

q= fo p(x)e ™ dx (1.5-8)

Thus

2aI'-’_(.r) = ra® + 2(12»1 E A
and since

+20
I(t) = va F(f) dt = va/a

o0

we have

- -\ 2
) — T =" ()T _
() — I(2) e + (a) [v(l ) 1] (1.5-9)
Equations (1.5-8) and (1.5-9) give us an extension of Campbell’s theorem
subject to the restrictions discussed in connection with equations (1.5-5)
and (1.5-7). Other generalizations have been made” but we shall leave the
subject here. The reader may find it interesting to verify that (1.5-9)

gives the correct answer when p(x) is given by (1.5-6), and also to investi-
gate the case when the events are spaced equally.

1.6 APPROACH OF DISTRIBUTION OF I To A NorMAL Law

In section 1.5 we saw that the probability density P(7) of the noise current
I may be expressed formally as

n=1

42 )
P(I) + 2i1r.[ exp [—z'Iu + > (z'u)")\,./n!] du (1.6-1)

where \, is the nth semi-invariant given by (1.5-2). By setting

2
?\z=a'

x . (1.6-2)

1See E. N. Rowland, Proc. Camb. Phil. Soc. 32 (1936), 580-597. He extends the
theorem to the case where there are two functions instead of a single one, which we here
denote by I(f). According to a review in the Zentralblatt fiir Math., 19, p. 224, Khint-
chine in the Bull. Acad. Sci. URSS, sér. Math. Nr. 3 (1938), 313-322, has continued and
made precise the earlier work of Rowland.
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expanding

exp iz (1) "\ /]
as a power series in u, integrating termwise using

1 [ u'a’
= [m (iue)" exp [—ina-x - T]du

1 4
(n) - — 2 -zl2
" (@) /27 dx" ¢

and finally coilecting terms according to their order in powers of v "%, gives

P(D) ~ o' (x) — 1‘3& ‘“’()+["” “’(>+"“" “”(x)]+

(1.6-3)

The first term is 0(»~"*), the second term is 0(»™"), and the term within
brackets is 0(»*"*). This is Edgeworth’s series.” The first term gives the
normal distribution and the remaining terms show how this distribution is
approached as v — .

(=)"e '™ (@),

1.7 THE Fourier COMPONENTS OF I(f)

In some analytical work noise current is represented as

. 2mnt .

It = - + Z (a,. cos % 1 g i T) (1.7-1)
n=1

where at a suitable place in the work 7 and XV are allowed to become infinite.

The coefficients a, and b, , 1 < n < N, are regarded as independent random

variables distributed about zero according to a normal law..

It appears that the association of (1.7-1) with a sequence of disturbances
occurring at random goes back many years. Rayleigh® and Gouy suggested
that black-body radiation and white light might both be regarded as se-
quences of irregularly distributed impulses.

Einstein’ and von Laue have discussed the normal distribution of the
coefficients in (1.7-1) when it is used to represent black-body radiation, this
radiation being the resultant produced by a great many independent os-

5 See, for example, pp. 86-87, in “Random Variables and Probability Distributions”
by H. Cramér, Cambridge Tract No. 36 (1937).

§ Phil. Mag. Ser. 5, Vol. 27 (1889) pp. 460-469.

7 A. Einstein and L. Hopf, Ann. d. Physik 33 (1910) pp. 1095-1115.

" M. V. Laue, Ann. d. Physik 47 (1915) pp. 853-878.

A. Einstein, Ann. d. Physik 47 (1915) pp. 879-885.

M. V. Laue, Ann. d. Physik 48 (1915) pp. 668-680.
I am indebted to Prof. Goudsmit for these references.
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cillators. Some argument arose as to whether the coefficients in (1.7-1)
were statistically independent or not. It was finally decided that they
are independent.

The shot effect current has been represented in this way by Schottky.®
The Fourier series representation has been discussed by H. Nyquist’ and
also by Goudsmit and Weiss. Remarks made by A. Schuster’ are equiv-
alent to the statement that @, and b, are distributed normally.

In view of this wealth of information on the subject it may appear super- .
fluous to say anything about it. However, for the sake of completeness,
we shall outline the thoughts which lead to (1.7-1).

In line with our usual approach to the shot effect, we suppose that exactly
K electrons arrive during the interval (0, T'), so that the noise current for
the interval is

Ix(l) = E F(t — &) (1.7-2)

The coefficients in the Fourier series expansion of Ik(f) over the interval
(0, T') are anx and b,x where

gijTF(t—t)ex [—iz*"_’"]da
Tizidh k) EXp T

K +o
%’; .L. F() exp[~i2_;’_’(¢ + !,,.)]dt

K

Rne ™n 3 g (1.7-3)

k=1

ang — ibnﬁ’

I

In this expression

1.7-4
—i. . 2 te —i2rni/T ( )
R.e'" = C, — 1S, = T.[ F(t)e di

In the earlier sections the arrival times f,, s, - -+ tx were regarded as K
independent random variable each distributed uniformly over the interval
(O, T). Hence the 6,’s may be regarded as random variables distributed
uniformly over the interval 0 to 2.

Incidentally, it will be noted that in (1.7-3) there occurs the sum of A
randomly oriented unit vectors. When A becomes very large, as it does

8 Aun. d. Physik, 57 (1918) pp. 541-567.

¢ Unpublished Memorandum, “Fluctuations in Vacuum Tube Noise and the Like,”
March 17, 1932,

0 Investigation of Hidden Periodicities, Terrestrial Magnetism, 3 (1898), pp. 13-41.
See especially propositions 1 and 2 on page 26 of Schuster’s paper.
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when v — o, it is known that the real and iraginary parts of this sum are
random variables, which tend to become independent and normally dis-
tributed about zero. This suggests the manner in which the normal dis-
tribution of the coefficients arises. Averaging over the 8;’s in (1.7-3) gives
when n > 0

Gnx = bix = 0 (1.7-5)
Some further algebra gives
== TR
2 (1.7-6)

anKan = Ong dmg = bnﬁme =0

where # # m and n, m > 0.
So far, we have been considering the case of exactly K arrivals in our

interval of length 7. Now we pass to the general case of any number of
arrivals by making use of formulas analogous to

& =3 pK)dn (1.7-7)

K=(0

as has been done in section 1.3. Thus, for n > 0,

dn = Eu =0
ay = bh = fZIR'i = g% (1.7-8)
a‘nbn =auan = bn_bm = 0; nFE m

In the second line we have used ¢, to denote the standard deviation of a,
and b,. We may put the expression for a7 in a somewhat different form

by writing

n 1
fn = 1__1 = 1;Aj-’ Af = -i_‘ (17—9)
where f, is the frequency of the #th component. Using (1.7-4),
+e0 ) 2
o= 2vAj‘ _[ F(t)e ™™ dt (1.7-10)
o0

Thus, o5 is proportional to »/T.

