First and Second Order Equations for Piezoelectric
Crystals Expressed in Tensor Form

By W. P. MASON

INTRODUCTION

EOLOTROPIC substances have been used for a wide variety of elastic

piezoelectric, dielectric, pyroelectric, temperature expansive, piezo-
optic and electro-optic effects. While most of these effects may be found
treated in various publications' there does not appear to be any integrated
treatment of them by the tensor method which greatly simplifies the method
of writing and manipulating the relations between fundamental quantities.
Other short hand methods such as the matrix method® can also be used for
all the linear effects, but for second order effects involving tensors higher
than rank four, tensor methods are essential. Accordingly, it is the purpose
of this paper to present such a derivation. The notation used is that agreed
upon by a committee of piezoelectric experts under the auspices of the Insti-
tute of Radio Engineers.

In the first part the definition of stress and strain are given and their inter-
relation, the generalized Hookes law is discussed. The modifications caused
by adiabatic conditions are considered. When electric fields, stresses, and
temperature changes are applied, there are nine first order effects each of
which requires a tensor to express the resulting constants. The effects are
the elastic effect, the direct and inverse piezoelectric effects, the temperature
expansion effect, the dielectric effect, the pyroelectric effect, the heat of
deformation, the electrocaloric effect, and the specific heat. There are
three relations between these nine effects. Making use of the tensor trans-
formation of axes, the results of the symmetries existing for the 32 types of
crystals are investigated and the possible constants are derived for these
nine effects.

Methods are discussed for measuring these properties for all 32 crystal
classes. By measuring the constants of a specified number of oriented cuts
for each crystal class, vibrating in longitudinal and shear modes, all of the
elastic, dielectric and piezoelectric constants can be obtained. Methods
for calculating the properties of the oriented cuts are given and for deriving
the fundamental constants from these measurements.

1 For example Voigt, “Lehrbuch der Kristall Physik,” B. Teubner, 1910; Wooster,
“Crystal Physics,” Cambridge Press, 1938; Cady ‘‘Piezo-electricity’’ McGraw Hill, 1946.

? The matrix method is well described by W. L. Bond ““The Mathematics of the Physical
Properties of Crystals,” B. S. T. J., Vol. 22, pp. 1-72, 1943,
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Second order effects are also considered. These effects (neglecting second
order temperature effects) are elastic constants whose values depend on
the applied stress and the electric displacement, the electrostrictive effect,
piezoelectric constants that depend on the applied stress, the piezo-optical
effect and the electro-optical effect. These second order equations can
also be used to discuss the changes that occur in ferroelectric type crystals
such as Rochelle Salt, for which between the temperature of —18°C. and
+24°C.,a spontaneous polarization occurs along one direction in the crystal.
This spontaneous polarization gives rise to a first order piezoelectric deforma-
tion and to second order electrostrictive effects. It produces changes in
the elastic constants, the piezoelectric constants and the dielectric constants.
Some measurements have been made for Rochelle Salt evaluating these
second order constants,

Mueller in his theory of Rochelle Salt considers that the crystal changes
from an orthorhombic crystal to a monoclinic crystal when it becomes
spontaneously polarized. An alternate view developed here is that all of
the new constants created by the spontaneous polarization are the result of
second order effects in the orthorhombic crystal. As shown in section 7
these produce new constants proportional to the square of the spontaneous
polarization which are the ones existing in a monoclinic crystal. On this
view “‘morphic” effects are second order effects produced by the spontaneous
polarization.

1. STRESS AND STRAIN RELATIONS IN AEOLOTROPIC CRYSTALS
LI1. Specification of Stress

The stresses exerted on any elementary cube of material with its edges
along the three rectangular axes X, ¥ and Z can be specified by considering
the stresses on each face of the cube illustrated by Fig. 1. The total stress
acting on the face ABCD normal to the X axis can be represented by a
resultant force R, with its center of application at the center of the face,
plus a couple which takes account of the variation of the stress across the
face. The force R is directed outward, since a stress is considered posi-
tive if it exerts a tension. As the face is shrunk in size, the force R will be
proportional to the area of the face, while the couple will vary as the cube of
the dimension. Hence in the limit the couple can be neglected with respect
to the force R. The stress (force per unit area) due to R can be resolved
into three components along the three axes to which we give the designation

