Linear Servo Theory
By ROBERT E. GRAHAM

The servo system is a special type of feedback amplifier, usually including a
mixture of electrical, mechanical, thermal, or hydraulic circuits. With suitable
design, the behavior of these various circuits can be described in the universal
language of linear systems. Further, if the servo system is treated in terms of
circuit response to sinusoidally varying signals, it then becomes possible to
clrav.lv upon the wealth of linear feedback amplifier design based on frequency
analysis.

This paper discusses a typical analogy between electrical and mechanical
systems and describes, in frequency response language, the behavior of such
common servo components as motors, synchro circuits, potentiometers, and tach-
ometers. The elementary concepts of frequency analysis are reviewed briefly,
and the familiar Nyquist stability criterion is applied to a typical motor-drive
servo system. The factors to be considered in choosing stability margins are
listed—system variability, noise enhancement, and transient response. The
basic gain-phase interrelations shown by Bode are summarized, and some of
their design implications discussed. In addition to the classical methods,
simple approximate methods for calculating dynamic response of servo systems
are presented and illustrated.

Noise in the input signal is discussed as a compelling factor in the choice of
servo loop characteristics. The need for tailoring the servo loop to match the
input signal is pointed out, and a performance comparison given for two simple
servos designed to track an airplane over a straight line course. The use of
subsidiary or local feedback to linearize motor-drive systems, and predistortion
of the input signal to reduce overall dynamic error are described.

1. INTRODUCTION

SIMPLE servo system is one which controls an output quantity
according to some required function of an input quantity. This
control is of the “report back” type. That is, some property of the output
is monitored and compared against the input quantity, producing a net
input or “error” signal which is then amplified to form the output. The
first statement defines the servo as a transmission system; the second, as a
feedback loop. The problem of servo design is then to fashion the desired
transmission properties while meeting the stability requirements of the
feedback loop. This is the familiar design problem of the feedback amplifier.

2. Tre SErvo CIrRcuIT

The design of linear feedback amplifiers has been developed to a high
degree in terms of frequency response; that is, in terms of circuit response
to sinusoidal signals.! The servo system is a special type of feedback
amplifier, and usually can be made fairly linear. Thus, it is logical to
analyze and design the servo circuit on a frequency response basis. Also,

1See “Network Analysis and Feedback Amplifier Design,” by H. W. Bode, D. Van

Nostrand Co., 1945.
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servo. systems usually are combinations of electrical, mechanical, thermal,
or hydraulic circuits. In order to describe the behavior of these various
circuits in homogeneous terms, it is desirable. to recognize the analogous
relationships established by similarity of the underlying differential equa-
tions. Before proceeding to a discussion of frequency analysis, a typical
analogy between electrical and mechanical systems will be described.

2.1 Electrical-Mechanical Analogy

Confining the discussion to rotating mechanical systems, the analogy
which will be chosen here puts voltage equivalent to torque, and current to
rotational speed. This choice leads to the array of equivalents shown in
Fig. 1; inductance, capacity, and resistance corresponding to inertia, com-
pliance, and mechanical resistance, respectively. Charge is equivalent to
angular displacement, and both kinetic and potential energy are self-
analogous. The ratio of voltage to current, or torque to speed has the
dimensions of resistance. In an interconnected electro-mechanical system,
the ratio of voltage to speed or torque to current may be called a transfer
resistance. Similarly, the ratio of voltage to angular displacement, or of
torque to charge, is a transfer stiffness (reciprocal of capacity or compliance).

Some commonly used devices for coupling between electrical and me-
chanical circuits are shown in Figs. 2 and 3. The motor, Fig. 2a, is used to
convert an electrical current 7 into a mechanical speed or “current” § (=
d8/dt). The electrical control current i is produced by the voltage difference
between an applied emf ¢ and a counter-rotational emf (not indicated),
acting upon the total electrical mesh resistance R,.* In the mechanical
circuit, a torque proportional to i forces a ““current”” § through the mechanical
load R, , J.

An equivalent mechanical mesh directly relating shaft speed to the applied
emf is shown in Fig. 2b. A fictitious generated torque pe acts upon the
mechanical load through an apparent mechanical resistance R e
is a transfer constant determined both by the motor properties and the
electrical mesh resistance R,. R, is similarly governed and is inversely
proportional to R, .

The motor may be compared to a vacuum tube having an amplification
factor u; and a plate resistance R;,. However, the motor is usually much
more a bilateral coupling element than the vacuum tube, due to the effect
of the counter emf upon the electrical mesh.

The potentiometer, tachometer, and synchro circuit shown in Fig. 3 are
all means for converting a mechanical quantity to an electrical one. All
three are substantially unilateral coupling elements. The potentiometer

* R, includes both the source resistance and the motor winding resistance.
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delivers an output voltage e proportional to its shaft angle . Thus, the
ratio of e to 6 is a transfer stiffness constant S; . The synchro circuit con-
sists of a synchro generator connected to a control transformer, and delivers
an output voltage e proportional to 6, — 6:, the angular difference between

ELECTRICAL MECHANICAL
INDUCTANCE INERTIA J
L P .
8
L_T L@' i CC
o b FLYWHEEL
di de
e=LE: =, 48
dt T4t
CAPACITY COMPLIANCE
Cc c e [}
o—{—o —]l—
L LJ L e SPRING
e - T
1 f A
e=E/:dt T:é./;dt
RESISTANCE MECHANICAL
RESISTANCE
R R 8 R
I
)
e T__J DASHPOT
e=RL T=Ré
SERIES L-R-C SERIES J-R-C J
L R C J R C 8 c g
=T o o~ BT o %;
S R R n
e T '
S R Ny =98 trasl /s
e Ldt ﬂ.ihcﬁ.dl‘. T-Jdt +RE+= fodt

Fig. 1—Electrical-mechanical analogy.

the two shafts. Thus the action of the synchro pair is that of a combined
transfer stiffness and differential. The tachometer is a generator which
produces an output voltage e proportional to 6, the angular speed of its
shaft. The ratio of e to § is a transfer resistance constant R; ,
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There are many other specific devices used to convert from mechanical
to electrical quantities. Most are equivalent to the potentiometer or syn-
chro circuit, one such being a lobing radar antenna, which delivers a voltage
proportional to an angular difference. A different, less widely used device

-is the accelerometer, a generator which delivers an output voltage propor-
tional to the angular acceleration of its shaft. Its characteristic is that of a
transfer inductance or inertia.

J % +(Rm+Rm)é=p,e
© ' O]

Fig. 2—Motor as a transfer device. (a) Motorandload. (b) Equivalent mechanical mesh.
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Fig. 3—Mechanical-electrical transfer devices.

2.2 Frequency Analysis

A brief review of the basic concepts of periodic analysis will be presented.
It is assumed that the driving force applied to a network may be analyzed
in terms of a series of sinusoidal components of various amplitudes, fre-
quencies, and phases. The network response to each sinusoidal component
is then evaluated, and the over-all result obtained by a summation of all
such elementary responses. This is the formal procedure. Actually
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it is often unnecessary to perform these precise operations in order to obtain
a-broad picture of the network behavior.

