The Biased Ideal Rectifier
By W. R. BENNETT

Methods of solution and specific results are given for the spectrum of the
response of devices which have sharply defined transitions between conducting
and non-conducting regions in their characteristics. The input wave consists
of one or more sinusoidal components and the operating point is adjusted by bias,
:-vhji:fh may either be independently applied or produceé by the rectified output
itself.

INTRODUCTION

HE concept of an ideal rectifier gives a useful approximation for the

analysis of many kinds of communication circuits. An ideal rectifier
conducts in only one direction, and by use of a suitable bias may have the
critical value of input separating non-conduction from conduction shifted
to any arbitrary value, as illustrated in Fig. 1. A curve similar to Fig. 1
might represent for example the current versus voltage relation of a biased
diode. By superposing appropriate rectifying and linear characteristics
with different conducting directions and values of bias, we may approximate
the characteristic of an ideal limiter, Fig. 2, which gives constant response
when the input voltage falls outside a given range. Such a curve might
approximate the relationship between flux and magnetizing force in certain
ferromagnetic materials, or the output current versus signal voltage in a
negative-feedback amplifier. The abrupt transitions from non-conducting
to conducting regions shown are not realizable in physical circuits, but the
actual characteristics obtained in many devices are much sharper than can
be represented adequately by a small number of terms in a power series
or in fact by any very simple analytic function expressible in a reasonably
small number of terms valid for both the non-conducting and conducting
regions.

In the typical communication problem the input is a signal which may
be expressed in terms of one or more sinusoidal components. The output
of the rectifier consists of modified segments of the original resultant of the
individual components separated by regions in which the wave is zero or
constant. We are not so much interested in the actual wave form of these
chopped-up portions, which would be very easy to compute, as in. the fre-
quency spectrum. The reason for this is that the rectifier or limiter is
usually followed by a frequency-selective circuit, which delivers a smoothly
varying function of time. Knowing the spectrum of the chopped input
to the selective network and the steady-state response as a function of
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frequency of the network, we can calculate the output wave, which is the
one having most practical importance. The frequency selectivity may in
many cases be an inherent part of the rectifying or limiting action so that
discrete separation of the non-linear and linear features may not actually
be possible, but even then independent treatment of the two processes
often yields valuable information.

The formulation of the analytical problem is very 51mple The standard
theory of Fourier series may be used to obtain expressions for the amplitudes
of the harmonics in the rectifier output in the case of a single applied fre-
quency, or for the amplitudes of combination tones in the output when two
or more frequencies are applied.” These expressions are definite integrals
involving nothing more complicated than trigonometric functions and the
functions defining the conducting law of the rectifier. If we were content
to make calculations from these integrals directly by numerical or mechanical
methods, the complete solutions could readily be written down for a variety
of cases covering most communication needs, and straightforward though
often laborious computations could then be based on these to accumulate
eventually a sufficient volume of data to make further calculations un-
Necessary.

Such a procedure however falls short of being satisfactory to those who
would like to know more about the functions defined by these integrals
without making extensive numerical calculations. A question of consider-
able interest is that of determining under what conditions the integrals may
be evaluated in terms of tabulated functions or in terms of any other func-
tions about which something is already known. Information of this sort
would at least save numerical computing and could be a valuable aid in
studying the more general aspects of the communication system of which
the rectifier may be only one part. It is the purpose of this paper to present
some of these relationships that have been worked out over a considerable
period of time. These results have been found useful in a variety of prob-
lems, such as distortion and cross-modulation in overloaded amplifiers,
the performance of modulators and detectors, and effects of saturation in
magnetic materials. It is hoped that their publication will not only make
them available to more people, but also stimulate further investigations of
the functions encountered in biased rectifier problems.

The general forms of the integrals defining the amplitudes of harmonics
and side frequencies when one or two frequencies are applied to a biased
rectifier are written down in Section I. These results are based on the
standard theory of Fourier series in one or more variables. Some general
relationships between positive and negative bias, and between limiters and
biased rectifiers are also set down for further reference. Some discussion is
given of the modifications necessary when reactive elements are used in the
circuit.
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Section I1 summarizes specific results on the single-frequency biased
rectifier case. The general expression for the amplitude of the typical
harmonic is evaluated in terms of a hypergeometric function for the power
law case with arbitrary exponent. .

Section IIT takes up the evaluation of the two-frequency modulation
products. Tt is found that the integer-power-law case can be expressed in
finite form in terms of complete elliptic integrals of the first, second, and
third kind for almost all products. Of these the first two are available in
tables, directly, and the third can be expressed in terms of incomplete
integrals of the first and second kinds, of which tables also exist. No direct
tabulation of the complete elliptic integrals of the third kind encountered
here is known to the author. They are of the hyperbolic type in contrast
to the circular ones more usual in dynamical problems. Imaginary values
of the angle 8 would be required in the recently published table by Heuman'.

A few of the product amplitudes depend on an integral which has not
been reduced to elliptic form, and which is a transcendental function of two
variables about which little is known. Graphs calculated by numerical
integration are included.

The expressions in terms of elliptic integrals, while finite for any product,
show a rather disturbing complexity when compared with the original
integrals from which they are derived. It appears that elliptic functions
are not the most natural ones in which the solution to our problem can be
expressed. If we did not have the elliptic tables available, we would prefer
to define new functions from our integrals directly, and the study of such
functions might be an interesting and fruitful mathematical exercise.