TIZZ y ]‘yzg ] lez . (1)

Here the first letter designates the direction of thé stress component and the
second letter x» denotes the second face of the cube normal to the X axis.
Similarly for the first X face OEFG, the stress resultant can be resolved
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into the components Tz, , Tyz, , Tar, , which are oppositely directed to
those of the second face. The remaining stress components on the other
four faces have the designation

Face OABE Tay Tyy, » Ty,
CFGD  Tays, Twsr  Tens
OADG  Tay, Ty, Ta
BCFE  Tay, Tysgy  Tasye

(2)

z
F
/
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Fig. 1.—Cube showing method for specifying stresses.

The resultant force in the X direction is obtained by summing all the forces
with components in the X direction or

Fz= (T, — Tiz,) dydz 4+ (Tayy — Tay,) dxdz 4 (Tzey — Tsy) dxdy.  (3)
But

aTzz
T“: = —Ta, + ax dz; T’vz = _T-ﬂu )
(4
Ty , . _ AT es .
+ "é‘; dy, .Tn, = Ts:l + oz dz
and equation (3) can be written in the form
= _('9;;? 4 ey aT") dz dy ds. 5)
Similarly the resultant forces in the other directions are
F, = ( ve W = a:r,.) dx dy ds
(6)

- _ 0T, ly T,
F, = (Bx + )dx dy dz.
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We call the components

Tzz 3 Tz'y ] T zz Tll ] T12 ) T13
Tyzy Ty Tye|=|Tu, Tun , Tu (7)
T.lz ] T:y, Tu Tal ) T32 ] T 33

the stress components exerted on the elementary cube which tend to deform
it. The rate of change of these stresses determines the resultant force on
the cube. The second form of (7) is commonly used when the stresses are
considered as a second rank tensor.

X2

Txy,
X

Fig. 2.—Shearing stresses exerted on a cube.

It can be shown that there is a relation between 3 pairs of these compo-
nents, namely

T-TU = TW! H Tzz = T:J: H Ty; = Tlll (8)

To show this consider Fig. 2 which shows the stresses tending to rotate the
elementary cube about the Z axis. The stresses 7., and T, tend 1o rotate
the cube about the Z axis by producing the couple

Tyz dx dy dz
e D ©)

The stresses T, and T, produce a couple tending to cause a rotation in
the opposite direction so that

3 (Ty: — Ty) dx dy dz = couple = Ja, (10)

is the total couple tending to produce a rotation around the Z axis.
But from dynamics, it is known that this couple is equal to the product of
the moment of inertia of the section times the angular acceleration. This
moment of inertia of the section is proportional to the fourth power of the
cube edge and the angular acceleration is finite. Hence as the cube edge
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approaches zero, the right hand side of (10) is one order smaller than the
left hand side and hence

Ty = Ty (11)

The same argument applies to the other terms. Hence the stress com-
ponents of (7) can be written in the symmetrical form

Tezy Ty, Tae Tn, Tw, Tu Ti, Te, Ts
Ty, Ty, Tyl =|Te, Tn, Tu|l=|Ts Tz, Ti|. (12)
Teey Tyey Ta Twu; Tw, Ts Ts, Ta, T3

The last form is a short hand method for reducing the number of indices
in the stress tensor. The reduced indices 1 to 6, correspond to the tensor
indices if we replace

11by1; 22by2; 33by3; 23by4; 13by5; 12by6.

This last method is the most common way for writing the stresses.

1.2 Strain Componenis

The types of strain present in a body can be specified by considering two
points P and Q of a medium, and calculating their separation in the strained
condition. Let us consider the point P at the origin of coordinates and the
point Q having the coordinates x, y and z as shown by Fig. 3. Upon strain-

Fig. 3.—Change in length and position of a line due to strain in a solid body.

ing the body, the points change to the positions P, Q. In order to specify
'the strains, we have to calculate the difference in length after straining, or
have to evaluate the distance P’Q’-P Q. After the material has stretched
the point P’ will have the coordinates &, m, {1, while Q" will have the
coordinates x + & ;y + m2 ;2 + {2. But the displacement isa continuous
function of the coordinates x, y and z so that we have

) |, O

_ 9% 4 9%, 4 %
&_El+8xx+6yy+6zz'
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Similarly

dn dan dn
m m-l-axx-l-ayy—l-azz
s s (13)
- T AT
{2 —;l+8xx+6yy+azz'
Hence subtracting the two lengths, we find that the increases in separation
in the three directions are

_ 9 9 9
az“'va‘!'y@‘l‘za—z

g0y o
6,—xax+yay 5. (14)

N SN e
8,—xa:+yay+zaz..