“The method for determining the network response to a sinusoidal input is
developed as follows. It is assumed that the circuit parameters are con-
stant, independent of signal amplitude. Then, as indicated in Fig. 1, a
sirigle R-L-C or R-J-C mesh may be represented by a constant-coefficient
linear differential equation. Choosing the electrical mesh for illustration,

(Lp + R+ 1/Cp)i() = e(d),

where p" = d"/di", 1/p = f dt, and e(f), i(¢) are the mesh voltage and cur-

rent respectively. This may be further abbreviated as

Z(p)it) =e(®), . (1
where Z(p) = Lp + R + 1/Cp. For purposes of frequency analysis we
are interested only in the forced or steady-state solution of (1), where ()
is a sinusoidal voltage E sin wf. This steady-state solution is

B
[ Z(jo) |
where jw has replaced  in the function Z(p), and the phase shift ¢ is the
negative of the phase angle of the complex number Z(jw).? This result is
conventionally abbreviated as

E
I ZGa) (2)
where I is a complex number whose magnitude equals the peak amplitude
of the current, and whose phase angle gives the associated phase shift.
The function Z(jw) is called the impedance of the mesh.
The relationship between torque, angular speed, and mechanical im-
pedance is of course the same as expressed by (2). That is,

T

6= ZGa)’ (2.1)

where 6 is the complex peak amplitude of the sinusoidally varying speed, T
is the peak amplitude of the applied sinusoidal torque, and Z(jw) is the
mechanical impedance obtained by substituting jw for p in the operator
Z(p)= Jp+ R+ 1/Cp. Since theangular displacement is the time integral

?w is used to represent frequency in radians/sec, or 2 times frequency in cycles/sec.
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of the speed, the expression for § may be obtained by dividing both SIdeS of
equation (2. 1) by p or, for the periodic case, by jw. Thus

T

foZ(Ga)” 22
The function jwZ(jw) is the complex stiffness of the mechanical mesh.
The phase shift of 8 relative to 6 is —90 degrees, as seen from a comparison
of (2.1) and (2.2).

For an electro-mechanical network consisting of a number of intercon-
nected meshes, a set of simultaneous differential equations of the type of
(1) may be written. If jw is substituted for p in these equations, there
results a set of simultaneous algebraic equations which lead directly to the
steady-state periodic solution. If a sinusoidal voltage or torque is applied
at some mesh of the network, the resulting sinusoidal current or speed
response in some other mesh is given by, using the notation of (2),

(Cause)

(Response) = ZGa)

where Z,(jw) for the chosen pair of meshes is obtained from the solution
of the algebraic equations. Z,(jw) is called a transfer impedance, and may
express the ratio of a voltage to current or speed, or of a torque to current
or speed. The above relation also may be written as

(Response) = Y(jw)-(Cause),

where V,(jw) = 1/Z,(jw) is called the transfer admittance between the two
chosen parts of the network. In this form the response amplitude is ob-
tained by multiplying the forcing sinusoid by | ¥,(jw) |, while the phase
shift is given directly by the angle of ¥,(jw). The transfer ratio between
like or analogous quantities at two parts of the network is similarly a
complex function of frequency, having the dimensions of a pure numeric.

Servo systems usually consist largely of elementary networks isolated
by unilateral coupling devices (vacuum tubes, potentiometers, etc.).
Thus, over-all transfer ratios often may be evaluated by taking the product
of a number of simple “‘stage’ transfer ratios, rather than by solving a large
array of simultaneous equations. If the absolute magnitudes of the transfer
ratios or ‘‘transmissions’” are expressed in decibels® of logarithmic gain,
both the over-all gain and phase shift of a number of tandem stages may be
obtained by simple addition of the individual stage gain and phase values,

The transfer ratios of the conversion devices shown in Figs. 2 and 3

3 The gain in decibels for a given transfer ratio is taken to be 20 logip of the absolute
value of the ratio.
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may be written by inspection. Referring to Fig. 2b, the transfer admittance
of a motor with resistance and inertia load may be written as

g=_—___ut
E joF + R, + R.’
Mz 1 ‘
= B, , 3
J jo 4+ wn (@)
where
_ Rn+ Rn
Wm = ——J_ .

wy, is the reciprocal of the time-constant of the motor and control mesh,
and is 2 times the “corner” frequency at which the inertial impedance just
equals the apparent mechanical resistance. Writing the transfer charac-
teristic in terms of shaft position, rather than speed,

0 _ ,ut_ 1 )

E T jo(jo + om)’
For values of w small compared with wm, 8/E is proportional to 1/jw.
This factor has a phase shift of —90 degrees and approaches infinity as w
approaches zero. This is merely a statement in frequency analysis language
that the motor shaft angle is the time integral of the applied voltage, for
slowly changing voltage. For more rapidly varying voltage, such that w
is large compared to wn , §/E is proportional to 1/(jw)? or —1/w? the angular
variation being shifted — 180 degrees with respect to the voltage variation.

The transfer ratio of the potentiometer, Fig. 3a, may be written as

(3.1)

E

i St, (4.1)
while for the tachometer, Fig. 3c,

E

7 = R,, (4.2)
or

% = juRy. (4.3)

Usually at some point in the system a compensating or ‘‘equalizing”
network will be included to modify the transfer ratio of the basic com-
ponents to the desired over-all transmission .characteristic. - Frequently
this equalizer is incorporated in the electrical section of the servo because
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of the comparative ease with which electrical circuit components may be
assembled in desired combinations. The transfer characteristic of the
equalizer may be simple or complicated, but in general may be written in
the form,

sy ~ (jo 4 w1)(fw + ws) -« -
(o + w)(o + ws) --’

where the constants «; , ws , etc. may be real or complex. The synthesis of
equalizing networks is a well known art and will not be discussed here,
particularly since most of the equalization characteristics used in present
servo systems can be realized with simple networks.

(5)

2.3 Simple Servo System (Single Loop)

The simple servo system may be divided into two basic parts, an amplify-
ing circuit and a monitoring or comparison circuit. Such a division is

£i(t) Fi +pF2 I Fa falt]
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Fig. 4—Simple servo system.

indicated in Fig. 4, where u and B are the transfer characteristics of the am-
plifying and monitoring parts, respectively. Fi and F, represent typical
sinusoidal components of the total input and output quantities f1(f) and
fa(#),* while u and § are complex-valued functions of jw as described in the
previous section.

The return signal 8F, from the monitoring circuit is added to the servo
input F; to form a net p circuit input F1 + 8F:. The servo transfer char-
acteristic is found by setting

Fa = p(Fy 4 BFy),
from which

Fz = Fl- (6)

"
1 —uB

4 That is, F1 and F; are complex quantities employed in the same fashion as I in equa-
tion (2).
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The closed system formed by the two basic circuits in tandem isof course'a
feedback loop, the loop transmission characteristic being given by ug:
Any desired form of servo transfer ratio may be obtained by an unlimited
number of p and B circuit combinations.® However, the 8 characteristic,
which is usually determined by a passive network or an inherent property
of a monitoring device, tends to be more stable with time and varying signal
amplitude than that of the p circuit, which may include vacuum tubes,
motors, and other variable components. Consequently, it is desirable to
have the servo transfer characteristic largely dependent upon the 8 circuit
properties ‘alone. - This may be accomplished by making the loop trans-
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Fig. 5—Synchro follow-up system.

mission uf very large compared to unity over the essential frequency range
of the servo input signal fi(f). Under this condition, equation (6) becomes,

Fzgl_i}j, | g | > 1. (6.1)

Thus the external transfer characteristic is set by 8.* If, for instance, Fy
and F are similar or analogous quantities and it is desired to have the servo
output a replica of the input, 8 may be chosen as —1, yielding F» o~ F;.

It is not always easy to determine the basic parts p and g of a servo by
inspection of a schematic diagram of the system. An example is furnished
by the synchro follow-up system shown in Fig. 5a. As previously discussed,
the characteristic of the synchro comparison circuit is that of a differential

& Feedback stability requirements place certain restrictions on the permissible forms of
pB. This will be discussed in the next section.