Solutions for more than two frequencies are theoretically possible by, the
same methods, although an increase of complexity occurs as the first few
components are added. When the number of components becomes very
large, however, limiting conditions may be evaluated which reduce the
problem to a manageable simplicity again. The case of an infinite number
of components uniformly spaced along an appropriate frequency range has
been used successfully as a representation of a noise wave, and the detected
output from signal and noise inputs thus evaluated’. The noise problem
will not be treated in the present paper. ;

I. THE GENERAL PROBLEM
Let the biased rectifier characteristic, Fig. 1, be expressed by

0, E<b : :
I = (1.1)
f(E-b), b<E
t Carl Heuman, Tables of Complete Elliptic Integrals, Jour. Math. and Physics, Vol.
XX, No. 2, pp. 127-206, April, 1941.

2'W. R. Bennett, Response of a Linear Rectifier to Signal and Noise, Jour. Acous. Soc.
Amer., Vol. 15, pp.'164-172, Jan. 1944, G
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Then if a single frequency wave defined by

E=Pcospl,— P <b<P, (1.2)
is applied as input, the output contains only the tips of the wave, as shown
in Fig. 3. It is convenient to place the restrictions on P and b given in
Eq. (1.2). The sign of P is taken as positive since a change of phase may
be introduced merely by shifting the origin of time and is of trivial interest.
If the bias & were less than — P, the complete wave would fall in the con-
ducting region and there would be no rectification. If b were greater than
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Fig. 3.—Response of biased rectifier to single-frequency wave.

P, the output would be completely suppressed. Applying the theory of
Fourier series to (1.1) and (1.2), we have the results

-I— E @, cos n pt (1.3)
n=1
) arc cos b/P
== f J(P cos x — b) cos nx dx (1.4)
T Jo

When two frequencies are applied, the output may be represented by a
double Fourier series. The typical coefficient may be found by the method
explained in an earlier paper by the author®. The problem is to obtain the
double Fourier series expansion in x and y of the function g(x,y) defined by :

(= ) 0, Pcosx+ Qcosy < b )
g, y) =
f(Pcosx+ Qcosy — b), b< Pcosx+ Qcosy

3W. R. Bennett, New Results in the Calculation of Modulation Products, B.S. T.J.,
Vol. XTI, pp. 228~ 243 April, 1933,

(1.5)
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We substitute the special values x = pt, y = gt after obtaining the expansion.
Let

k= Q/P, ky = —b/P (1.6)
The mcst general conditions of interest are comprised in the ranges:
0< h <1, —2< k<2 (1.7
Tor '
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Fig. 4—Regions in xy-plane bounded by ko + cos x + kicos y = 0.

The regions in the xy-plane in which g(x,y) does not vanish are bounded
by the various branches of the curve:

ko+cosx 4+ kicosy=10 , (1.8)

We need to consider only one period rectangle bounded by x = £,y = =,
since the function repeats itself at intervals of 2r in both x and y. The
shape of the curve (1.8) within this rectangle may have three forms, which
are depicted in Fig. 4. In Case I, ko + k1 >k, ko — k < 1, the curve
divides into four branches which are open at both ends of the x- and y-axes.
In Case (2), ko + k1 <1, ky — k1 > —1, the curve has two branches open
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at the ends of the y-axis. In Case (3), —1 < ky+ b <1,k — k < —1,
a single closed curve is obtained. The limits of integration must be chosen
to fit the proper case. The Fourier series expansion of g(x,y) may be
written:

g(x: 3’) . Z E amn COS MX COS MY (19)
m=0 n=0
where @, is found from integrals of the form:

€m €En

A4 =

V2 z2
3 f dyf J(P cos & + Q cos y — b) cos mx cos nydx (1.10)
™ n z)
Here, as usual, ¢, is Neumann’s discontinuous factor equal to two when m
is not zero and unity when m is zero. The values of the limits for the dif-
ferent cases are:
Case I, apmn = A1+ As

(x; = 0, xy = arc cos (—ko — ki cos y)
Ay = A with limits 1 — ko (1.11)
Y1 = arc cos f Yo =T
k1
n = 0, Xo = m
Ay = A with limits 1=k (1.12)
= 0, Y2 = arc cos
ky
Case II, apn = A
x; = 0, % = arc cos (—ky — k; cos y
Limits (1.13)

M = OJ Yo =T
Case 111, gy, = 4

(x1 =0, a9 = arc cos (—ky — ki cos y)
Limits (1.14)
(ym =0, Vs = arc cos (— 1 :k")
1

For a considerable variety of rectifier functions f, the inner integration may
be performed at once leaving the final calculation in terms of a single definite
integral.

A somewhat different point of view is furnished by evaluating the integral
(1.4) for the biased single-frequency harmonic amplitude, and then replacing
the bias by a constant plus a sine wave having the second frequency. When
each harmonic of the first frequency is in turn expanded in a Fourier series
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in the second frequency, the two-frequency modulation coefficients are ob- -
tained. Some early calculations carried out graphically in this way are
the source of the curves plotted in Figs. 18 to 21 inclusive, for which Tam
indebted to Dr. E. Peterson.