The net elongation of the line in the x direction is x £ and the elongation

per unit length is E}_E which is defined as the linear strain in the « direction.
E
We have therefore that the linear strains in the x, y and z directions are

=%, =9 =%
Sl-—a—x, S2—ay, S3_az- (15)

The remaining strain coefficients are usually defined as

af s . oqn . d¢ (16)

_ 9, on, _ 9 .
S4_t9—31+6z’ Sa_az+ax’ 5_5.:01_6)'
and the rotation coefficients by the equations
at dn 9t of dn li}3
z = L — _ = —- = z = o— - . 17
“* T8y 8’ T 8 o’ T oy (7

Hence the relative displacement of any two points can be expressed as

aSt + y (Sﬁ ; w') + s (5,5—; w,,)

0y, = x(Sj + w;) + 352 + 2 (S4 ; wz) (18)

bz

Il

2

6,=x(SF5;m")+y(S' 5 w’)+zSa
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which represents the most general type of displacement that the line P Q
can undergo.

As discussed in section 4 the definition of the shearing strains given by
equation (16) does not allow them to be represented as part of a tensor.
If however we defined the shearing strains as

25 = St = (‘K + ‘1”); 25 = s
dy = 0z
oF . At an . ot (19)
= —_ 2 = = _n -_—
0z ' ox’ Sp=Si=g T dy
they can be expressed in the form of a symmetrical tensor
Se S
Su S Sus S1 f Eﬁ
S S Su| = Sf Sy % . (20)
S.
Su Sw Su % ?4 Sa

For an element suffering a shearing strain Ss = 2S5 only, the displace-
ment along « is proportional to y, while the displacement along y is propor-
tional to the x dimension. A cubic element of volume will be strained into
a rhombic form, as shown by Fig. 4, and the cosine of the resulting angle 6

Fig. 4 —Distortion due to a shearing strain.

measures the shearing deformation. For an element suffering a rotation
w; only, the displacement along # is proportional to'y and in the negative
y direction, while the displacement along ¥ is in the positive x direction.
Hence a rectangle has the displacement shown by Fig. 5, which is a pure
rotation of the body without change of form, about the z axis. For any
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body in equilibrium or in nonrotational vibration, the w’s can be set equal
to zero.

The total potential energy stored in a general distortion can be calculated
as the sum of the energies due to the distortion of the various modes. For

example in expanding the cube in the x direction by an amount g—i dx =

S; dx, the work done is the force times the displacement. The force wil

z
= 2
o
== | = !
| T
| H |
' | J v
B SRR T K. |
| =7 ——z
:,f/ ! | =~
=

Fig. 5.—A rotation’of a solid body.

be the force T} and will be T dy dz. Hence the potential energy stored in
this distortion is

T1dS: dx dy dz

dSe,dx

For a shearing stress T'; of the type shown by Fig. 4 the displacement

times the force T'; dy dz and the displacement times the force T's dx dz

dSe dy
2
equals the stored energy or
APEﬁ = % (dSﬁTﬁ + dSuTa) dx d’y dZ = dSsTs dx dy dZ.
Hence for all modes of motion the stored potential ener gy is equal to
APE = [T1 dS], + ngSz + Ta d.s'a + T.| dS.| + T{,dSa

(21)
+ Ty dSs) dx dy dz.

1.3 Generalized Hooke's Law

Having specified stresses and strains, we next consider the relationship
between them. For small displacements, it is a consequence of Hooke’s
Law that the stresses are proportional to the strains. For the most un-
symmetrical medium, this proportionality can be written in the form
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Ty = enSi + c2Ss + Sz + cuSs + 61555 + 1656
T = ca1S1 + c22Se + 2353 + c2Ss + 2555 + 2656
T35 = c51S1 + 2282 + 3353 + caaSs + €3655 + 2656
Ty = caS1 + €952 + €353 + caaSs + 4555 + 2658
Ts = cs51 + €552 + caa53 1 c5aSs + €5555 1 5656
Ts = carS1 1 ce2S2 + ceaSs 1+ ceaSs 1 €555 + ¢656

]

(22)

where ¢ for example is an elastic constant expressing the proportionality
between the S; strain and the T} stress in the absence of any other strains.