* The error arising from the approximate nature of (6.1) will be discussed in the next
section as one type of “‘servo error.”
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transfer stiffness S, , the voltage output of the control transformer being
given by S.(6i — 6:). However, as seen from the modified diagram of
Fig. 5b, the 8 characteristic is simply — 1, the transfer constant S, appearing
in the g circuit. Thus if the loop transmission is kept large, the essential
relation demanded between 6; and 6; does not depend upon the value of ¢

E_ E
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—p - s¢ Gt

@
13
"

Fig. 6—Potentiometer loop.
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Fig. 7—Tachometer loop.

(as is obvious from physical considerations). This result also applies to a
radar angle-tracking loop, where the received deviation or error signal is
proportional to the difference between the angular coordinate of the target
and that of the antenna system.

Figures 6 and 7 represent two servo systems where the input is electrical
and the output mechanical. In Fig. 6 a potentiometer is used as a monitor-
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ing device, the transfer stiffness in this case appearing in the g8 circuit.
If 0 is regarded as the output, then 8 = —S; ,* and the transfer characteristic
is, for high loop gain,

_£ = E = C‘ E,

6~
St

where C; = 1/S;. Thus the over-all characteristic between input voltage
and angular displacement is simply a transfer compliance constant. In
Fig. 7 a tachometer monitor is used. Regarding angular speed 6 as the
output, then 8 = —R;, the transfer resistance of the tachometer. The
transfer equation is thus

9’;—’-_%= =g;E,

2 by

where g:(= 1/R,) is a transfer conductance.

3. DEsIGN OF SIMPLE LINEAR SERVO SYSTEMS

The majority of servo systems in use, while often greatly extended in
space and frequently including highly diversified transmission elements,
may be represented by one essential feedback loop. However, a well
designed servo often will incorporate numerous subsidiary or local feedback
loops around stages of the system, in order to obtain.a desired degree of
linearity or performance with easily obtainable circuit components. Com-
mon examples of such local feedback loops are electrical feedback around
vacuum tube amplifiers, and tachometer (velocity) feedback around motor-
drive systems. These subsidiary feedback loops are almost always designed
so that they are individually stable when the over-all feedback loop is
opened (assuming the method employed for opening the over-all loop does
not disturb the impedance terminations of the local feedback stages).
If it is thus assumed that any subsidiary loops are individually stable, then
the primary servo loop design may be treated simply as that of a single loop,
whose over-all loop transmission is obtained by taking the product of the
external transfer ratios of the various stages.

The design of a single loop servo may be divided into the design of the
loop transmission 3, and one of the remaining parts, » or 8. As previously
described, it is usually desirable to fix 8 according to the required basic
input-output relationship of the servo, thus leaving u3 as a single charac-
teristic to be chosen.

* It is assumed here that the transmission of the u circuit is basically positive. The
negative signs associated with S; of Fig. 6 and R; of Fig. 7 are then introduced (by poling)

to make the loop transmission pg essentially negative., This stipulation ensures what is
commonly called “negative feedback,” when the" loop delay is zero.
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As usual, specification of the form of uB(jw) is beset by a series of per-
formance objectives on the one hand and a set of physical limitations and
restrictions on the other. Assuming the relationship expressed by (6.1)
to be the required one, it would seem desirable to make uB(jw) very large
compared to unity at all frequencies. However, there are reasons why this
is neither possible nor actually desirable. As the value of v is increased,
the loop transmission is eventually controlled by parasitic circuit elements
such as distributed capacity and inductance in the electrical circuits, and
distributed inertia, compliance, and backlash in the mechanical circuits.
The effect of these parasitic elements at the higher signal frequencies is to
cause | uB | to decrease as a very high order of 1/w with increasing frequency.
Tt will be shown, however, that feedback stability considerations require
the loop transmission to be decreasing comparatively slowly through the
frequency region where | u8 | is of the order of unity. Thus u8 must be
reduced below unity at a frequency sufficiently low to avoid excessive con-
tribution from the parasitics.

The presence of “noise” or undesired disturbances in the servo input
signal is another compelling factor in the design of the loop characteristic.
Input noise is harmful both in causing spurious output fluctuations andin
overloading the power stages of the servo system. Both of these effects
are reduced by narrowing the frequency band of the servo transfer charac-
teristic. Referring to the expression for the transfer characteristic given
by (6), it may be seen that a restricted transfer bandwidth may be obtained
by reducing u and g well below unity at a small value of signal frequency.®

On the other side of the picture is the requirement of fidelity in main-
taining the desired input-output relationship. Undue narrowing of the
transfer bandwidth of the servo results in large dynamic error, the mag-
nitude of which depends both upon the character of the input signal and
upon the chosen transfer characteristic.

The optimum design of a servo system, for a specified input signal and
noise, thus is a compromise between dynamic error and output noise fluc-
tuations, with stability considerations and parasitic circuit elements re-
stricting the possible choice of loop transmission characteristics.

3.1 Stability of Single Loop Systems

The word stable as applied to a servo system is used here to imply a sys-
tem whose transient response decreases with increasing time. It is possible

6 When the 8 characteristic is under suitable design control, another method is available*
Thus if 8 is made to rise in the frequency region of the desired transfer cut-off, and if uB
is maintained large beyond this region, (6.1) shows that the desired restriction is effected.
For a given transfer characteristic, this cut-off method requires a wider frequency range
for pf8 and is thus more vulnerable to the effects of parasitic circuit elements. However,
shaping of both the u and @ circuits permits a more rapid cut-off of the servo transfer
characteristic than is possible with p circuit shaping alone.
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to determine the stability of a completed servo design by obtaining the
transient solution of its differential equation. Though often very tedious,
this is fairly straightforward. However, this method of procedure often is
of little help either in guiding the initial design or in predicting the necessary
changes, should the trial design be found unstable. The addition of even
one circuit element to a design will generally create an entirely new differen-
tial equation whose solution must be found.

An alternative method for determining servo system stability, based on
frequency analysis, furnishes the necessary information in a form which
greatly facilitates the design procedure. This method is relatively simple
to apply, even when the system has a large number of meshes and a high
order differential equation, and the additive effects of minor circuit modi-
fications are easily evaluated.

The stability of a single loop servo system—or of a primary loop, when
the subsidiary loops are individually stable—may be investigated by plot-
ting the negative of the loop transmission, —uB(jw), on a complex plane
for real values of w ranging from minus infinity to plus infinity, (The
negative sign is iritroduced because the loop transmission pB is generally
arranged to have an implicit negative sign, apart from network phase shifts.
Thus —pB is a positive real number when the network phase shift is zero.)
Then the necessary and sufficient criterion for system stability is that the result-
ing closed curve must not encircle or intersect the point —1,0.* This type of
plot is commonly called a Nyquist diagram, and is widely used in the design
of electrical feedback amplifiers. An added stipulation is necessary if u8(jw)
becomes infinite at a real value of w, say w’. In this case an infinitesimal
positive real quantity e must be added to jw; that is, the function to be
plotted is pB(jw + €). This has no effect upon the plot except in the neigh-
borhood of the singularity, where uB(jw -+ €) is caused to traverse an arc of
infinite radius as w is varied through the value «'.

As seen from (3.1), inclusion of a motor in a servo loop of the type shown
in Figs. 5 and 6 will cause an infinite loop transmission at w = 0, assuming
there is transmission around the remainder of the loop at zero frequency.
The motor is the only commonly encountered circuit element capable of
producing an infinite loop transmission at real frequencies.