If reactive elements are uysed in the rectifier circuit, the voltage across the
rectifying element may depart from the input wave shape applied to the
complete network. The solution then loses its explicit nature since the
rectifier current is expressed in terms of input voltage components which in
turn depend on voltage drops produced in the remainder of the network
by the rectifier currents. Practical solutions can be worked out when
relatively few components are important.

-
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Int Iy l b UNIT
— e | |
f ! |
L [T
f—E-IgR— L
£ Cﬁ— ;R I4R
EFFECTIVE BIAS ON
RECTIFIER=D+I4R
Y

Fig. 5.— Biased rectifier in series with RC network.

As an example consider the familiar case of a parallel combination of
resistance R and capacitance C in series with the biased rectifier, Fig. 5.
If C has negligible impedance at all frequencies of importance in the rectifier
circuit except zero, we may assume that the voltage across R is constant and
equal to IoR, where I, is the d-c. component of the rectifier current. The
voltage across the rectifier unit is then E — IoR. The effect is a change
in the value of bias from b to & 4 I,R. If the d-c component in the output
is calculated for bias & + IR, we obtain the value of I in terms of b + IR,
an implicit equation defining I,. If this equation can be solved for I, the
bias & + IR can then be determined and the remaining modulation products
calculated. :

A more important case is that of the so-called envelope detector, in which
the impedance of the condenser is very small at all frequencies contained in
the input signal, but is very large at frequencies comparable with the band
width of the spectrum of the input signal. These are the usual conditions
prevailing in the detection of audio or video signals from modulated r-f or
i-f waves. The solution depends on writing the input signal in the form.
of a slowly varying positive valued envelope function multiplying a rapidly"
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" oscillating cosine function. That is, if the input signal can be repre-
sented as

E= A (f) cos o (1), (1.15)

where A (¢) is never negative and has a spectrum confined to the frequency
range in which 2xfC is negligibly small compared with 1/R, while cos ¢(f)
has a spectrum confined to the frequency range in which 1/R is negligibly
small compared with 2xfC, we divide the components in the detector output
into two groups, viz.: _

1. A low-frequency group I;; containing all the frequencies comparable
with those in the spectrum of 4 (f). The components of this group flow
through R.

2. A high-frequency group I,y containing all the frequencies comparable
to and greater than those in the spectrum of cos ¢ (f). The components
of this group flow through C and produce no voltage across R.

The instantaneous voltage drop across R is therefore equal to 7;;R, and
hence the bias on the rectifier is b 4 I;;R. If A and ¢ were constants, we
could make use of (1.3) and (1.4) to write:

Ly + Iy = %o + 22 @acosnf (1.16)

n=1

2 aro cos [ (b+IiyR)/A)
n = :;rj; f(Acosx — b — IyR) cos nx dx (1.17)

If A and ¢ are variable, the equation still holds provided I;;R < 4 at all
times. Assuming the latter to be true (keeping in mind the necessity of
checking the assumption when I;; is found), we note that terms of the form
a, cos n 6 consist of high frequencies modulated by low frequencies and hence
the main portion of their spectra must be in the high-frequency range.
Hence we must have as a good approximation when the envelope frequencies
are well separated from the intermediate frequencies,

[15)) 1

arc cos [(b+I1sR)/4)
[z = - = f
/ 2 0

== f(4 cosx — b — I;;R)dx (1.18)
This equation defines 7;; as a function of 4, and if it is found that the
condition & 4+ I;; R < A is satisfied by the resulting value of I;;, the problem
is solved. If the condition is not satisfied, a more complicated situation
exists requiring separate consideration of the regions in which  + I;yR < A
and b+ IR > A.

To be specific, consider the case of a linear rectifier with forward con-
ductance @ = 1/R, and write V = I;;R. Then

mRo

_R_V=\/A_(5+V)2—(b+V)arccosb+V

1 (1.19)
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When b = 0 (the case of no added bias), this equation may be satisfied by
setting :

V=c4,0<c< 1, (1.20)
which leads to
mRe _ 1 _ .
= = 1/62 1 — arc cos ¢, (1.21)

defining ¢ as a function of Ro/R. The value of ¢ approaches unity when
the ratio of rectifier resistance to load resistance approaches zero and falls
off to zero as Ro/R becomes large. The curve may be found plotted else-
where®. This result justifies the designation of this circuit as an envelope
detector since with the proper choice of circuit parameters the output
voltage is proportional to the envelope of the input signal.

The equations have been given here in terms of the actual voltage applied
to the circuit. The results may also be used when the signal generator
contains an internal impedance. For example, a nonreactive source inde-
pendent of frequency may be combined with the rectifying element to give a
new resultant characteristic. If the source impedance is a constant pure
resistance 7o throughout the frequency range of the signal input but is
negligibly small at the frequencies of other components of appreciable size
flowing in the detector, we assume the voltage drop in 7o is roa1 cos ¢ (.
We then set # = 1 in (1.17) and replace a; by (4o — A)/ro, where Aqis
the voltage of the source. The value of I;; in terms of A from (1.18) is
then substituted, giving an implicit relation between 4 and A, .