The probability density function P(a., -« av, b, + -+ by) for the 2N co-
efficients, a1, -+ - aw, b1, - -+ by may be derived in much the same fashion
as was the probability density of the noise current in section 1.4. Here N
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is arbitrary but fixed. The expression analogous to (1.4-5) is the 2NV fold
integral

+e0 +e

Play, -+, by) = 2m)™" duy - doy  (1.7-11)

exp [—i(ayms + +++ + byvy) — vT + vTE]

where

2r N
E = 1 f db exp [t’ E (%2 Cn + v,.S,) cos n8 + (v,Cn — %,5,) sin no]
2r Jo =1
(1.7-12)

in which C, — 1S, is defined as the Fourier transform (1.7-4) of F(¢).

The next step is to show that (1.7-11) approaches a normal law in 2N di-
mensions as y — . This appears to be quite involved. It will be noted
that the integrand in the integral defining E is composed of N factors of the
form
exp [ipa cos (10 — ¥x)]

= Jo(pn) + 2i cos (n0 — ¥u)J1(pn) — 2 cos (210 — 2a)Ja(ps) + - ++

where
o= 0+ PC + 8 = 2o + ).

As » becomes large, it turns out that the integral (1.7-11) for the prob-
ability density obtains most of its contributions from small values of # and 2.
By substituting the product of the Bessel function series in the integral for
E and integrating we find

N
E=IIJGn) +4+B+C

where A is the sum of products such as
—2i cos (Yrrl — Y — vo)J1(pe) J1(pt) J1(pest) times N — 3 Jo's

in which0 < k< land2 < k+ 1< N. Similarly Bis thesum of products
of the form

—2i cos (Yo — 2\%)]1(,0%)]2(,0&) times N — 2 Jo's

C consists of terms which give fourth and higher powers in # and ». There
are roughly N?/4 terms of form A and N/2 terms of form B.
Expanding the Bessel functions, neglecting all powers above the third and
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proceeding as in section 1.4, will give us the normal distribution plus the first
correction term. It is rather a messy affair. An idea of how it looks may
be obtained by taking the special case in which F(¢) is an even function cf ¢
and neglecting terms of type B. Then

N —(zit+yd)/2

Play, - an, by, - by) = (1 4+9) [[ -  (1.7-12)
: n=1 2wy
where
@, b,
xﬂ = — yn =
On On
7= (T7)7" Z;, [rse(aexe — meyve) + 2 yeetyeyel  (1.7-13)
key

and the summation extendsover 2 < b+ I < Nwith 2 < [.

It is seen that if T"and NV are held constant, the correction term n ap-
proaches zero as » becomes very large. A very rough idea of the magnitude
of n may be obtained by assuming that unity is a representative value of the
a’s and y’s. Further assuming that there are N* terms in the summation
each one of which may be positive or negative suggests that magnitude of
the sum is of the order of N. Hence we might expect to find that % is of
the order of N(2»T)™ "2

PART II
POWER SPECTRA AND CORRELATION FUNCTIONS

2.0 INTRODUCTION

A theory for analyzing functions of time, ¢, which do not die down and
which remain finite as ¢ approaches infinity has gradually been developed
over the last sixty years. A few words of its history together with an ex-
tensive bibliography are given by N. Wiener in his paper on “Generalized
Harmonic Analysis”."* G. Gouy, Lord Rayleigh and A. Schuster were led
to study this problem in their investigations of such things as white light
and noise. Schuster™ invented the “periodogram’ method of analysis which
has as its object the discovery of any periodicities hidden in a continuous
curve representing meteorological or economic data.

1 Acta Math., Vol. 55, pp. 117-258 (1930). See also ‘“Harmonic Analysis of Irregular
Motion,” Jour. Matk. and Phys. 5 (1926) pp. 99-189,

12 The periodogram was first introduced by Schuster in reference 10 cited in Section
1.7. He later modified its definition in the Trans. Camb. Phil. Soc. 18 (1900), pp. 107-
135, and still later redefined it in “The Periodogram and its Optical Analogy,” Proc. Roy.
Soc., London, Ser. A, 77 (1906) pp. 136-140. In its final form the periodogram is equiva-
lent to $w(f), where w(f) is the power spectrum defined in Section 2.1, plotted as a func-

tion of the period T’ = (2xf)~L
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The correlation function, which turns cut to be a very useful tool, appar-
ently was introduced by G. L. Taylor.” Recently it has been used by quite
a few writers" in the mathematical theory of turbulence.

In section 2.1 the power spectrum and correlation function of a specific
function, such as one given by a curve extending to ¢ = o, are defined by
equations (2.1-3) and (2.1-4) respectively. That they are related by the
Fourier inversion formulae (2.1-5) and (2.1-6) is merely stated; the dis-
cussion of the method of proof being delayed until sections 2.3 and 2.4. In
section 2.3 a discussion based on Fourier series is given and in section 2.4 a
parallel treatment starting with Parseval’s integral theorem is set forth.
The results as given in section 2.1 have to be supplemented when the func-
tion being analyzed contains a d.c. or periodic components. This is taken
up in section 2.2,

The first four sections deal with the analysis of a specific function of .
However, most of the applications are made to functions which behave as
though they are more or less random in character. In the mathematical
analysis this randomness is introduced by assuming the function of ¢ to be
also a function of suitable parameters, and then letting these parameters be
random variables. This question is taken up in section 2.5. In section 2.6
the results of 2.5 are applied to determine the average power spectrum and
the average correlation function of the shot effect current. The same thing
is done in 2.7 for a flat top wave, the tops (and bottoms) being of random
length. The case in which the intervals are of equal length but the sign
of the wave is random is also discussed in 2.7. The representation of the
noise current as a trigonometrical series with random variable coefficients
is taken up in 2.8. The last two sections 2.9 and 2.10 are devoted to prob-
ability theory. The normal law and the central limit theorem, respectively,
are discussed.