In order to illustrate the use of the Nyquist diagram, a motor servo sys-
tem of the type shown in Fig. 6 will be chosen. Again referring to equation
(3.1), it may be seen that the transfer ratio of the motor and potentiometer
is,

* This criterion is due to H, Nyquist, “Regeneration Theory,”. B. 8. T. J., January 1932.
Detailed descriptions of stability criteria for single and multiple loop systems are given by

Bode, loc. cit., and by L. A. MacColl, “Fundamental Theory of Servomechamsms " D,
Van Nostrand Co., 1945.
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Es _ =S, 1
E, T ju(jo + wm)
Tt is assumed that the amplifier includes an equalizing network such that
the over-all amplifier characteristic is

Jw 4+ w w Y
A( w1 )(jw-{—wz) ’

where A4, w;, and w, are positive real constants. The loop transmission is
given by the product of these two transfer factors and thus may be written

as
oy o wm jo + w1 w Y
wb(ju) = jo (jw + wm)( @ )(7@ + wz) ’ @)

where w is a positive real constant given by

A ASepe _  ASim
" “ond  Rm+ RN

The three factors in parenthesis have been so grouped that they all approach
unity for small values of w. Thus the low-frequency behavior of —ug is
given by wo/jw. This quantity has a pole at w = 0, so that it is necessary
to plot the function '

wo
jw + €
in the neighborhood of @ = 0. Asw is, in succession, a small negative quan-
tity, zero, and a small positive quantity; the expression of (7.1) is correspond-
ingly a large positive imaginary, a large positive real, and a large negative
imaginary. Thus (7.1) traverses an infinite arc from the positive imaginary
axis to the negative imaginary axis as w increases through the value zero.

Assuming the numerical values

wp = 200 sec™?

—pB(juw + €) =~

(7.1)

wm= 1
w = 10 “
W = 200 “ ’

equation (7) may be rewritten as

gty = 200( 1 (e +10\( 200 Y :
w9 = 50 () o Fom) - 0

The phase angle of —uf in degrees is, from (7.2),

B= —90 — tan w4 tan? 2 — 3 tan” .
an  w - tan 10 tan 300° (7.3)
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while the absolute magnitude is given by

lub | = gg_o 1/(1 -|{ w)(mz{(; mz)(zoozzog-z uz)" (7.4)

The Nyquist diagram of (7.2) is shown in Fig. 8. To emphasize the im-
portant features, radial magnitudes have been plotted on a logarithmic

—_—

b INF.W," =
I

NEGATIVE w
~/

\
POSITIVE w

Fig. 8—Nyquist diagram of —pupg.

scale.” The arrows indicate the direction of traversal as w is varied from
— to +. The infinite arc traversed as w varies through zero is indi-
cated symbolically by the dotted semicircle in the right half plane.® As
is the case for any physical system, the plot for negative values of w is
simply the mirror image of the positive frequency plot. '

Since the polar plot does not encircle or intersect the “critical’’ point —1,0,

7 Except in the immediate neighborhood of the origin, where a linear scale must be em-

ployed to plot the value ug = 0.
8 The exact shape of this arc is of no consequence.
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the system is seen to be stable.” From a practical standpoint it is necessary
to know not only that a design is stable, but that it has sufficient margin
against instability. The need for proper stability margin arises from two
general considerations. First, the loop transmission of the physical system
will vary with time due to aging, temperature changes, line voltage fluctua-
tions, etc. Also the physical embodiment will depart from the paper de-
sign due to errors of adjustment and measurement, and to the effects of
unallowed-for parasitic elements. Second, a design which is too near
instability will have an undesirable transient response—large overshoots
and persistent oscillations—and will unduly enhance noise in the input
signal.

Stability margin is measured in a sense by the minimum displacement
between the polar plot and the point —1,0. In feedback amplifier design,
two numbers often are taken as a measure of margin against instability.
These are called the gain margin and the phase margin. The gain margin,
Gn , measures the amount, in decibels, by which the magnitude of ug falls
short of unity, at a phase angle of 4180 degrees. The numerical value of
gain margin for the system of Fig. 8 is about 18 db, which is the required
increase in amplifier gain to make the servo unstable.”” That is, this in-
crease in amplifier gain would multiply the curve of Fig. 8 by a constant
factor such that it would intersect the point —1,0. The phase margin,
B, is equal to the absolute magnitude of the angle between —p8 and the
negative real axis, at |yf| = 1. Figure 8 illustrates a phase margin of
about 50 degrees. That is, if the points on the curve where |u8| = 1.0
were swung toward the negative real axis by about 50 degrees they would
coincide with the point — 1,0, and the servo would be unstable.

The type of transient response obtained with reasonable gain and phase
margins is indicated in Fig. 9, which shows the response of the illustrative
servo system to an input step. The initial overshoot is about 25%, and
the oscillation damps out very quickly. For the general case, (6) may be

rewritten in the form
— F ‘
Fs = up ]-—‘. 8
: [1 — w8l —B - ®

The relation Fo = F;/—f8 may be regarded as the desired one, with the
bracketed factor acting as the inevitable modifier. Then if the quantity

% With more complicated systems it may not be obvious whether or not the plot en-
circles —1, 0. A simple test employs a vector with its origin at the —1, 0 point and its
tip on the curve. If the vector undergoes zero net rotation as it traces along the curve
from w = 0 to w = =, the curve does not encircle the critical point.

10 In some servo systems a decrease in amplifier gain also may cause instability. Such
systems are still covered by the polar plot criterion of stability, and are commonly called
““Nyquist stable,” or “conditionally stable.”
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—pB exhibits gain and phase margins of the order of 10 db and 50 degrees
respectively, the transient response of the modifying factor to a step function
will be well-damped and generally not overshoot more than about 25%,.
If the gain margin is sufficient, the phase margin usually will be the dominant
factor in determining the size of the initial overshoot. The required phase
margin for critical damping depends upon the exact shape of pB(jw), but
in general is about 60 degrees. The gain margin needed in a particular
design will depend upon the expected variability of the loop transmission.
Radar tracking loops should usually have gain margins of the order of 15

i.4

N

A
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o 0. 0.2 0.3 0.4 0.5 0.6 0.7 0.8
TIME IN SECONDS -+

SERVO RESPONSE

Fig. 9—Transient response of illustrative servo system.

db or more because of the large number of factors which may cause the loop
gain to vary.

While the polar diagram gives a clear picture of stability considerations,
it is usually more convenient for design purposes to plot the gain and phase
of —pf as separate curves on a logarithmic frequency scale, for positive
values of w. This is illustrated in Fig. 10, for the sample servo system.
Under two commonly met conditions, the requirement for single loop!
stability on this type of plot is simply that the absolute value of phase shift
be less than 180 degrees at zero db gain (|u8| = 1). The conditions are
that the connective polarity be such as to make —pB positive when the

:;lAgain, multiple loop systems may be included if all subsidiary loops are individually
stable.
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network phase shifts vanish, and that the gain curve cross zero db at only
one frequency.!