It can be shown that the law of conservation of energy, it is a necessary
consequence that

c12 = ¢x and in general ¢;; = ¢j. (23)

This reduces the number of independent elastic constants for the most
unsymmetrical medium to 21. As shown in a later section, any symmetry
existing in the crystal will reduce the possible number of elastic constants
and simplify the stress strain relationship of equation (22).

Introducing the values of the stresses from (22) in the expression for the
potential energy (21), this can be written in the form

ZPE = 1S} + 26105152 + 26135155 + 26145151 + 26155155 + 26165156
+ 253 + 2025253 + 26205254 + 26255255 + 2626525
+ €333 + 26515551 + 26355355 + 26365556
+ c1aSi + 26165455 + 26455455 (24)
+ c5sS5 + 26665550
+ Cessg .

The relations (22) thus can be obtained by differentiating the potential
energy according to the relation

PE. .. g, =%E (25)

=55, ; 35,

It is sometimes advantageous to express the strains in terms of the stresses.
This can be done by solving the equations (22) simultaneously for the
strains resulting in the equations
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S1 = suTy + swuTe + suls + suls + 51575 + 51676
Se = suT1 + s0T2 + 55375 + 52474 + 52675 + 5267
Ss = suT1 4 sl + suTs + sy + 53575 + 53675
Sy = saT1 + sels + suT5 + suaTs + 51575 + 5467
Ss = suly + seels + 5573+ 55aTs + 55575 + 55616
Ss = sal1+ sels~+ sals + sals+ sel's + sels

§is = (=1 l)ji+j A5
ij Ac

89

(26)

27

for which A is the determinant of the ¢;; terms of (28) and A}; the minor
obtained by suppressing the sth and jth column

1 €12 Cize« €4 G5 €1
(12 Cez C23 (24 Co25 (25
€13 Ces (33 (€34 (35 (36
C14 Coq4 C34 Caa Ci5  C46
C15 C25 €35 Ca6 Cp56  CB6
C16 C26 C3c C46 Cs6  Ca6

(28)

Since ¢y; = ¢yi it follows that s;; = s;i. The potential energy can be
expressed in the form.

2PE = syTi + 250271 Ta + 2561 Ts + 2suT1 Ty + 25567175 + 25167176
4+ 52T + 250T2Ta + 250472l + 25065ToTs + 2506T2Ts

The relations (26) can then be derived from expressions of the type

+ 55573 + 2534 TsTs + 253575 Ts + 2536757
+ suTs + 255573 Ts + 2546 4T
+ s55T% + 255675 s
+ 5673

_ 9PE
T

_ OPE

Sl—aTl’ ...; Sﬁ

1.4 Isothermal and Adiabatic Elastic Constants

(29)

(30)

We have so far considered only the elastic relations that can be measured

statically at a constant temperature.
isothermal constants.

The elastic constants are then the
For a rapidly vibrating body, however, there is no
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chance for heat to equalize and consequently the elastic constants operative
are the adiabatic constants determined by the fact that no heat is added
or subtracted from any elemental volume. For gases there is a marked
difference between the adiabatic and the isothermal constants, but for
piezoelectric crystals the difference is small and can usually be neglected.

To investigate the relation existing we can write from the first and second
laws of thermodynamics, the relations

= [T1dS1+ T2 dS: + T3 dS;

+ T4 dSs + T5dSs + TudSe] + 0 do
which expresses the fact that the change in the total energy U is equal to
the change in the potential energy plus the added heat energy dQ = O do
where O is the temperature and o the entropy. Developing the strains and

entropy in terms of the partial differentials of the stresses and temperature,
we have

(31)

a8, S, as,"
s, = 3T, dT, + 3T, dTs + 3T, dTs
+ o ‘35‘ Lar+ o aS‘ T+ aS‘ a7y + % e
iS, aSs iy + 3 as., dT + aS6 dn
6T1
as, as, EXY as $2)
6 6 6 (]
+<9_ndT‘ +—— dT5+a_T,dT + de
do
do‘ dT1+ de+aTsdT3

do do
"|" dT4+ de‘i‘a—ﬁde""—a—e‘de.