2.1 Some RESULTS OF GENERALIZED HARMONIC ANALYSIS

We shall first state the results which we need, and then show that they are
plausible by methods which are heuristic rather than rigorous. Suppose
that I(f) is one of the functions mentioned above. We may think of it as
Leing specified by a curve extending from¢ = —w to /= «. I(f) may
be regarded as ccmposed of a great number of sinusoidal components whose
frequencies range from 0 to 4. It does not necessarily have to be a noise
current, but if we think of it as such, then, in flowing through a resistance of
one ohm it will dissipate a certain average amount of power, say p watts.

13 Diffusion by Continuous Movements, Proc. Lond. Math. Soc., Ser. 2, 20, pp. 196~
212 (1920).

14 See the text “Modern Developments in Fluid Dynamics” edited by S. Goldstein,
Oxford (1938).
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That portion of p arising frem the components having frequencies between
fand f + df will be denoted by w(f)df, and consequently

o= [ iy (2.1-1)

Since w(f) is the spectrum of the average power we shall call it the “power
spectrum’ of (). It has the dimensions of energy and on this account is
frequently called the “energy-frequency spectrum” of 7(#). A mathematical
formulation of this discussion leads to a clear cut definition of w(f).

Let ®(¢) be a function of ¢, which is zero outside the interval 0 < ¢ < T and
is equal to I(¢) inside the interval. Its spectrum S(f) is given by

T
S() = fu 16 ™ (2.1-2)
The spectrum of the power, w(f), is defined as
2
w(f) = Limit "’Egﬂ (2.1-3)
T—0

where we consider only values of f > 0 and assume that this limit exists.
This is substantially the definition of w(f) given by J. R. Carson® and is
useful when I(¢) has no periodic terms and no d.c. component. In the
latter case (2.1-3) must either be supplemented by additional definitions or
else a somewhat different method of approach used. These questions will
be discussed in section 2.2.

The correlation function () of I{¢) is defined by the limit

1 T
v(r) = Linit 2 [ 1010 + 0 @t (2.1-4)

which is assumed to exist. ¥(7) is closely related to the correlation coeffi-
cients used in statistical theory to measure the correlation of two random
variables. In the present case the value of I(f) at time # is one variable and
its value at a different time ¢ 4+ 7 is the other variable.

The spectrum of the power w(f) and the correlation function y(r) are
related by the equations

w(f) = 4 fo ¥(r) cos 2nfr dr (2.1-5)

Y(r) = j: w(f) cos 2nfr df (2.1-6)

15 “The Statistical Energy-Frequency Spectrum of Random Disturbances,” B.S.T.J.,
Vol. 10, pp. 374-381 (1931).
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It is seen that Y(7) is an even function of 7 and that
¥(0) =»p (2.1-7)
When either y(7) or w(f) is known the other may be obtained provided the
corresponding integral converges.
2.2 Power SpeEctRuM FOR D.C. AND PERIODIC COMPONENTS

As mentioned in section 2.1, when I(f) has a d.c. or a periodic com-
ponent the limit in the definition (2.1-3) for w(f) does not exist for f equal
to zero or to the frequency of the periodic component. Perhaps the most
satisfactory method of overcoming this difficulty, from the mathematical
point of view, is to deal with the integral of the power spectrum.’®

f
fu w(e) dg (2.2-1)

instead of with w(f) itself.

The definition (2.1-4) for ¥(7) still holds. If, for example,

: I(t) = A 4 C cos (2nft — ) (2.2-2)
Y(7) as given by (2.1-4) is

2
W) = 4 + % cos 2nfor (2.2-3)

The inversion formulas (2.1-5) and (2.1-6) give
f 0 . 2
[w@de =2 [ 9222004,
0 Th T

Y(r) = j:o cos 2mfr d [[;r w(g) dg]

16 This is done by Wiener,!! loc. cit., and by G. W. Kenrick, “The Analysis of Irregular
Motions with Applications to the Energy Frequency Spectrum of Static and of Telegraph
Signals,” Phil. Mag., Ser. 7, Vol. 7, pp. 176-196 (Jan. 1929). Kenrick appears to be one
of the first to apply, to noise problems, the correlati>a function method of computing the
power spectrum (one of his problems is discussed in Szc. 2.7). He bases his work on re-
sults due to Wiener. Khintchine, in “Korrelationstheorie der station’iren stochastischen
Prozesse,’ Math. Annalen, 109 (1934), pp. 604-615, proves the following theorem: A
necessary and sufficient condition that a function R(f) may be the correlation function of
a continuous, stationary, stochastic process is that R(f) may be expressed as

(2.2-4)

+
R(@) = [ cos lx dF(x)

o0

where F(x) is a certain distribution function. This expression for R(f) is essentially the
second of equations (2.2-4). Khintchine's work has bezzn estended by H. Cran:r, “On
the theory of stationary random processes,” Ann. of Math, Ser. 2, Vol. 41 (194)), pp.
215-230. ~ However, Khintchine and Cram®r appear to be interested primarily in ques-
tions of existence, representation, etc., and do not stress the concept of the power spectrum.
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where the last integral is to be regarded as a Stieltjes’ integral. 'When the
expression (2.2-3) for ¥(7) is placed in the first formula of (2.2-4) we get

;- A2 when 0 <f < fp
- 2 B
fo w(g) dg = A2+%, “« 1> . (2.2-5)

When this expression is used in the second formula of (2.2-4), the increments
of the differential are seen to be 4*at f = 0 and C*/2at f = fo. The re-
sulting expression for ¢/(7) agrees with the original one. '
Here we desire to use a less rigorous, but more convenient, method of
dealing with periodic components. By examining the integral of w(f) as
given by (2.2-5) we are led to write :

C2
w(f) = 24°8(f) + 5 8(f — fo) (2.2-6)
where &(x) is an even unit impulse function so thatif € > 0
[ o) ax =3 [ 6 ax =3 (2.2-7)
0 €

and 8(x) = 0 except at ¥ = 0, where it is infinite. This enables us to use
the simpler inversion formuias of section 2.1. The second of these, (2.1-6),
is immediately seen to give the correct expression for (7). The first one,
(2.1-5), gives the correct expression for w(f) provided we interpret the in-
tegrals as follows:

fw cos 2xfr dr = 38(f)
’ (2.2-8)

j: cos 2mfor cos 2xfr dr = 16(f — fo)