An advantage of this logarithmic diagram is that commonly encountered
forms of | w8 | vary as w™" for intermediate or asymptotic frequency regions,
and thus plot as corresponding straight line segments. From (7.4) it may
be seen that the illustrative form of | p8 | behaves, in turn, as 200w™,
20002, 20w, and 1.6 X 108%™, as w is increased. These asymptotic lines
are drawn in lightly in Fig. 10, the actual gain describing smooth transi-
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Fig. 10—Loop characteristic of illustrative servo system.

tions between adjacent asymptotes. Since the logarithmic slope of w** is
+6k db/octave,” the successive asymptotic slopes in Fig. 10 are —6, —12,
—6, and —24 db/octave. The junctures of adjacent asymptotes occur at
values of w of 1, 10, and 200. These juncture frequencies are called “cor-
ner” frequencies, and may be seen from (7.2) to coincide with the real con-
stants or “roots” added to jw in each of the three factors in parentheses.
The corner associated with the factor 200/jw is of course at w = 0. The
corner of the last, or cubed factor is a multiple one, joining two asymptotes
differing in slope by 18 db/octave. From a knowledge of such corner

12 This discussion assumes that xB has a low-pass configuration; that is, only the high
frequency cut-off is considered. If uS has a ow-frequency cut-off also, then a corre-
sponding requirement identical with the above must be added.

13 An octave is taken to be a 2:1 span in frequency, and 6 db is of course very closely
equivalent to a 2:1 increase in | u8 |.
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frequencies, and the fact that the actual gain curve lies 3 db from an iso-
lated simple asymptotic corner, the gain curve can usually be drawn in
without further computation.”® The phase curve also is easily constructed
by adding up the elementary phase curves associated with the various cor-
ners. As may be seen from (7.3), these component phase curves all will
have the same shape on a logarithmic frequency plot, merely being shifted
along the frequency scale. The phase contributed by each simple corner
will be 4= 45 degrees at the corner frequency, the sign depending upon
whether the associated root appears in the numerator or in the denominator.

It is an extremely important fact that the very requirement of stability
imposes an unambiguous interrelationship between the gain and the phase
shift of most types of transfer characteristic! By the general mathema-
tical methods leading to the previously discussed stability criteria, Bode'®
has shown that this is true for the broad class of network structures com-
monly used in feedback loop design. That is, if either the transfer gain
or phase shift is specified at all frequencies, the attendant phase or gain can
be computed with'/at further information. This class of networks is called
minimum phase. Any stable structure composed of lumped circuit ele-
ments will have a transfer characteristic of the minimum phase type, pro-
vided it does not include an all-pass section.® All-pass characteristics are
seldom used in the design of feedback loops, since their inclusion in the loop
always reduces the stability margins achievable with a given high-frequency
cut-off. Thus the unique interrelationship between phase and gain may
be assumed for the loop characteristic —pg in single-loop feedback systems.
The nature of this relationship is discussed in detail by Bode. Briefly, the
phase shift at any frequency w, is proportional to a weighted average of
the gain slope in db/octave, over the entire logarithmic frequency scale.
The weighting factor sharply emphasizes gain slopes in the immediate vicin-
ity of w, , while the contributions of gain slopes at remote frequencies are
reduced in proportion to the logarithmic frequency span from the par-
ticular frequency w..'” For transfer characteristics of the form W™,
having a constant gain slope of -6k db/octave,® the associated phase shift
is also constant and equal to 4-90% degrees. For transfer functions which
behave approximately as w** over a finite frequency span, the phase shift

14 The corner frequency concept is less useful if the roots are complex. However a
great many servo systems are so constructed that p8 has only real roots.

B Loc. cit. Also see “Relations between attenuation and phase in feedback amplifier
design,” by H. W. Bode, B. §. T. J., July 1940, p. 421.

16 An all-pass section is one which has constant gain but varying phase shift versus
frequency, and is usually composed of a lattice, bridged T, or other bridge type circuit.

17 About 609, of the area under this weighting function lies between & = 0.5 w, and

w = 2w, 80% between 0.25 w,and 4 w, .
18 That is, for transfer characteristics whose absolule magnitude is given by w¥k. - -
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of 490k degrees is approached more and more closely as the length of span
is increased.

This may be observed qualitatively from the transfer characteristic of
Fig. 10. For w K 1, the gain slope is —6 db/octave, and the phase shift
approaches —90 degrees. For 1 < w < 10, the average gain slope is about
—10 db/octave, and the phase shift near w = 3 is — 148 degrees (instead of
—90 X 10/6 = —150 degrees). As w increases toward 200, the phase
shift increases rapidly due to the asymptotic slope of —24 db/octave, finally
approaching — 360 degrees (—90 X 24/6) for w >> 200.

Foreknowledge of the inevitable gain-phase relationship is of great value to
the servo designer, in making clear the comparatively small class of realiz-
able gain-phase combinations and thus averting attempts at non-physical
designs. For example the design use of too-rapidly falling loop gain charac-
teristics in the region of the high-frequency gain cross-over (that is, near
zero db loop gain) is not permissible because of the large negative phase
shifts which must accompany the steep gain slopes. 2 rother way of stat-
ing the advantage of an early realization of the gain-phase laws is to say
that the designer is assured in advance that any paired gain and phase
characteristics which he chooses within the basic restrictions will be achiev-
able with stable physical networks.!®

3.2 Dynamic Error

A servo system is usually designed to transmit some class of input func-
tions with a required degree of fidelity. This class of functions may reduce
substantially to one specific input signal whose time variation or whose fre-
quency spectrum is known, or it may include a great variety of signals
which have certain properties in common. In the latter case it is conceiv-
able that definite limits may be placed upon the allowable amplitude ranges
of the input signal and its various time derivatives, or certain limiting fre-
quency spectrum characteristics may be specified for the input function.

Servomechanisms are subject to several types of transmission error.
The systematic error, or dynamic error, is predictable from knowledge of the
noise-free input signal and of the transfer frequency characteristic of the
servo system. For simplicity, the discussion of error will be limited to the
case where the output signal is desired to be a replica of the input, and
where 8 = —1. Thus the loop transmission p3 becomes simply —u. The
input-output relationship as given by (6) is therefore

=" _F, (9)

19 With some necessary reservations as to practicable dissipation constants and para-
sitic circuit constants.
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where F; and F are again typical sinusoidal components of the input and
output respectively. Thus the corresponding sinusoidal error component
may be written as

Fy
14w

The methods which may be used to determine the actual dynamic error
A(f) from (9.1) depend both upon the nature of f1(¢) and the type of informa-
tion available about fy(f). If the input signal is a known periodic function,
A(f) may be found by applying (9.1) for each sinusoidal component of the
input and summing the resulting terms. If the input is non-periodic in
character, then the error may be calculated from the Fourier integral ex-
pression

A=F —Fy= (9.1)

_ 1 l":'F;l(w) Juwt
Af) = 7. me do, (10)

where Fy(w) represents the continuous frequency spectrum of fi(?), as ob-
tained from

Fi(w) = f_ : filtye 7 dt. (10.1)

The problems of calculating Fi(w) from f1(£) and A(?) from Fi(w) often may
be avoided by consulting well-known tabular lists of paired time and fre-
quency functions.”

Equation (9.1) may be used as a broad guide in selecting the type of u
characteristic best suited to a particular input signal. It has been men-
tioned previously that because of input noise and parasitic circuit elements,
the servo transfer bandwidth usually should be kept as narrow as possible,
consistent with dynamic error requirements. The transfer characteristic
u/(1 4 p) will be closely equal to unity while || >> 1, will rise slightly™
in the region where | x| = 1, and fall off as u when p is small compared
with unity. The “cross-over” frequency, for which | u [= 1, may be taken
as a rough measure of the transfer bandwidth. Thus, the requirement of
minimizing the bandwidth may be restated as that of minimizing the cross-
over frequency, while holding the dynamic error within specified limits.
Reasoning in a general way, this requirement may be met by designing p
so that the amplitudes of the sinusoidal error components, as given by

2 An excellent list is given by G. A. Campbell and R. M. Foster in a Bell System mono-
graph “Fourier Integrals for Practical Application,” September, 1931. A table of Laplace
Transforms, which also may be used, is given by M. F. Gardner and J. L. Barnes in
“Transients in Linear Systems,” John Wiley and Sons Inc., 1942.