A further noteworthy fact that may be deduced is the relationship be-
tween the envelope and the linearly rectified output. By straightferward
Fourier series expansion, the positive lobes of the wave (1.15), may be
written as:

E E>O0 -
E, = = A({) [— —|—§cos¢:(t)
0, E<O0 T
25~ (=)" cos 2m ¢(t)]
;rmz=1 im* — 1 (1.22)

Hence if we represent the low-frequency components of E, by Eyy, we have:

Ey = @ (1.23)
or
A () = nEy (1.24)

4 See, for example, the top curve of Fig. 9-25, p. 311, H. J. Reich, Theory and Applica-
tions of Electron Tubes, McGraw-Hill, 1944.
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Equation (1.23) expresses the fact that we may calculate thé signal com-
ponent in the output of a half-wave linear rectifier by taking 1/ times the
envelope. Equation (1.24) shows that we may calculate the response of
an envelope detector by taking = times the low-frequency part of the
Fourier series expansion of the linearly rectified input. Thus two procedures
are in general available for either the envelope detector or linear rectifier
solution, and in specific cases a saving of labor is possible by a proper choice
between the two methods. The final result is of course the same, although
there may be some difficulty in recognizing the equivalence. For example,
the solution for linear rectification of a two-frequency wave P cos p¢ + Q
cos gt was given by the author in 1933?, while the solution for the envelope
was given by Butterworth in 1929%. Comparing the two expressions for
the direct-current component, we have:

Ey= 2—I:IZE — (1 — £*) K], where K and E are complete elliptic integrals
of the ﬁrsI and second kinds with modulus 2 = Q/P

4@ = s (1 + k) E,, where E, is a complete elliptic intregal of the
second kind 1:;vith modulus # = 2 v/&/(1 + k). Equation (1.24) implies
the existence of the identity

A+ FE=2E—01-FKFK (1.25)

The identity can be demonstrated by making use of Landen’s transforma-
tion in the theory of elliptic integrals.

2. SINGLE-FREQUENCY SIGNAL

The expression for the harmonic amplitudes in the output of the rectifier
can be expressed in a particularly compact form when the conducting part
of the characteristic can be described by a power law with arbitrary ex-
ponent. Thusin (1.4) if f(z) = a3’, we set A = b/P and get

2an arc cos A
(cos x — A) cos nx dx
T D

a, =

A1 + 1)aP(1 — N
= 1 1 3 1=
wll‘(v-{—%) F(§+”’§_”'V+§’_2 ) (2.1)

& S. Butterworth, Apparent Demodulation of a Weak Station by a Stronger One
Experimental Wireless, Vol. 6, pp. 619-621, Nov. 1929.
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The equation holds for all real values of » greater than —1. The symbol
F represents the Gaussian hypergeometric function®:

ala+1)bb+1) »
e+ 12l st (22

The derivation of (2.1) requires a rather long succession of substitutions,
expansions, and rearrangements, which will be omitted here.

When » is an integer, the hypergeometric function may be expressed in
finite algebraic form, either by performing the integration directly, or by
making use of the formulas:

Fu/2, — u/2; 1/2; ) = cos (p arc sin z),

Fla, b; ¢;2) =14+ @z-l—
cl!

(2.3)
F(l-l-u 1—p_§_zg)=sin(,uarcsinz)
2 7 27 2_’ uz

together with recurrence formulas for the F-function. When » is an odd
multiple of one half, the F-function may be expressed in terms of complete
elliptic integrals of the first and second kind with modulus [(1 — A)/ 2]"* by
means of the relations,

F(3, 31, %) ==K,

ERR S

(2.4)

F(=3 4 1; ) = 2
m

E,
and the recurrence formulas for the F-function. For the case of zero bias,
we set A = 0, and apply the formula
¢ ¢+ 1
e (5)r (<3)

Fla,1 —a;61/2) = N /T4 .—a (2.5)
(7)) ()

obtaining the result:

2T + 1T (2" +—3’) r (2"—+—5) aP
4n = 2 : +n 42 + v — (2:6)
T + 3/2)r ( ‘; ) i\ ( ’; ”)

We point out that the above results may be applied not only when the
applied signal is of the form P cos pf with P and p constants, but to signals
6 For an account of the properties of the hypergeometric function, see Ch. XIV of

Whittaker and Watson, Modern Analysis, Cambridge, 1940. A discussion of elliptic
integrals is given in Ch. XXII of the same book.
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in which P and p are variable, provided that P is always positive. We thus
can apply the results to detection of an ordinary amplitude-modulated wave
or to the detection of a frequency-modulated wave after it has passed through
a slope circuit.

A case of considerable practical interest is that of an amplitude-modulated
wave detected by a diode in series with a parallel combination of resistance
R and capacitance C. The value of C is assumed to be sufficiently large so
that the voltage across R is equal to the ao/2 component of the current
through the diode multiplied by the resistance. This is the condition for
envelope detection mentioned in Part 1. The diode is assumed to follow
Child’s law, which gives v = 3/2. We write )

A _T(5/2)(1 —\) P 1=
I, = 1_3 - 60/2 - (271_)]1-.(3) F (%: %) 3: T) (2-7)

where A\ = V/P. Note that " is a constant equal to the direct-voltage
output if P is constant, If P varies slowly with time compared with the
high-frequency term cos pt, V represents the slowly varying component of
the output and hence is the recovered signal.