It is not hard to show that these are in agreement with the fundamental
interpretation

o too
£ e gy — f & dt = 8(f) (2.2-9)

which in its turn follows from a formal application of the Fourier integral
formula and

+ T .
_[ a(f):;“’““df:f_ (et df =1 (2.2-10)

We must remember that fo > Oand f > 0 in (2.2-8) so that 8(f + fo) = 0
for f = 0,
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The definition (2.1-3) for w(f) gives the continuous part of the power
spectrum. In order to get the part due to the d.c. and periodic com-
ponents, which is exemplified by the expression (2.2-6) for w(f) involving
the & functions, we must supplement (2.1-3) by adding terms of the type

24%(f) + G 8/ = fo) = [I;L, US O ]m

+ [Lin‘nt 2S¢ | ]a(f -

T—w0

(2.2-11)

The correctness of this expression may be verified by calculating S(f) for
the I(¢) of this section given by (2.2-2), and actually carrying out the limiting
process.

2.3 DiscussioN OF RESULTS oF SEcTION ONE—FOURIER SERIES

The fact that the spectrum of power w(f) and the correlation function
¥(r) are related by Fourier inversion formulas is closely connected with
Parseval’s theorems for Fourier series and integrals. In this section we shall
not use Parseval’s theorems explicitly. We start with Fourier’s series and
use the concept of each component dissipating its share of energy inde-
pendently of the behavior of the other components.

Let that portion of I(¢) which lies in the interval 0 < ¢ < T be expanded
in the Fourier series

_ @ 2 2rnt . Zﬂ'ﬂt _
I() = 5 + n;l (a,. cos == + b, +~f:—) (2.3-1)
where
T
oy = Ef 1) cos ?L"‘dz
Tdh
(2.3-2)

b, = %f 1(2) sin ?_L‘d:

Then for the interval —7 <t < T — 1,

I6+7 =2+ Zj)l (a,, con 2ﬂ(‘TL’) + by sin 2”_"‘(;—"‘1)) (2.3-3)

Multiplying the series for I(¢) and I(¢f + 7) together and integrating with
respect to ¢ gives, after some reduction,

l T
: j; IO + 7) dt s

2% )cosg +O(I)

]

MEN
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where the last term represents correction terms which must be added be-
cause the series (2.3-3) does not represent I({ + r) in the interval (T'— 7, T)
when 7 > 0, orin the interval (0, — 7)if r < 0.

If 1(¢) were a current and if it were to flow through one ohm for the in-
terval (0, T), each component would dissipate a certain average amount
of power. The average power dissipated by the component of frequency
fa=n/T cycles per second would be, from the Fourier series and elementary
principles,

% (a5 + b%) watts, n#=0
. (2.3-5)
a
4
The band width associated with the nth component is the difference in
frequency between the # 4+ 1 th and #th components:

watts, n=0

St = fo = 5= = = ohs

Hence if the average power in the band f, f + df is defined as w(f)df, the
average power in the band fp41 — fa is

n\1
w n)(fn+1 - fn) =w (T) T
and, from (2.3-5), this is given by

n 1_1 2 2
‘W(T)E,—E(dn'f‘bn), n#=0
(2.3-6)

2
ap
Z ’

When the coefficients in (2.3-4) are replaced by their expressions in terms
of w(f) we get

w(O)%,= =0

% j; "IOIC + D di+ 0 (%’)

1 < n 2anT
T ,.Z:u w (T) cos —x

) 27nT dn
— ) cos

(2.3-7)

T T

I
é“ﬁ
8
g
N
ek

= j: ) w(f) cos 2xfr df
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where we have assumed T so large and w(f) of such a nature that the summa-
tion may be replaced by integration.

If T remains finite, then as T — < with 7 held fixed, the correction term
on the left becomes negligibly small and we have, upon using the definitions
(2.1-4) for the correlation function ¥(7), the second of the fundamental
inversion formulas (2.1-6). The first inversion formula may be obtained
from this at once by using Fourier’s double integral for w({f).

Incidentally, the relation (2.3-6) between w(f) and the coefficients a, and
b, is in agreement with the definition (2.1-3) for w(f) as a limit involving
| S(f) | *. From the expressions (2.3-2) for @, and dx, the spectrum S( fn)
given by (2.1-2) is

S =2 (an = it0)

Then, from (2.1-3) w(f,) is given by the limit, as T'— o, of

2150 1* = zﬁ(n+b)

- L@+
2
and this is the expression for w (T) given by (2.3-6).

2.4 DISCUSSION OF RESULTS OF SECTION ONE—PARSEVAL’'S THEOREM

The use of Parseval’s theorem' enables us to derive the results of section
2.1 more directly than the method of the preceding section. This theorem
states that

+eo

j RPN df = | GuOG(—1) dt (2.4-1)

where F1, G1 and Fz, Gz are Fourier mates related by
+eo .
F(f) = G ™ dt
-]
o (24-2)

Glt) = F(Ne™™* df

It may be proved in a formal manner by replacing the Fi on the left of
(2.4-1) by its expression as an integral involving G:(f). Interchanging the

17 E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford (1937).
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order of integration and using the second of (2.4-2) to replace F» by Ge gives
the right hand side.