21 Assuming a phase margin of the order of 60 degrees.
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(9.1), are roughly constant with frequency over the servo band. This de-
mands thal p have somewhat the same frequency distribution as the inpul
signal spectrum (for |u| >> 1). Because of stability requirements and
complexity of the necessary apparatus, this rule can usually be followed
over only a part of the servo frequency band, especially when the input
signal spectrum falls off very rapidly with increasing frequency. However,
even a rough adherence to this desired relation is usually of real worth in
reducing the noise errors of the servo. An illustration of this will be given
in a later section.

3.21 Approximate Calculation of Dynamic Error

Frequently the servo requirement is to transmit, with great accuracy, a
type of signal whose frequency spectrum falls off very rapidly with increas-
ing frequency. As may be seen from (9.1) this demands very large values
of loop transmission u at the lower frequencies where the input signal
energy is concentrated, but permits a rapidly dropping loop transmission
versus frequency commensurate with the falling amplitude spectrum of the
input signal. Such a rapid reduction in loop gain is practicable while
|| >> 1. However stability considerations force a more gradual gain
reduction as the region of gain cross-over is approached. As a result,
contributions to the servo error from this frequency region may be neg-
lected compared with those from the lower frequencies. This suggests a
series expansion of (9.1) in the form,

A = [+ a(jo) + a:jw)® + as(jw) + -] Fy, (11)

where ag, a1, etc. are real constants.

Because of the assumed rapid drop in component amplitude F; with in-
creasing frequency it is often unnecessary to take account of mote than a
few terms of the expansion.?

It is easy to show that (11) may be rewritten on a time basis to give the
total dynamic error as

AW = afilt) + asfil)) + asfolt) + -- -, (12)

where () = d( )/dt. Thus the coefficient ao gives the error component
proportional to input displacement. Similarly, @, and a; are the coefficients
of the error components due to input velocity and input acceleration, re-
spectively. For a great many motor-drive servo systems the loop trans-
mission p approaches infinity as 1/jw when w approaches zero. This en-

#2 The series may be said to converge rapidly in a practical sense, for the following reason:
For small values of w the higher order terms are negligible. For values of w sufficiently

large that the high order terms may no longer be neglected the coefficient /*; has become so
small as to make the contribution of the entire series negligible.
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sures that @, and thus the displacement error will be zero, leaving prin-
cipally the velocity and acceleration errors to be considered.

The coefficients ao , a1 , @2 , etc. may be calculated easily for any particu-
lar case. Forillustration, the three common forms of u characteristic shown
in Fig. 11 will be examined. (As previously discussed, the designated forms
of u need hold only for | | >> 1.)

|| N DECIBELS

NN
o o >
LOG W —=
Fig. 11—Elementary u forms.
Type 1. —6 db/octave, p = wo/jw
The error expansion becomes,
1 . 1.
Ay ==fi&) — =L + - . (12.1)
wWo Wo

For the combination of high accuracy and rapidly converging input spec-
trum, the first term is the only one of importance. Thus this type of sys-
tem has essentially a velocity error.

Type 2. —12 db/octave, p = (wo/jw)*

Here the error is

a0 = i) - 170 + (12.2)




LINEAR SERVO THEORY 639

Again for the rapidly converging case, thls system will have principally an
(166616?’(15’1013 €rror.

Type 3. —6, —12 dbjoclave, p = wyw1/fw(fuw + ;)

This is perhaps the most commonly encountered characteristic in simple
servos. The corresponding error expansion is

20 =Lio+ Lo -0 -, e, 023

and the principal error for this type system thus is a combination of velocity
and acceleration components. Either the velocity or the acceleration error
component may be predominant, depending upon the various parameters.

3.3 Noise Errors

The typical sinusoidal component of servo error due to noise (unwanted
signals or irregularities) in the input signal may be written as*

_
An - r‘i_—!; NJ (13)
where N represents the corresponding sinusoidal component of the input
noise. If the noise signal 7(f) is known, the total noise error A,(¢) may be
calculated from (13) in the ways described for the dynamic error. How-
ever, the noise input is seldom known in this sense, although certain out-
standing components sometimes may be estimated and their effects evalu-
ated. On the other hand the average disturbance due to random input
noise, of the kind described as ‘‘thermal noise” in electrical circuits, may
easily be calculated. This type of noise has constant amplitude versus
frequency, and the total power in the output noise error may be found from

n:Kf K
v 114 p

where K is a constant dependent upon the input noise power.

Input noise also causes overloading of the power amplifier and overheat-
ing of the motor. These effects are aggravated by the falling transfer
characteristic versus frequency of the motor, as seen from the following dis-
cussion. The servo transfer characteristic is maintained approximately
at unity out to the cross-over frequency. However the transfer ratio of
the motor, equation (3.1), will be falling at least at 6 db/octave, usually
at 12 db/octave, at frequencies below this point.® Thus the transfer

2
dw, (14)

* Again assuming 8§ = —1.
% Assuming that the mechanical load impedance is a series combination of resistance
and inertia.
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characteristic (loop closed) from the servo input up to the motor and power
amplifier must rise correspondingly with frequency, out to the cross-over
point. Again assuming input noise of the uniform amplitude versus fre-
quency type, the total noise power at the motor input is therefore,

B
14+ u

Again, w,, is the reciprocal time-constant of the motor and K, is a propor-
tionality constant. If w, is less than about half the cross-over frequency,
then the noise power at the motor input increases as the fifth power of the
bandwidth of the servo transfer characteristic.* Thus, if the input signal/
noise ratio is small, this effect may be an important design consideration.

Still other servo errors may result from local extraneous signals or from
coulomb and static frictional effects. These error sources are in a some-
what different class from those discussed previously, in that they are more
nearly under the designer’s control. That is, such extraneous signals
and friction may be kept small by proper design and the residual friction
effects further reduced by the use of local feedback. In the absence of
local feedback, the servo error resulting from frictional or other torque dis-
turbances at the output shaft readily is found to be

R R U

S(jw) 1+ »

S(jw) is the actual stiffness (loop opened) of the output mesh, and T is the

disturbing torque. 7 conceivably may represent static or coulomb friction,

load-torque irregularities due to fluctuating running-friction, or wind torque.

Again assuming the mechanical impedance to be resistance and inertia in

series, the mechanical stiffness is, from (2.2), S(jw) = jw(R + jwJ). Thus
the error is

@ 2
Pom = K1 f (wﬂ + wi)w’ dw. (15)
o

(16)

T 1
T jw(R +jel) 1+
and the apparent output stiffness (loop closed) is
§" = ju(R 4 guJ) (1 + u). (16.2)

1f T is taken as the static load torque, the resulting static error is found
by setting @ = 0 in (16.1). Assuming that u behaves as wo/jw when
approaches zero, the static error is

Ay (16.1)

T
wo R !
2 This assumes a constant functional form for the transfer characteristic. However,
the statement holds approximately, even with considerable variation in this form,

Ap = (16.3)
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and the apparent low-frequency stiffness is woR, being the ratio of the
mechanical resistance to the velocity error coefficient. It may be noted
that the static error will vanish if the loop transmission approaches infinity
more rapidly than 1/w as w approaches zero.