But

16

2
F(3 353 F) = g

[22¢° — DE + (2 — 381 — kK] (2.8)
where K and E are complete elliptic integrals of the first and second kind
with modulus 2. Hence

3 a@+3a+»N
RvP=P= . K-8E (2.9)

where the modulus of K and Eis /(1 — A)/2. This equation defines p
as a function of A, and hence by inversion gives A as a function of p. The
resulting curve of X vs. p is plotted in Fig. 6 and may be designated as the
function N = g {p). If we substitute A = /P we then have

V = Pg (3r/Ra \/2P) (2.10)

This enables us to plot V as a function of P, for various values of Re, Fig. 7.
Since P may represent the envelope of an amplitude-modulated (or diff-
erentiated FM) wave, and V' the corresponding recovered signal output
voltage, the curves of Fig. 7 give the complete performance of the circuit
as an envelope detector. In general the envelope would be of form P =
Po[1 + ¢ s(t)], where s(¢) is the signal. We may substitute this value of P
directly in (2.10) provided the absolute value of ¢ s(f) never exceeds unity.
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Fig. 6.—The Function A = g(p) defined by Eq. (2.9).
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Fig. 7—Performance of 3/2—power-law rectifier as an envelope detector with low-imped-
ance signal generator.

To express the output in terms of a source voltage Py in series with an
impedance equal to the real constant value ro at the signal frequency and
zero at all other frequencies, we write

Py — P 3aP(1 — R)ﬂF s _1.3 1 —A 2.11)
=== —_l. 2 — .
- 1 4 _\/2 D 2: Y 2
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or
Py = (1 + }3 H) P, (2.12)

where

3Ra(l — N)2ph 1—2
H= T i F(%, —%;3;_2)
_ 8Ra

© 5t

V4 )
o/ Rogry /fﬁ /{

é// /// Ra = 0.1
0.6 /, // !={’i:@;&3}

(2.13)
V2P[2(1 - F + B)E — 2 — BY(1 = F)K]).

0.4 ] F—E — )
e L N (e
Te 1 T- R2
0.2 / P, cos pt ! l-
0
[+] 5 10 15 20 25 30 35 40
Py IN VOLTS

Fig. 8. —Performance of 3/2—power-law rectifier as an envelope detector with impedance
of signal generator low except in signal band.

By combining the curves of Fig. 7 giving V in terms of P with the above
equations giving the relation between P and Py, we obtain the curves of
Figs. 8, 9, 10, giving V as a function of Py. The curves approach linearity
as R is made large.  On the assumption that the curves are actually linear,
we define the conversion loss D of the detector in db in terms of the ratio
of maximum power available from the source to the power delivered to the
load:

Pi/8r (P.,)2 R
D=1 = ) = 2.14
0 lOgm VE/R 10 IOglu 7 81’9 ( )
Curves of D vs ro/R are given in Figs. 11 and 12. The optimum relation
between 7y and R when the forward resistance of the rectifier vanishes has
long been known to be ro/R = .5. The curves show a minimum in this
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region when Ra is large. In the limit as Ra approaches infinity, we may
show that the relation between P and V approaches:

Py (1 + 2"’) (2.15)

LTI/ )

. ro/“gf // / ) —),._{2_.{ T

LA e TJL

/A
-

V IN VOLTS

z ////

/

L] 5 10 15 20 25 30 35 40
Py IN VOLTS

/ Ro= 1.0

Fig. 9.—Performance of 3/2—power-law rectifier as an envelope detector with impedance
of signal generator low except in signal band.
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Fig. 10.—Performance of 3/2—power-law rectifier as an envelope detector with impedance
of signal generator low except in signal band.

The corresponding limiting formula for D is

_ R 21’0 2
= 10 logm S—ﬁ; (1 + E-) (216)
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The minimum value of D is then found to occur at ro = R/2 and is zero
db. We note from the curves that the minimum loss is 1.2 db when Ra =
10 and 0.4 when Ra = 100.

This example is intended mainly as illustrative rather than as a complete
tabulation of possible detector solutions. The methods employed are
sufficiently general to solve a wide variety of problems, and the specific
evaluation process included should be sufficiently indicative of the proce-
dures required. Cases in which various other selective networks are asso-
ciated with the detector have been treated by Wheeler’.

40
o — Ra=0.1
o \ ¥—x Ra= 1.0
Z 30
g \ .011 = VOLTS OUTPUT
—
> 20f\
F
o ‘
n ]
1.39
& \ ~— |
3 10 :
8 .085 ' p— ——
"]
o 6.65 |
0 1 2 3 4 5 6 7 8 a 10

o / R

Fig. 11.—Conversion loss of 3/2—power-law rectifier as envelope detector with impedance
of signal generator low except in signal band.
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Fig. 12.—Conversion loss of 3/2—power-law rectifier as envelope detector with impedance
of signal generator low except in signal band.

3. Two-FrREQUENCY INPUTS

The general formula for the coefficients in the two-frequency case depends
on a double integral as indicated by (1.10). In many cases one integration
may be performed immediately, thereby reducing the problem to a single
definite integral which may readily be evaluated by numerical or mechanical

7H. A. Wheeler, Design Formulas for Diode Detectors, Proc. I. R. E., Vol. 26, pp.
745-780, June 1938,
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means. It appears likely in most cases that the expression of these results
in terms of a single integral is the most advantageous form for practical
purposes, since the integrands are relatively simple, while evaluations in
terms of tabulated functions, where possible, often lead to complicated
terms. Numerical evaluation of the double integral is also a possible method
in cases where neither integration can be performed in terms of functions:
suitable for calculation.