We now set Gi{t) and Gz(?) equal to zero except for intervals of length T
These intervals and the corresponding values of Gi and G; are

Gi(t) = I(t), 0<t<T (2.4-3)
Gt) =I(—t+1), 1—T<t<r

From (2.4 3) it follows that Fi(f) is the spectrum S(f) of I(¢) given by equa-
tion (2.1-2). Since I(¢) is real it follows from the first of equations (2.4-2)
that :

L S(=f) =S¥, (2.4-4)

where the star denotes conjugate complex, and hence that | S(f) | *is an
even function of f.
The first of equations (2.4-2) also gives

Fa(f) = f _ I(=t + 1)e ™ gy

- [ " 1) a (24-5)
0

= S*(f)g—ih'fr

When these G’s and F’s are placed in (2.4-1) we obtain
T—r

~+oa
[ isore = [ 1o+ na @i

where we have made use of the fact that Ga(--£) is zero except in the inter-
val —7 <t < T — 7 and have assumed = > 0. If 7 < O the limits of
integration on the right would be —7 and T.
Since | S(f) |* is an even function of f we may write (2.4-6) as
2

%fu TOIC + 1) di + o(%) = fu L’%ﬁm cos 2nfrdf  (24-7)

If we now define the correlation function ¢(7) as the limit, as T"— o, of the
left hand side and define w(f) as the function

w(f) = Limit 2 S;f) 5 s> (2.1-3)

we obtain the second, (2.1-6), of the fundamental inversion formulas., As
before, the first may be obtained from Fourier’s integral theorem.
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In order to obtain the interpretation of w(f)df as the average power dis-
sipated in one ohm by those components of I(f) which lie in the band f,
[+ df, weset 7 = 0in (2.4-7):

T L]

Limit & f roa = [ o) df (2.4-8)
T— T (]

The expression on the left is certainly the total average power which would

be dissipated in one ohm and the right hand side represents a summation

over all frequencies extending from 0 to e. It is natural thercfore to in-

terpret w(f)df as the power due to the components in f, f + df.

The preceding sections have dealt with the power spectrum w(f) and corre-
lation function ¢(7) of a very general type of function. It will be noted
that a knowledge of w(f) does not enable us to determine the original func-
tion. In obtaining w(f), as may be seen from the definition (2.1-3) or from
(2.3-6), the information carried by the phase angles of the various compo-
nents of /(¢) has been dropped out. In fact, as we may see from the Fourier
series representation (2.3-1) of I(f) and from (2.3-6), it is possible to obtain
an infinite number of different functions all of which have the same w(f),
and hence the same (7). All we have to do is to assign different sets of
values to the phase angles of the various components, thereby keeping
a% + b’ constant.

2.5 HArMoNIC ANALYVSIS FOR RanpoM FuncTiONs

In many applications of the theory discussed in the foregoing sections
I(¢) is a function of ¢ which has a certain amount of randomness associated
with it. For example I(f) may be a curve representing the price of wheat
over a long period of years, a component of air velocity behind a grid placed
in a wind tunnel, or, of primary interest here, a noise current.

In some mathematical work this randomness is introduced by considering
I(t) to involve a number of parameters, and then taking the parameters to
be random variables. Thus, in the shot effect the arrival times ¢, ,22, - - - Ix
of the electrons were taken to be the parameters and each was assumed to he
uniformly distributed over an interval (0, T).

For any particular set of values of the parameters, I(f) has a definite power
spectrum w(f) and correlation function (7). However, now the principal
interest is not in these particular functions, but in functions which give the
average values of w(f) and ¢(r) for fixed fand 7. These functions are ob-
tained by averaging w(f) and ¢(7) over the ranges of the parameters, using,
of course, the distribution functions of the parameters.

By averaging both sides of the appropriate equations in sections 2.1 and
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2.2 it is seen that our fundamental inversion formulae (2.1-5) and: (21*6)
are unchanged. Thus, .

() =4 Ln;(r) cos 2xfr dr (2.5-1)

W) = [ @(f) cos 2nfr df (2.5-2)

where the bars indicate averages taken over the parameters with f or 7held

constant. _
The definitions of % and ¢ appearing in these equations are likewise ob-

tained from (2.1-3) and (2.1-4)

#(f) = Limit %f”’ (2.5-3)
and
- o1 T
¥(r) = L;En.;t T -£ INOI(t + ) dt (2.5-4)

The values of ¢ and 7 are held fixed while averaging over the parameters.
In (2.5-3) S(f) is regarded as a function of the parameters obtained from

I(t) by
S() = fo " e ar (2.1-2)

Similar expressions may be obtained for the average power spectrum for
d.c. and periodic components. All we need to do is to average the ex-
pression (2.2-11)

Sometimes the average vaiue of the product 7(t)I(¢ + 7) in the definition
(2.5-4) of () is independent of the time T. This enables us to perform
the integration at once and obtain

v(r) = I)I{t + 7) (2.5-5)

This introduces a considerable simplification and it appears that the simplest
method of computing @’f) for an I(/) of this sort is first to compute ¥(7),and
then use the inversion formula (2.5-1).

2.6 First ExampLE—THE Smotr EFfrFECT

We first compute the average on the right of (2.5-5). By using the
method of averaging employed many times in part I, we have

G+ = ;:% #(K) Te(DI=CG + 7) (2.6-1)
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where p(K) is the probability of exactly K electrons arriving in the inter-
val (0, T),

( VT)

P(K) = (1.1-3)

and
L) = X F¢ — 1) (131)

Multiplying Ix(t) and Ix(t + 7) together and averaging t1, 2, --- Ik
over their ranges gives

LOLET D =2 3 [ 5 [ TEFC = wFe+ 17—

This is similar to the expression for E(l) which was used in section 1.3 to
prove Camphbell’s theorem and may be treated in much the same way.
Thus, if fand { + 7 lie between A and T — A, the expression ahove becomes

K f” FOF + 1) di + K(K )[ RO dz:r

When this is placed in (2.6-1) and the summation performed we obtain
an expression independent of 7. Consequently we may use (2.5-5) and get
+e0

¥(r) = v FOF(t + 7) dt + 1) (2.6-2)
where we have used the expression for the average current
+
I =v | F@ad (1.3-4)

-]

In order to compute @(f) frem ¢(7) it is convenient to make use of the
fact that ¢(r) is always an even function of 7 and hence (2.5-1) may also
be written as

+.
w(f) = 2 ¥(r) cos 2afr dr (2.6-3)
Then
+2 +»
@(f) = 2v di F(2) dr F(t + 7) cos 2xfr

+
42 -[ mz cos 2xfrdr
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oo

2y Real Part of dt F(f)e ™" [ ' F(t")e™ "

+w
+ 2@2 _Lo & dr
= 2| s() | + 20D 5(7) (2.6-4)

In going from the first equation to the second we have written ¢’ = ¢ + 7
and have considered cos 2mfr to be the real part of the corresponding ex-
ponential. In going from the second equation to the third we have set

+0 .
s(f) = [ F(t)e ™" dt (2.6-5)
and have used
+o
[ e dt = §(f) (2.2-9)