The partial derivatives of the strains with regard to the stresses are readily
seen to be the isothermal elastic compliances. The partial derivatives of
the strains by the temperatures are the six temperature coefficients of ex-
pansion, or

a5y _ A

25 = @ e 3 = ® (33)

To evaluate the partial derivatives of the entropy with respect to the
stresses we make use of the fact that U is a perfect differential so that
as a as d
1= 27 =g e D= %7 . (34)

0 ol 30 aT,
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Finally multiplying through the last of equation (32) by © we can write
them as

Sy = $AT) + sTe + sHTs + siTs + sBTs + s%Ts + o1 dO

So = s%Ty + sSTe + seTs + s56Ts + seels + s56T's + asdO
dQ = 0do = OlanTy + aeTs+ osTs + s+ asTs + asTs] + pCpdO

. do . . .
since 8;3% is the total heat capacity of the unit volume at constant stress,

which is equal to pCp, where p is the density and C, the heat capacity at
constant stress per gram of the material.

To get the adiabatic elastic constants which correspond to no heat loss
from the element, or dQ = 0, d© can be eliminated from (35) giving

Sy = 5Ty + s32Ts + s3T5 + s1Ts + 51575 + 51676 + (aa/pCp) dQ

.......................................................... (36)
S = s1eT1+ S;oTz + 53T+ S:eT»: + steT's + S;eTs + (Ofa/PCp) dQ
where :

sy = o — B0 31)

_ pCp
For example for quartz, the expansion coefficients are
@ = 14.3 X 107/°C; as = 143 X 107%/°C; a5 = 7.8 X 107°/°C;
ay=as=o5 =0
Thu;: density and specific heat at constant pressure are
p = 2.65 grams/cma; Cp=7.37X 10° ergs/cm’.
Hence the only constants that differ for adiabatic and isothermal values are
S11 = Ses; S12; $13; Sa3-
Taking these values as’
§ = 127.9 X 107" cm®/dyne; s, = —15.35 X 107
s = 110 X 107 53 = 95.6 X 107,
We find that the corresponding isothermal values are
9 =1282 X 107 sH= —1504 X 107"
& = 10.83 X 107 5§ = 95.7 X 107 cm’/dyne

aSee “Quartz Crystal Applications” Bell System Technical ]ourna! Vol, XXIIL
No. 2, July 1943, W. P. Mason.
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at 25°C. or 298° absolute. These differences are probably smaller than
the accuracy of the measured constants.

If we express the stresses in terms of the strains by solving equation (35)
simultaneously, we find for the stresses

Ty = (181 + 0aS: + 5355 + 5351 + 5555 + 2656 — My dO

o o a o o )
As = eiC1p + e + @3Czs + oucss + asCss 1 6Cos -

The N’s represent the temperature coefficients of stress when all the strains
are zero. The negative sign indicates that a negative stress (a compression)
has to be applied to keep the strains zero. If we substitute equations (38)
in the last of equations (35), the relation between increments of heat and
temperature, we have

dQ = Bdo = O[MS1 + AaSz 4 AsSs + MaSs + AsSs + AeSel

39
+ [pCp — O(anh1 + ashs + azhy + ashy + ashs + agh)1dO. 9

If we set the strains equal to zero, the size of the element does not change,
and hence the ratio between dQ and dO should equal p times the specific
heat at constant volume C,. We have therefore the relation

plCr — Cu] = Olarhs + a2he + ashs + ahs + ashs + agh]. (40)

The relation between the adiabatic and isothermal elastic constants ¢;;
thus becomes
MM O

oC,y 40

e
i = ¢+

Since the difference between the adiabatic and isothermal constants is so
small, no differentiation will be made between them in the following sections.