One integration can always be accomplished for the integer power-law
case, since the function f (P cos x + Q cos y — &) in (1.12) then becomes a
polynomial in cos x and cos y. Cases of most practical interest are the
zero-power, linear, and square-law detectors, in which f(z) is proportional
to 2%, z', and 2° respectively. The zero-power-law rectifier is also called a
total limiter, since it limits on infinitesimally small amplitudes. We shall
tabulate here the definite integrals for a few of the more important low-order

—Pcos pt+Qcos gt

RESPONSE OF LIMITER

Y S W7/ N/ W A Wt A
| A g7z

\/ TIME —=

Fig. 13.—Response of biased total limiter to two-frequency wave.

AMPLITUDE —

coefficients. To make the listing uniform with that of our earlier work, we
express results in terms of the coefficient A4, which is the amplitude of the
component of frequency mp = ng. The coefficient 4, is half of @m. when
neither m nor » is zero. When m or # is zero, we take A,,, = @m. and drop
the component with the lower value of the & sign. When both » and »
are zero, we use the designation Ago/2 for @gp, the d-c term. In the tabula-
tions which follow we have set f(z) = az” with » taking the values of zero
and unity.

We first consider the biased zero-power-law rectifier or biased total
limiter. This is the case in which the current switches from zero to a
constant value under control of two frequencies and a bias as illustrated
by Fig. 13. The results are applicable to saturating devices when the
driving forces swing through a large range compared with the width of the
linear region. Tt is also to be noted that the response of a zero-power-law
rectifier may be regarded as the Fourier series expansion of the conductance
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of a linear rectifier under control of two carrier frequencies and a bias.
The results may therefore be applied to general modulator pyoblems based
on the method described by Peterson and Hussey®. We may also combine
the Fourier series with proper multiplying functions to analyze switching
between any arbitrary forms of characteristics. We give the results for
positive values of k. The corresponding coefficients for —ko can be ob-
tained from the relations:

Aw _ A% - 1

200 g =20

2 2
Amn = (=)™ 45, m+n > OJ

Here we have used plus and minus signs as superscripts to designate co-
efficients with bias +ko and — ko respectively. We thus obtain a reduction
in the number of different cases to consider, since Case III consists of nega-
tive bias values only, and these can now be expressed in terms of positive
bias values falling in Cases I and IT. It is convenient to define an angle 6
by the relations:

1 — ko
o = [arc cos T bo+E >1,ko—h <1 (Casel) (3.2)

0 ,ku+k1< l,ko—kj_) —1 (CaseII)

(3.1)

ZERO-POwER RECTIFIER OR ToOTAL-LIMITER COEFFICIENTS
Setting f(z) = ain (1.10),

@:1—%[ arc cos (ko + k1 cos y) dy W
2a 7t Jg

A 2 ("

E=§fg V1 — (ko + ki cos y)? dy

1_4_[,_1=2i1j‘* sin® y dy
2 Jy V

a 1 — (ko + k1cosy)?

é_ﬂ:zfrcos\/l-—(k ~+ ki cos y)?d r(3.3)
. =4 0 1.CO8 y)° @y :
Az 2 "

=3 (ko + k1 cos y) V1 — (kg + ki cos y)? dy

Ap 2k sin® y cos y dy

P _?L V1 = (ky + ki cos y)?

A 4 ("
% = _Ffa (ko + k1 cos y) cos yN/1 — (ko + ki cos y)% dy

8 E. Peterson and L. W. Hussey, Equivalent Modulator Circuits, B. §. T. J., Vol. 18,
pp. 32-48, Jan. 1939.
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Similarly for a linear rectifier:

Yodm Ab ‘
—_— = —_— b
2 y e
A1_o = aP — A'l*;] L \34)

Ao = aQ — Af
Apn = ('_)m+nA;n: m+n>1

We have shown in Fig. 2 how an ideal limiting characteristic, which trans-
mits linearly between the upper and lower limits, may be synthesized from
two biased linear rectification characteristics. Equation (3.4) shows how
to calculate the corresponding modulation coefficients, when the coefficients
for bias of one sign are known. The limiter characteristic i8 equal to az—

fi (2) — fa (2), where

® (z—bl, z>b1) @ ( 0, 3> —b .
= y ) = .
his * 0, z2<b ik “ 2+ by, z2< —by )

The expression for f» (z) may also be written:

z — (_b2)| 4 > ""bﬂ
L@ =aG+b)—a (3.6)
0, 3 < "‘bz
Hence the modulation coefficient A, for the limiter may be expressed in
terms of Ay (81) and Apmn (—&2) as follows:

Amn = _Amn (bl) + (_)m+ﬂAmn (bz), m + n ;é 1 (3.7)

If the limiter is symmetrical (b = &), the even-order products vanish and
the odd orders are doubled. The terms aP, aQ are to be added to the
dexter of (3.7) for A1, Ao respectively. The odd linear-rectifier coefficients,
when multiplied by two, thus give the modulation products in the output
of a symmetrical limiter with maximum amplitude ko, as may be seen by
substituting &, = b = —kp in (3.7). For the fundamental components
aP and aQ respectively must be subtracted from twice the A1 and 4q co-
efficients for k.

LINEAR RECTIFIER COEFFICIENTS
D.C.