The term in @(f) involving 8(f) represents the average power which would
be dissipated by the d.c. component of I(¢) in flowing through one ohm.
It is in agreement with the concept that the average power in the band
0 < f < ¢ e > 0but very small, is

foe a(f) dt

210 [ s af

= 1()’

(2.6-6)

The expression (2.6-4) for @(f) may also be obtained from the definition
(2. '5-3) for @(f)plus the additional term due to the d.c. component ob-
tained by averaging the expressions (2.2-11). We leave this as an exercrse
for the reader. He will find it interesting to study the steps in Carson’s"
paper leading up to equation (8). Carson’s R(w) is related to our @(f) by

#(f) = 2nR(w)

and his f(iw) is equal to our s(f).
Integrating both sides of (2.6-4) with respect to f from 0 to = and using

= '/; w(f) df
gives the result
_ ) te
P-T = 2,,[0 |s(7) 2 df (2.6-7)

1 Loc, cit.



MATHEMATICAL ANALYSIS OF thiNDOM NOISE 323

This may be obtained immediately from Campbell’s theorem by applying
Parseval’s theorem.

As an example of the use of these formulas we derive the power spectrum
of the voltage across a resistance R when a current consisting of a great num-
ber of very short pulses per second flows through R. Let F(¢ — #;) be the
voltage produced by the pulse occurring at time # . Then

F(t) = Re(t)

where ¢(f) is the current in the pulse. We confine our interest to relatively
low frequencies such that we may make the approximation

+<0
s(f)

Re()e ™™t gy

4
~ R_[ (1) dt = Rg

where ¢ is the charge carried through the resistance by one pulse. From
(2.6-4) it follows that for these low frequencies the continuous portion of
the power spectrum for the voltage is constant and equal to

w(f) = Wk’ = 2IRY (2.6-8)

where T = vg is the average current flowing through R. This result is often
used in connection with the shot effect in diodes.

In the study of the shot effect it was assumed that the probability of an
event (electron arriving at the anode) happening in df was »df where » is the
expected number of events per second. This probability is independent of
the time 2. Sometimes we wish to introduce dependency on time."® As an
example, consider a long interval extending from 0 to 7. Let the prob-
ability of an event happening in¢, ¢ 4 dt be Kp(t)dt where K is the average
number of events during T and p(¢) is a given function of # such that

foT p0) A= 1

For the shot effect p(t) = 1/T.

What is the probability that exactly K events happen in T? As in the
case of the shot effect, section 1.1, we may divide (0, T) into N intervals
each of length At so that NAt = T. The probability of no event happening

in the first At is
= (Al
— Kp| =) At
1 p(z)A

18 A careful discussion of this subject is given by Hurwitz and Kac in “Statistical
Analysis of Certain Types of Random Functions.” "I understand that this paper will
soon appear in the Annals of Math. Statistics.
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The product of N such probabilities is, as N — «, Al — 0;

esp l:—K' .£ ' »(0) dt] =¥

This is the probability that exactly O events happenin 7. 1In the same way
we are led to the expression

K* %

¢ (2.6-9)

for the probability that exactly K events happen in T.

When we consider many intervals (0, T') we obtain many values of K and
also many values of I measured ¢ seconds from the beginning of each interval.
These values of 7 define the distribution of I at time . By proceeding as in
section 1.4 we find that the probability density of I is

+o0 T
P(I, 1) = % m du exp [—iur + K fo p(x) (™7 — 1) dx]

The corresponding average and variance is

I=K fuT p(X)F(t — %) dx

(-1 =K fT p(2)F*(t — x) dx (2.6-10)

If S(f) is given by (2.1-2) and s(f) by (2.6-5) (assuming the duration of
F(t) short in comparison with T) the average value of | S(f) |* may be ob-
tained by putting (1.3-1) in (2.1-2) to get

Sx(f) = s() &

Expressing Sx(f) Sx(f), where the star denotes conjugate complex, as a
double sum and averaging over the #’s, using p(¢), and then averaging over
the K’s gives

T 2
ST = &1 [0+ B[ [ s asf | ot
This may be used to compute the power spectrum from (2.5-3) provided
#(x) is not periodic. If p(x) is periodic then the method of section 2.2
should be used at the harmonic frequencies. If the fluctuations of p(¢) are
slow in comparison with the fluctuations of F(¢) the second term within the
brackets of (2.6-11) may generally be neglected since there are no values of
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f which make both it and s(f) large at the same time. On the other hand,
if both p(f) and F() fluctuate at about the same rate this term must be
considered.

2.7 SecoND ExXAMPLE—RANDOM TELEGRAPH SiGNAL!S

Let I(¢) be equal to either a or —a so that it is of the form of a flat top
wave. Let the intervals between changes of sign, i.e. the lengths of the
tops and bottoms, be distributed exponentially. We are led to this dis-
tribution by assuming that, if on the average there are u changes of sign per
second, the probability of a change of sign in ¢, ¢ 4 dt is udt and is independ-
ent of what happens outside the interval £, 4+ df. From the same sort of
reasoning as employed in section 1.1 for the shot effect we see that the
probability of obtaining exactly K changes of sign in the interval (0, T ) is

(1)
p(K) = KT et (2.7-1)

We consider the average value of the product I@®)I(t 4+ 7). This product
is a’ if the two I’s are of the same signand is — @’ if they are of opposite sign.
In the first case there are an even number, including zero, of changes of sign
in the interval (¢, ¢ 4+ 7), and in the second case there are an odd number of
changes of sign. Thus

Average value of T()I(t 4 7) (2.7-2)

= ¢ X probability of an even number of
changes of signin¢, ¢ + 7

— a® X probability of an odd number of
changes of signiné, ¢ + =

The length of the interval under considerationis |+ 7 — ¢ | = | 7 | seconds.
Since, by assumption, the probability of a change of sign in an elementary
interval of length A? is independent of what happens outside that interval,
it follows that the same is true of any interval irrespective of when it starts.
Hence the probabilities in (2.7-2) are independent of  and may be obtained
from (2.7-1) by setting T = | r | . Then (2.7-2) becomes, assuming = > 0
for the moment,

IWI¢E + 7)

]

a’[p(0) + p(2) + p(4) + ---]
— a[p(1) + p(3) + (5) + +-]

2
=a28—.llf[1 _i’-i;'_*_(’% — .‘-]