3.4 Comparison of u Characleristics for a Particular Input Signal

In order to illustrate the advantages of shaping the loop characteristic
for a particular input signal, a brief discussion will be given of the design of
an automatic radar loop to track an airplane in azimuth over a constant
linear-velocity course. The servo configuration is that given by Fig. 5b,
6, being the azimuth angle of the target and 6, the corresponding antenna
angle. The lobing radar antenna has been assumed to take the place of the

.
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Fig. 12—Azimuth angle for constant linear velocity course.

synchro pair. Thus 8 = —1, and an error signal proportional to 8, — 8 is
developed.”

Assuming a constant linear-velocity course having a maximum azimuth
rate of 30 degrees/sec, the target azimuth angle is given by *

61(f) = tan™!.524¢, (17)

which is plotted in Fig. 12.

This course will develop a maximum azimuth acceleration 6; of 2410.3
degrees/sec> and a maximum §;, of —16.4 degrees/sec’. The continuous
frequency spectrum of 6,(f) may be found from (10.1) to be

—1.9]wl

F1w= — . 18
(w) T (18)

% Assuming a low elevation course.
26 The azimuth angle has been so taken that zero azimuth is obtained at the point of
nearest approach.
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A logarithmic plot of | Fi(w) | is shown in Fig. 13.* It may be seen that the
input signal spectrum falls at 6 db/octave for w K 0.5, at 12 db/octave
for w = 0.524, and 30 db/octave at w = 2.1.

Assuming that the permissible dynamic error is 0.3 degree, a comparison
will be made between the type 1 and type 3 loop characteristics of the pre-
vious section. For the type 1 system, which will have essentially a pure
velocity error, (12.1) shows the required value of ws to be 30/0.3 or 100.

20 ——
%5—4-5 DB/OCTAVE ASYMPTOTE
. ﬂ\ S L
R NEERRG DB/OCTAVE SLOPE
N
N
- N
9 -20
w
o -30 pB/OCTAVE
0
G -s40
F4
—_
3
u -60
-80
~1o% 0.2 04 06 08 10 20 40 60
[N

Fig. 13—Target frequency spectrum for constant velocity course.

Thus u = 100/jw. Figure 14 shows a logarithmic plot of the corresponding
|u|. This characteristic departs rapidly from the shape of input signal
spectrum given by Fig. 13, as w is increased abeve 0.1.

The type 3 characteristic permits a considerably better match. Choosing
a compromise value for w; of 0.1, (12.3) may be used to calculate the neces-
sary value of wp as 415. Thus the loop transmission becomes u =
41.5/jw(jw + 0.1). Figure 14 shows a plot of the corresponding |p l,
modified near the gain cross-over to satisfy the stability requirements.
This curve is a considerably better average match for the target frequency-
spectrum up tow = 1. The resulting type 3 system has a predominant
acceleration error as judged from the maximum velocity and acceleration
errors of .072 degree and 0.25 degree respectively.

The total dynamic error curves for the constant-velocity course are given

*| Fi(w) | = = has been taken as the zero di level.
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in Fig. 15. The velocity error of the type 1 system is always a lagging error
and is maximum at the point of nearest approach. The type 3 composite
of velocity and acceleration errors is lagging over about the first half of the
course and leading for the second half, having lead and lag maxima at points
closely grouped about the point of nearest approach.

Although the two loop characteristics develop the same maximum dy-
namic error on the specified target course, their transient responses to an
input step differ widely, as may be seen from Fig. 16. The rise time for the
type 1 loop is about .03 second compared with an initial rise in 0.17 second
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Fig. 16—Transient response of tracking servos.

for the type 3 system. Also, because of the overshoot the type 3 system
requires about 0.7 second to settle within 5% of the equilibrium value.

For a final comparison of the two systems the corresponding transfer
characteristics, u/(1 + g), are plotted in Fig. 17 on arithmetic amplitude
and frequency scales. It may be seen that the type 1 system is vulnerable
to noise and interfering signals over a far wider frequency range than the
type 3. Again assuming uniform input noise versus frequency, (14) may
be used to show that the ratio of output noise power for the two systems is
about 7.5:1.

Thus the luxury of crisp transient response as obtained with the type 1
system may demand a heavy penalty in terms of output fluctuations due to
noise and other unwanted signal variations. This is a clear illustration of
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the necessity for designing the servo loop to match the type of input signal
to be transmitted, particularly for radar tracking systems where the ‘“‘un-
wanted variations’’ are ever present.

3.5 Use of Local Feedback

There are many examples of the use of local or subsidiary feedback in
servo systems. The more common of these include feedback around vacuum
tube power amplifiers to obtain improved linearity and impedance proper-
ties, and over-all feedback around amplifier and motor-drive systems to
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Fig. 17—Frequency response of tracking servos.

suppress frictional effects, increase output stiffness, and modify the inherent
frequency characteristics of the basic components.?” The tendency toward
“B circuit dependency” as previously discussed also produces greater con-
stancy of the stage transfer characteristics with time, temperature, etc.
Perhaps the simplest and most useful kind of local feedback is negative
tachometer (velocity) feedback around motor-drive systems. This type of
feedback widens the transfer frequency band of the drive system by reduc-
ing its time-constant, and increases the linear speed range of the motor.
"This may be illustrated by referring back to Fig. 7, which shows a typical
tachometer loop. Assuming the transfer ratio of the amplifier to be a con-

%7 In a slightly different class are the servo systems used to provide automatic frequency
and gain control in radio systems.
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stant A, the transfer ratio of the motor and amplifier without feedback-is,
from (3.1}, L L

(loop open) = TaGaF oy’ o (1.9)_

=

Kr =

where the constant wp = Au,. (To avoid confusion with primary loop
quantities, the tachometer loop will be represented by the symbols ur and
87, rather than g and 8.) The quantity w. was defined as the ratio (R, +
R.)/J (see Fig. 2b), and is the reciprocal of the motor time constant.
Replacing (R + Rm) by R for convenience, (19) may be rewritten as

_9 - Ho
wr =% (loop open) = Fa® - jal)" (19.1)
The transfer ratio of the tachometer is
E, .
Br = = —joRs,
and thus the loop transmission characteristic is
) poR:
= ——"7 20
prBr R+ o 7 ( )

For values of w small compared with w, this loop transmission is constant
and closely given by pr8:(0) = —peR,/R. When & > wn, prfr ap-
proaches the form —puR,/jwJ, and thus falls off at 6 db/octave. Conse-
quently the maximum phase shift of the factor —ur8r is —90 degrees, and
no stability problem arises for the local tachometer loop.2

From (19.1) and (20), the over-all transfer ratio with feedback is

kr :
1- ,U,T.Br’
o Ho
jN(R + woR: + ].wj) .

Comparing (21) with (19.1), it may be seen that the sole effect of the tach-
ometer feedback upon the over-all transfer ratio has been to add an apparent
“ohmic” friction or mechanical resistance mR; to the original value R.
(Tt will be shown that this increase in apparent mechanical resistance also
is effective in increasing the mechanical output impedance, although no
power is dissipated in the added component uoR,.)

% (loop closed) =
(21)

28 Actually, the effects of parasitic elements always modify this situation somewhat,
especially if unusually high loop transmission is sought. However tachometer loops often
require little or no stabilizing equalization.



LINEAR SERVO THEORY 647
Equation (21) also may be written as

% (loop closed) = }om, (21.1)
where w,, = (R + woR,)/J is the new cornet frequency.