2. ExprESSION FOR THE Erastic, PIEZOELECTRIC, PYROELECTRIC AND
DierLEcTRIC RELATIONS OF A PIEZOELECTRIC CRYSTAL

When a crystal is piezoelectric, a potential energy is stored in the crystal
when a voltage is applied to the crystal. Hence the energy expressions of
(31) requires additional terms to represent the increment of energy dU.
If we employ CGS units which have so far been most widely used, as applied



PIEZOELECTRIC CRYSTALS IN TENSOR FORM 93

to piezoelectric crystals, the energy stored in any unit volume of the crystal is
dU = T] d51 ‘I" Tz dSz + TadSa + T.: GTS4 + T5 dSs + TedSa

_ @)
+ 5Dy 2 5 0,
4w 47 47

where F;, Es and Ej; are the components of the field existing in the crystal
and Dy, D, and D the components of the electric displacement. In order
to avoid using the factor 1/4r we make the substitution

D

ywi 8. (43)
The normal component of 3 at any bounding surface is & the surface charge.
On the other hand if we employ the MKS systems of units the energy of
any component is given by E,d D, directly and in the following formulation &
can be replaced by D.

There are two logical methods of writing the elastic, piezoelectric, pyro-
electric and dielectric relations. One considers the independent variables
as the stresses, fields, and temperature, and the dependent variables as the
strains, displacements and entropy. The other system considers the strains,
displacements and entropy as the fundamental independent variables and
the stresses, fields, and temperature as the independent variables. The
first system appears to be more fundamental for ferroelectric types of
crystals.

If we develop the stresses, fields, and temperature in terms of their partial
derivatives, we can write

_ 6T1 3T1 aTl
T, = 551)9.« dS, + c')—Sz)p.. dSs + 6—.5'3)::.« dS; + 654)9,, dS,

o1,
+ 555)1).:1

aT, aT,
+ T&i)a.w a8 + a_a)s.n @

aTl aT]_ 6T1
dSB + E)D.c dS& + a—{sl)s.n dal + 5‘?2)8.: d62

_ aTs aTs dT% T
Tﬂ = 6—57[ oo dS1 + _dﬁz)n.c dSE + ﬁa Do dSa + E)D.a dSQ

aTs aTs 0T aTs
il el d £ ‘ kel
+ ass)n,,,dsa + 653):).: S+ aal)s,, 4, + 352)3,, ah

0T, 0T,
— —_— d
+ 963 )S,n’ dss + do )B,D d
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IE; JE; aEl) aEl)
= E =2 4 bt ) I =) g —) 4
E=E asl)p,. Sut asz)p,. Sz + 353/ p.¢ Ss EX 1

dE, dE; JE, aEl)
9L s ket =) ds
+ 335)&« a5y + ass)u., dSe + aal)a., Bt 55 s ™

+ 6_%) dds + @) do
: o /sp

Ee=E = a—Ea) s + ‘E“) ds: + "—E“) dSs + ‘9—&)9 dSs

051/ p,« 852/ p,e AT a5,

9E; FYoN OF; OF;

+ FL?—B)D,‘ dSﬁ + E)D.n dSﬂ + 6—81 8,0 dal + -8_6;)8.1 d52

+ a_EE) dby + ‘E") ds (44B)
983 /8.0 do /s

a0 a0 a0 a0
de - B_SI)D.' dSl + Eﬂ D,c dS2 + a—S_S)D.a dSB + E‘)D.ﬂ dS‘

a0 a0 a0 a0

+ a—Sb)D.u' dS& + a—Sﬁ)D,u‘ dSﬂ + —a_al)ﬂ.n dal + 6_52-)8.6 d62
00 a0

+ {ﬁ;)s'. dﬁa + ET)H,D dG’.

The subscripts under the partial derivatives indicate the quantities kept
constant. A subscript D indicates that the electric induction is held
constant, a subscript ¢ indicates that the entropy is held constant, while a
subscript .S indicates that the strains are held constant.

Examining the first equation, we see that the partial derivatives of the
stress 71 by the strains are the elastic constants ¢;; which determine the
ratios between the stress 77 and the appropriate strain with all other strains
equal to zero. To indicate the conditions for the partial derivatives, the
superscripts D and ¢ are given to the elastic constants and they are written
ci. The partial derivatives of the stresses by § = D/4r are the piezo-
electric constants /;; which measure the increases in stress necessary to
hold the crystal free from strain in the presence of a displacement. Since
if the crystal tends to expand on the application of a displacement, the
stress to keep it from expanding has to be a compression or negative stress,
the negative sign is given to the k7; constants. As the only meaning of
the & constants is obtained by measzuring the ratio of the stress to § = D/4r
at constant strains, no superscript Sisadded. However there is a difference
between isothermal and adiabatic piezoelectric constants in general, so
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that these piezoelectric constants are written 4%;. Finally the last partial
derivatives of the stresses by the entropy o can be written