= gl (2.7-3)
16 Kenrick, cited in Section 2.2.
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From (2.5-5), this gives the correlation function for 7(¢)
¥(r) = ™! (2.7-4)

'fhe corresponding power spectrum is, from (2.5-1),

#(f) = 4d° fo 67 cos 2nfr dr
2.7-5
. @9

,.TEJ{'E + ”3

Correlation functions and power spectra of this type occur quite fre-
quently. In particular, they are of use in the study of turbulence in hydro-
dynamics. We may also obtain them from our shot effect expressions if we
disregard the d.c. component. All we have to do is tc assume that the
effect F(f) of an electron arriving at the anode at time £ = 0 is zero for
t < 0, and that F() decays exponentially with time after jumping to its
maximum value at £ = 0. This may be verified by substituting the value

F() = 2 1/%{“‘, t>0 (2.7-6)

for F(f) in the expressions (2.6-2) and (2.6-4) (after using 2.6-5) for the
correlation function and energy spectrum of the shot effect.

The power spectrum of the current flowing through an inductance and a
resistance in series in response to a very wide band thermal noise voltage is
also of the form (2.7-5).

Incidentally, this gives us an example of two quite different I(#)’s, one a
flat top wave and the other a shot efféct current, which have the same corre-
lation functions and power spectra, aside from the d.c. component.

There is another type of random telegraph signal which is interesting to
analyze. The time scale is divided into intervals of equal length 4. In an
interval selected at random the value of I() is independent of the values in
the other intervals, and is equally likely to be 4-a or —a. We could con-
struct such a wave by flipping a penny. If heads turned up we would set
I() = ¢in 0 < ¢t < k. Ii tails were obtained we would set I(f) = —a in
this interval. ~Flipping again would give either +a or —a for the second
interval 2 < ¢t < 2k, and so on. This gives us one wave. A great many
waves may be constructed in this way and we denote averages over these
waves, with ¢ held constant, by bars.

We ask for the average value of I(t)I(t + 7), assuming 7 > 0. First
we note that if 7 > % the currents correspond to different intervals for all
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values of £. Since the values in these intervals are independent we have

It +n=Iylg+r =0

for all values of £ when 7 > h.

To obtain the average when = < / we consider / to lie in the first interval
0 < ¢t < k. Since all the intervals are the same from ‘a statistical point
of view we loge no generality in doing this. If¢t + 7 < h,ie,t < h — 7,
both currents lie in the first interval and

IOIE + 7) = &

Ift > h — 7 the current I(¢t + 7) corresponds to the second interval and
hence the average value is zero.

We now return to (2.5-4). The integral there extends from 0 to T.
When 7 > #, the integrand is zero and hence

¥(7) =0, > h (2.7-7)

When 7 < #, our investigation of the interval 0 < ¢ < /% enables us to write
down the portion of the integral extending from 0 to /:

h h—1 h
f IOIt + 7)dt = f a*di + 0dt
0 0 h—1

= a'(h — 1)

Over the interval of integration (0, ') we have T/k such intervals each
contributing the same amount. Hence, from (2.5-4),

2
¥(r) = Limit ‘iT% h — 1)

T—

(2.7-8)
=a2(1—-;’-), 0<r<h
The power spectrum of this type of telegraph wave is thus
h
w(f) = 4a2£ (1 — ;—:) cos 2xfr dr
(2.7-9)

_ ., fasin =z
= 2 (——wﬂt )

This is seen to have the same general behavior as @(f) for the first type
of telegraph signal given by (2.7-5), when we relate the average number,
u, of changes of sign per second to the interval length 2 by uh = 1.
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2.8 REPRESENTATION OF NOISE CURRENT

In section 1.8 the Fourier series representation of the shot effect current
was discussed. This suggests the representation®

N
I(t) = 21 (@n cos wpt + by, sin wa 1) (2.8-1)

where
wp = 2fn,  fu = nAf (2.8-2)

a,and b, are taken to be independent random variables which are distributed
normally about zero with the standard deviation Vw(f)Af. w(f)is the
power spectrum of the noise current, i.e., w(f) df is the average power which
would be dissipated by those components of I(f) which lie in the frequency
range f, f + df if they were to flow through a resistance of one chm.

The expression for the standard deviation of a, and b, is obtained when
we notice that Af is the width of the frequency band associated with the nth
component. Hence w(f,)Af is the average energy which would be dissi-
pated if the current

@y COS wal + bpsin wpt

were to flow through a resistance of one ohm, this average being taken over
all possible values of @, and b, . Thus

w({,.)Af = g’ cos” wal + 2a,b, cOS wat sinwad + b_f.ssin2 wol = a_":, = E (2.8-3)

The last two steps follow from the independence of @, and b, and the identity
of their distributions. It will be observed that w(f), as used with the repre-
sentation (2.8-1), is the same sort of average as was denoted in section 2.5
by @(f). However, w(f) is often given to us in order- to specify the spectrum
of a given noise.

For example, suppose we are interested in the output of a certain filter
when a source of thermal noise is applied to the input. Let A(f) be the
absolute value of the ratio of the output current to the input current when a
steady sinusoidal voltage of frequency f is applied to the input. Then

w(f) = ¢A’({) (2.8-4)

* As mentioned in section 1.7 this sort of representation was used by Einstein and
Hopf for radiation. Shottky (1918) used (2.8-1), apparently without explicitly taking
the coefficients to be normaliy distributed. Nyquist (1932) derived the normal distribu-
tion from the shot effect.



MATHEMATICAL ANALYSIS OF RANDOM NOISE 329

If W is the average power dissipated in one ohm by I(¢),

14

Il

Ifgxit% fu ) dt = fu " wlf) df

- (2.8-5)
= f Af) df

which is an equation to determine ¢ when W and A(f) are known.

In using the representation (2.8-1) to investigate the statistical properties
of I(¢) we first find the corresponding statistical properties of the summation
on the right when the a’s and &’s are regarded as random variables distrib-
uted as mentioned above and 7 is regarded as fixed. In general, the time
¢ disappears in this procedure just as it did in (2.8-3). We thenlet N — <«
and Af — 0 so that the summations may be replaced by integrations. Fi-
nally, the frequency range is extended to cover all frequencies from 0 to .