The change in over-all transfer ratio due to the tachometer feedback is
shown in Fig. 18. The solid line diagrams A and B are the transfer gains
without feedback and with feedback, respectively.?® At low frequencies
such that « <& wn, the feedback reduces the transfer ratio by the factor
wn/wm , the ratio of the two corner frequencies.” In order to restore this
low-frequency loss in transmission, it is necessary to provide an added

TRANSFER RATIO IN DECIBELS

LOG W

Fig. 18—Effect of tachometer feedback on motor characteristic.

amplification wm/w, . If this is accomplished by increasing uy and decreas-
ing R, so that the product poR, remains constant,® the resulting transfer
ratio will be that shown by the dotted lines C in Fig. 18. Comparing A and
C, it may be seen that the net result of applying tachometer feedback and
increasing the amplifier gain is to widen the transfer bandwidth by the
factor wn/wn . The required increase in amplification is the cost of widening
the transfer bandwidth either by tachometer feedback or by non-feedback
means, such as the use of a “forward-acting” equalizer in the amplifier.
(However, such forward acting equalization fails to provide the increased
over-all linearity and mechanical impedance obtained by the feedback
method.) At frequencies sufficiently high that w >> w,, the change in
transfer ratio due to the feedback disappears, the mechanical inertia be-
coming the controlling element.

* The straight line asymptotes have been drawn instead of the actual gain curves.

 This is also the factor by which the feedback reduces the output speed obtained for a
steady input voltage, neglecting circuit non-linearites and coulomb friction.

# This ensures a fixed loop transmission, and thus an unchanging value for ws, .
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For w small compared with @ , (21) becomes

7} Lo ’
— (loop closed) ~ ————=, K Wm).
7 (loop ) B+ 5l (w )
If the tachometer feedback is substantial (wm >> wn), this may be further
approximated as

9 1 w K wn
B (loop closed) > R (m:" > mm) . (21.2)
and the corner frequency becomes
m "“—Jli‘ , (wm > m).

Thus for reasonably high feedback, the over-all transfer ratio (21.2)
depends only upon the tachometer characteristic, being substantially inde-
pendent of changes in the original mechamcal resistance R or the amplifier-
motor factor w. The corner frequency wn is similarly independent of
changes in R, although still a direct function of . Thus the principal
non-linearity of two-phase induction motors, namely variation in electrical
damping with speed, is effectively suppressed by this type of local feed-
back, and systems employing such motors up to 80% of their synchronous
speed may be designed on a linear basis.

The increase in mechanical impedance due to the feedback may be shown
by assuming a torque disturbance T applied at the output shaft. Without
feedback, the resulting speed disturbance is

-T
6. (loop open) = 7. = R¥jal
With feedback, the corresponding shaft speed disturbance becomes
. T 1
6 (loop closed) = o + ———— ,
(loop closed) 7o T nifr
T

R+ mRi + joJ

Thus the apparent mechanical resistance, and therefore the protec-
tion against frictional torques, has been multiplied by a factor
(1 4 pRi/R) = wn/wm. If the motor-drive system with tachometer feed-
back is employed in a simple follow-up system of the type of Fig. 5,
equation (16.3) shows that the resulting low-frequency output-shaft stiffness
will be wo(R + woR:) or (wm/wm)woR.* Therefore the output stiffness has

32 The low-frequency loop transmission of the follow-up loop is again taken to be wo/jw.
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been increased by the factor wn/w, over that obtained without the use of
local feedback, assuming identical follow-up loop characteristics (u8) for
the two cases. The ratio wm/wm thus directly measures the feedback
eduction of static and low-speed errors of the follow-up system due to
torque disturbances. In practice the resulting increase in static accuracy
may be of the order of 10 to 100 times.

3.6 Error Reduction by Non-Feedback Means

In situations where the noise associated with the input signal is small it
may be desirable to reduce the dynamic errors obtained with a given servo
system by the use of forward-acting equalization external to the loop.

ADDED

— __>_ PATH

e

| *Poﬂ

Fi(4)] Fy F-Fa[ ™ | \ Fa_ fa(t)
“-'I PV/

SERVO
LOOP Fa

-F2 |
=1
|

1
FOR ZERO DYNAMIC ERROR, g~ [~

Fig. 19—Forward-acting error compensation,

That is, the dynamic error characteristic may be computed, and the servo
input or output modified by supplementary networks in such a fashion as
to reduce the over-all error.

An illustrative arrangement, which is suitable when the input member is
accessible,® is shown in Fig. 19. For convenience the servo is taken to be a
simple follow-up system having 8 = —1. The u circuit is shown divided
into two parts, u; and ps . Typically, ugy may be the transfer stifiness of a
synchro pair (Fig. 3b), and p. the transfer characteristic of a motor-drive
system. The normal dynamic error component for such a loop, omitting
the dotted line, has been shown to be Fi/(1 + p). If an additional signal
uaFy is obtained from the input member and injected into the system as
shown by the dotted line, then

_ M Ha p2 -
F2—1+ F1+1+”F1,

-t pap
= Fy.
14ae U

3 This is not the case for a radar tracking loop, for instance.
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Thus the over-all error becomes

Fy— Fy = (1 N *‘1+—:°:i“)f-‘1,

or

1— a
Fl—F2=—1—_ﬁf—2F]. (22)

If the added transmission path is so designed that

1
Ma = —» (23)
M2
Hz —™
FORWARD-ACTING FEEDBACK
TACHOMETER TACHOMETER

d SYNCHRO PAIR

4
GEC.T.)% I;(TMD A{ -

|
INPUT I OUTPUT -JjWwR;65 |
9| 62 - I
[ |
| FOLLOW-UP |
| LooP |
I . |
| ; St(ﬂrﬂz) l
L ADDED TRANSMISSION PATH __ o o e e e e e e |
JwR} 8

FOR ZERO DYNAMIC ERROR, R}™ Ry

Fig. 20—Forward-acting tachometer system.

then F; = F,, and the dynamic error vanishes. Thus the desired form
of the added transmission depends only upon the us portion of the loop
" characteristic. It will not be possible to satisfy the condition given by (23)
exactly, especially at the higher frequencies where noise enhancement and
parasitic effects will become increasingly important. However, it is often
possible to obtain the proper form for us over the range of frequencies re-
sponsible for the bulk of the dynamic error. If us has the proper frequency
characteristic but is too large by 10%, for instance, it may be seen from (22)
that there still remains a 10/1 increase in dynamic accuracy.

The foregoing method is especially applicable when s represents the trans-
fer characteristic of a motor-drive system employing tachometer feedback,
as shown in Fig. 20. Here the basic input-output comparison is obtained
by means of the synchro pair, while a tachometer coupled to the input shaft
provides the error-reducing signal. Thus the transmission pq is equal to
ij: , where R, is the tachometer transfer resistance. The expression for
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pz is given approximately by (21.2) as 1/jwR, . * Thus, by (23), R; ~ R,
for substantial cancellation of the dynamic error (at frequencies small com-
pared with w,,). That is, the output voltages of the two tachometers must
closely annul each other when the input and output shafts are travelling
at the same speed. Since the tachometers may be closely alike and excited
from the same supply line, it is comparatively easy to keep their transfer
ratios closely matched. In practice an error reduction of 20/1 is readily
maintained by this method.

The error compensation scheme described above does not change the
loop characteristic u8 of the basic servo loop, and thus does not create new
stability problems. Its use to obtain high servo accuracy is desirable
when the input noise is small and when a high loop gain is difficult to obtain
because of parasitic elements or equipment complexities.