A 1 [
Tw/aP = ky + ‘FL (V1 = (B + ki cos 9)? 3.9)

— (ko + k1 cos y) arc (cos ko + k1 cos y)| dy
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FUNDAMENTALS-

Aw/aP =1 +%fﬁ [(ko + ki cosy) /1 — (ky + k1 cos y)?

(3.9)
— arc cos (ky + k; cos v)] dy
2 f T
A P = = — 2
o/ ki + =), [v/1 — (ko + k1 cos y) (3.10)
— (ko + ky cos y) arc cos (ko + ki cos y)] cos y dy
SuM AND DirFErRENCE Propucrs—Second Order
P
Au = (—2-— [(kﬂ + kl Ccos y) \/1 - (kl) + kl cos y)2
L (3.11)
— arc cos (ko + ki cos y)] cos y dy
Sum AND DrrreErRENCE PrRODUCTS—Third Order
=22 [0 = ot hoos ) eosydy  (12)

The above products are the ones usually of most interest. Others can
readily be obtained either by direct integration or by use of recurrence
formulas. The following set of recurrence formulas were originally derived
by Mr. S. O. Rice for the biased linear rectifier:

20 Apn + k1 (0 — m — 3) Amyrna

ki (m 4+ 1+ 3)Amir,a-1 + 2kt Apprn = 0
20 Apn + k1 (n +m — 3) Apinp

+ ki (n—m+ 3Am-ra41 + 2k Apyn =0
2mky Agn + (m — 1 — 3) A1, n1

+ (m+ n+ 3)Ansinn + 2kom Ampis = 0
2mbky Apn + (4 1 — 3) Am—,n

4+ (m — 0+ IAmirn + 2kom Appa = 0

By means of these relations, all products can be expressed in terms of Aqo,
Ay, Ao, and Ay, The following specific results are tabulated:

A20 = %(Auo -_— 2k|_A1[ - ZkUAlo) L

v (3.13)

7

1 (3.14)
AM - e (klfluu - 21:111 - Zku Aol)
3k J
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Ay = %(Am — ki Ay — kAy)

(3.15)

Ap = 2_121 (1 Aw — An — ko An)

Aaﬂ = —kquo - k1A21 1

(3.16)
Aus

1
— (o + Au)f

The third-order product As is of considerable importance in the design
of carrier amplifiers and radio transmitters, since the (2p — ¢)-product is
the cross-product of lowest order falling back in the fundamental band when
overload occurs. Figure 14 shows curves of A3 calculated by Mr. J. O.
Edson from Eq. (3.12) by mechanical integration.

We point out also that the linear-rectifier coefficients give the Fourier
series expansion of the admittance of a biased square-law rectifier when two
frequencies are applied.

We shall next discuss the problem of reduction of the integrals appearing
above to a closed form in terms of tabulated elliptic integrals’. This can
be done for all the coefficients above except the d:c for the zero-power law
and for the d-c and two fundamentals for the linear rectifier. These contain
the integral

E(ky, k1) = f arc cos (ky 4 k1 cos y) dy - (3.17)
[}

which has been calculated separately and plotted in Fig. 22. When the
arc cos term is accompanied by cos myas a multiplier with m 7 0, an integra-
tion by parts is sufficient to reduce the integrand to a rational function of
cos y and the radical /1 — (&, + k; cos )2, which may be reduced at once
to a recognizable elliptic integral by the substitution z = cos y. It is
found that all the integrals except that of (3.17) appearing in the results
can be expressed as the sum of a finite number of integrals of the form:

cos 0 gm dz
Fm = ) s = 0, 1, 2, e .
=], Vi -ththol’" (3.18)

By differentiating the expression 5™ /(1 — 2)?[1 — (ko + ki 2] with
respect to z, we may derive the recurrence formula:

1
(—m;{ [(2m — 3)ko by 2

+ (m — 2)(ky — k1 — 1) Zns (3.19)
— (2m — Skky Zps + (m — 3)(1 — k) Z ]

® Power series expansions of coefficients such as treated here have been given by A. G.
Tynan, Modulation Products in a Power Law Modulator, Prec. I. R. E., Vol 21, pp.
1203-1209, Aug. 1933.

Z, = —
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It thus is found that the value of Z, for all values of m greater than 2 can be
expressed in terms of Zo, Z1, and Zs.
Eq. (3.18) may be written in the form:

| z™ dz

Zn = Bty V(e —a) (38— 2)(z — 3) (2 — 2) (3.20)
5= —14 k)/b,z=—1 )
( (1 — ko)/ky, Case I)
23 —
1, Case IT ) > (3.21)

1, Case 1
33 =
(1 — ko)/ky, Case I1,

ooz — z1) — 21z — z)u’
7 = 5 — (o — e (3.22)

The substitution

reduces the integral to

2 o + 222 )md“
Z, = ( 1 — nu? (3.23)
by v/ (3 — 22) (22 — 51) '/; V({1 —u)(1 — 2ud)

where:
_ &3 Zp
"= 23— 21 (3.24)
P = (2 — 21)(3 — 22) (3.25)

(e — 2)(m — %)
Hence if K, E and II represent respectively complete elliptic integrals of
the first, second, and third kinds with modulus &, and in the case of third
kind with parameter —#, we have immediately:
2K

2= b (3 — 22) (22 — 21) (320
2[z K + (32 — z) 1)
5= v = wE - ) (327
2 . _
Zy = ki (3 — 22) (2 — 21) I.-z1 K h2n(s — =il (3.28)