The usual way of looking at the representation (2.8-1) is to suppose that
we have an oscillogram of /() extending from¢ = Oto¢ = . This oscil-
logram may be cut up into strips of length T. A Fourier analysis of I(t)
for each strip will give a set of coefficients. These coefficients will vary
from strip to strip. Our representation (TAf = 1) assumes that this varia-
tion is governed by a normal distribution. Our process for finding sta-
tistical properties by regarding the a’s and &’s as random variables while ¢
. is kept fixed corresponds to examining the noise current at a great many
instants. Corresponding to each strip there is an instant, and this instant
occurs at ¢ (this is the ¢ in (2.8-1)) seconds from the beginning of the strip.
This is somewhat like examining the noise current at a great number of
instants selected at random.

Although (2.8-1) is the representation which is suggested by the shot
effect and similar phenomena, it is not the only representation, nor is it
always the most convenient. Another representation which leads to the
same results when the limits are taken is" *

N
I(t) = 2 ¢ncos (wnt — ¢n) (2.8-6)
n=1
where o1, ¢2 , - - + ¢n are angles distributed at random over the range (0, 2x)

and
en = [2w(fDAN?, @ = 2nfn, fo= nAf (2.8-7)

19 This representation has often been used by W. R. Bennett in unpublished memoranda
written in the 1930's.



330 BELL SYSTEM TECHNICAL JOURNAL

In this representation I(¢) is regarded as the sum of a number of sinusoidal
components with fixed amplitudes but randem phase angles.

That the two different representations (2.8-1) and (2.8-6) of I(¢) lead
to the same statistical properties is a consequence of the fact that they are
always used in such a way that the “central limit theorem*” may be used
in both cases.

This theorem states that under certain general conditions, the distribu-
tion of the sum of N randem vectors approaches a normal law (it may be
normal in several dimensions**) as N — =. In fact from this theorem it
appears that a representation such as

N

I() = 2 (@ €08 wnt + b, sin wat) (2.8-6)

n=

where a, and b, are independent random variables which take only the values
=+ [w(f,)Af]'?, the probability of each value being %, will lead in the limit
to the same statistical properties of 7(¢) as do (2.8-1) and (2.8-6).

29 Tuae NORMAL DISTRIBUTION IN SEVERAL VARIABLES®

Consider a random vector 7 in K dimensions. The distribution of this
vector may be specified by stating the distribution of the K components,

X1, %, -+ g, of r. 7 is said to be normally distributed when the prob-
ability density function of the x's is of the form
2n) 52| M | exp [—3a'M ' a) (2.9-1)

where the exponent is a quadratic form in the #’s. The square matrix M
is composed of the second moments of the ’s.

M= [”3‘ par “3"] (2.9-2)
175).4 R KEEK

where the second moments are defined by

pun = :\'E ’ Hiz2 = 1%, etc. (29—3)
| M | represents the determinant of M and &’ is the row matrix
af =[x, a9, -+ x&] (2.9-9)

xis the column matrix obtained by transposing ',

* See section 2.10.

** See section 2.9,

20, Cramér, “Random Variables and Probability Distributions,” Chap. X., Cambridge
Tract No. 36 (1937).
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The exponent in the expression (2.9-1) for the probability density may
be written out by using
K K
dM 7 x =Y Mea o, (2.9-5)
miam | M|
where M,, is the cofactor of u,s in M.

Sometimes there are linear relations between the «’s so that the random
vector r is restricted to a space of less than K dimensions. - In this case the
appropriate form for the density function may be obtained by considering
a sequence of K-dimensional distributions which approach the one being
investigated.

If ; and 7, are two normally distributed random vectors their sumr + 72
is also normally distributed. It follows that the sum of any number of
normally distributed random vectors is normally distributed.

The characteristic function of the normal distribution is

K K
ave, g1rtinerat HEEIK ey I:_% 22 et zn] (2.9-6)

r=1 s=1
2.10 CENTRAL Livmit THEOREM

The central limit theorem in probability states that the distribution of the

sum of N independent random vectors 7, + 72 + --- + 7y approaches a
normal law as N — e« when the distributions of 71, 72, - - - rysatisfy certain
general conditions.”

As an example we take the case in which r,, 75, - -+ are two-dimensional

vectors™, the components of 7, being x, and ¥, . Without loss of generality
we assume that

i =0, Fa = 0.
The components of the resultant vector are

X=xm+x+ -+
V=wm+y+--+ow

and, since r,, r3, - -+ are independent vectors, the second moments of the
resultant are

(2.10-1)

R R
pr = V=914 3+ - + 3% (2.10-2)
pe = XV = xy 4 29y 4 -+ + apyw

7 Incidentally, von Laue (see references in section 1.7) used this theorem in discussing
the normal distribution of the coefficients in a Fourier series used to represent black-body
radiation. He ascribed it to Markoff.

2 This case is discussed by J. V. Uspensky, “Introduction to Mathematical Probabil-
ity”, McGraw-Hill (1937) Chap. XV.

M =

et
I
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Apparently there are several types of conditions which are sufficient to
ensure that the distribution of the resultant approaches a normal law. One
sufficient condition is that™

e Z [z, f—0
(2.10-3)

g E [9.—0
The central limit theorem tells us that the distribution of the random
vector (X, V) approaches a normal law as N — «. The second moments
of this distribution are given by (2.10-2). When we know the second mo-

ments of a normal distribution we may write down the probability density
function at once. Thus from section 2.9

— [#11 #12]’ Ml — | M l—l[ H22 _#12]
M1z o2 — 12 M1
| M | = pupe — p1z
 =[X, V]
M 7w = | M [ (peX® — 20 XY + m V)
The probability density is therefore

(unpae — uin) ™ exp |:—,usz2 - V° -I-2 2.umXY] (2.10-3)
27 2(p11 poz — pia)

Incidentally, the second moments are related to the standard deviations
o1, o0z of X, ¥ and to the correlation coefficient 7 of X and ¥ by

pu = o1, p = a3, 12 = 70102 (2.104)
and the probability density takes the standard form
(11—~ 1 X XY )] _
27a1 02 P 2(1 - 1'2) 0'% 0'10'2 + (2'10 5)

21 This is used by Uspensky, loc. cit. Another condition analogous to the Lindeberg
condition is given by Cramer?® loc. cit.

(To be concluded)