2'/.1 du
+ (2 — z) h (1 — 21V — u) (1 — 2 12)
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To complete the evaluation of Z,, assume a relation of the following type
with undetermined constants Cy, Cs, Cs, Cy:

f‘ du _ _c j“ du
h (1 =) VT =) (1 —ew)  h VI —w) (1w

ey : du
+C2£ /‘/_~—-——1 — du + C; £ a- 11‘142) \/(1 — W) (1 — @)
V(1 —2)(1 — k2 sd)

+ G, 3.29
T (3.29)

-
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RATIO OF BIAS TO LARGER FUNDAMENTAL

Fig. 15.—Fundamentals and (2§ = ¢)—product from full-wave biased zero-power-law
rectifier with ratio of applied fundamental amplitudes equal to 0.5. F, = larger funda-
mental, F» = smaller fundamental, F; = (2p = g)—product.

Differentiate both sides with respect to z, set z = 1, and clear fractions.
Equating coefficients of like powers of z separately then gives four simul-

taneous equations in Cy, Cs, C3, Cs.  Solving for €y, Cy, C3 and settingz = 1
in (3.29) gives

! du _ 1 nE
I 1=V —w) (I —ew)  2n—1) [K te

(27 —3) & —n(n— 2)
+ K — 9 H]

(3.30)
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Fig. 16.—Fundamentals and (2p = g)—product from full-wave biased zero-power-law
rectifier with equal applied fundamental amplitudes.
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Fig. 17.—The integral Z, with & = 0.5,
Since the necessary tables of IT are not available, we make use of Legendre’s
Transformation,'’ which in this case gives:

10 Legendre, Traités des Fonctions Elliptiques, Paris, 1825-28, Vol. I, Ch. XXIII.
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Fig. 18.—D-c. term in linear rectifier output with two applied frequencies.
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Fig. 19.—Smaller fundamental in biased linear rectifier output.
tan ¢
I=K —————— [KE — EF 3.31
+ i KE@) —EF@)] (3
1/2
¢ = arc sin — (3.32)
K
¢ do
@) o V1— @sin?6 (3:33)
o .
E($) = f V1 — k2sin?g do (3.34)
0

The functions F(¢) and E(¢) are incomplete elliptic integrals of the first

and second kinds. They are tabulated in a number of places.

Fairly good

tables, e.g. the original ones of Legendre, are needed here since the difference

between KE(¢) and EF(¢) is relatively small.






167

“Jndino saynaar reaury paserq ut yonpoxd—(b F de)—yz Sy

81 F 91F vl F RS o'i¥ 0% 90% rOo¥ 203 o]

00—

£00-

\.\I 20'0-

\ = |00-

THE BIASED IDEAL RECTIFIER

/%
N\

20°0

€00




168 BELL SYSTEM TECHNICAL JOURNAL

w

—o07
hg=01
°""To.2
a4
<
5
o A 0.5
-2
£
'S 0.8 4.________.._-—-‘
o2 ———
g T
2 ___.-—"""'"--
< A L
= | | et
| " /‘/ 1.7__L——
o "1 "1
0o 0.1 0.2 0.2 0.4 05 0.6 0.7 0.8 0.9 1.0
Ky

Fig. 22—Graph of the integral E (ko, k1.

Summarizing:

Case L ko b > 1, ke—h <1 ]
P
Y VR

z =k31 [KE($) — EF(@)] — Zi

1 2
Zy = 7 [Zo — ko2 vV E:|

Y CEREL
n ak,

¢ = arc sin 1/4—2—kl_—
14 ko + A

Case IT, ko + kb1 < 1, kg — kr > —1

Zy= ———

VI F k) — B

Z, = ; (KE(#) — EF(@)] — Zu

o= s [+ = R 2ok 2, — 283 T R 8
1
VAR
(1+ k) — k3
¢ = arc sin 1-kth

2 7

2K )

(3.35)

(3.36)
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The wvalues of the fundamentals and third-order sum and difference
products for the biased zero-power-law rectifier have been calculated by the
formulas above for the cases £, = .5 and &, = 1. The resulting curves are
shown in Fig. (15) and (16). The values of the auxiliary integrals Z,, Zi,
and Z, are shown for k& = .5 in Fig. (17). These integrals become infinite
at kg = 1 — k; so that the formulas for the modulation coefficients become
indeterminate at this point. The limiting values can be evaluated from
the integrals (3.3), etc., directly in terms of elementary functions when the
relation kg = 1 — £, is substituted, except for the Z-function.

Limiting forms of the coefficients when £, is small are of value in calcu-
lating the effect of a small signal superimposed on the two sinusoidal com-
ponents in an unbiased rectifier. By straightforward power-series expan-
sion in &y, we find :

Zero-Power-Law Rectifier, ky Small:

4 _ 2E 2
Am— FE mkn'i"
A01=—4-[E—(I—kf)K]—l-.,i(—E—,,—K)k5+---
1r2k1 7r“k1 l—ki (337)
4 . ’
Ao = 31r2k1[(1 —2k)E — (1 — kf)K]
2 1 =2k .
Lk e

P
In the above expressions, the modulus of K and E is k. When k¢ = 0,
these coefficients reduce to half the values of the full-wave unbiased zero-
power-law coefficients, which have been tabulated in a previous publication.”
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