aT, 19T, 10T, 8D
do )s.n 7709 ).s.n 6 do 0 do ).s.n 0 vaodQ - (45)

where dQ is the added heat. We designate 1/0 times the partial derivative
as —v>” and note that it determines the negative stress (compression)
necessary to put on the crystal to keep it from expanding when an increment -
of heat dQ is added to the crystal. The electric displacement is held
constant and hence the superscripts S, and D are used. The first six equa-
tions then can be written in the form

T, = %S + 25 + c5'Ss + cni'Se + 5 Ss + cnoSe
— Kb — hady — hoady — v5" dQ.

(46)

To evaluate the next three equations involving the fields, we make use of
the fact that the expression for dU in equation (42) is a perfect differential.
As a consequence there are relations between the partial derivatives,
namely

0Tn OE,  0Tn _ 080 QE, _ 0O
B, 05, 00 = @, 7

FX e 05,
We note also that

3Em S
i = e 8
3o, )S,u’ 43 (48)

where 8 is the so called “‘impermeability”” matrix obtained fiom the dielectric
matrix ., by means of the equation

_ (_1)m+nAm.ﬂ

Bumn A (49)
where A is the determinant
en, ez, e
A= ez, € a3 (30)

| €13, €13, €33

and A™" the minor obtained by suppressing the mth row and nth column.
The partial derivatives of the fields by the entropy can be written

OE, 1 0En 1 dFn 8,0 -
do )s,n ’ 0 do )s.b b 6 do Jsob ¢ gn=dQ - (51)

where ¢5” is a pyroelectric constant measuring the increase in field required
to produce a zero charge on the surface when a heat 7Q is added to the
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crystal. Since the voltage will be of opposite sign to the charge generated
on the surface of the crystal in the absence of this counter voltage a nega-
tive sign is given to ¢5".

Finally the last partial derivative

40 100 1906 dQ

30’)8.1) 7 (5] aa)s.n ? (5] Ga)s,o Q .OC? (52)
represents the ratio of the increase in temperature due to the added amount
of heat dQ when the strains and electric displacements are held constant.
Tt is therefore the inverse of the specific heat at constant volume and constant

electric displacement per gram of material times the density p. Hence
the ten equations of equation (44) can be written in the generalized forms

Tn = o781 + 23S + 23Sz + casSs + cnpSs + cngSe

— 181 — Khabe — hpads — 'Y‘EJD dQ
E, = —fl;m51 - h;msz - ]T;mS:s - ;“ng4 - h;mSE - h;‘mS& + 47!'5::':51

+ dnBats + AnBasds — qgn’ dQ (53)
40 = —Oy1"S1 + 72 S2 + 73" Ss + ¥iPSs + v5 "S5 + 5 Sl '

d
—0[g1"6 + ¢278 + ¢578] + p?%
n=1to6;m=1to3

If, as is usually the case with vibrating crystals the vibration occurs
with no interchange of heat between adjacent elements dQ = 0 and the
ten equations reduce to the usual nine given by the general forms

Ty = cnS1+ chaS2 + cnaSs + cnuSi+ 7685 + cneSs
— Ra1by — Iinads — haaby
Ep = — St — honSs — HamSs — himSs — hsmSs — hemSe
+ 47Bmds + AnBmade + AmBmada.

(54)

In these equations the superscript ¢ has been dropped since the ordinary
constants are adiabatic. The tenth equation of (53) determines the increase
in temperature caused by the strains and displacements in the absence of

any flow of heat.
If we introduce the expression of equations (53) into equation (42) the

total energy of the crystal is per unit volume.
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2U = 5S4 207518 4 25185 + 260°518s + 265i7S1Ss + 215" S1Ss
FBTSE + 257558 + 2657SaSs + 257S:Ss + 265S2Se
+ci8"S3 + 268°83Ss + 2635555 + 205" SaSs
HchiSt 4 2c857SuSs 4 2c367SeSs
+ca5"S3 + 2c56°S5Ss
+cos'Ss (55)
— QH8iS) + 2iabiSe + 2i%s5iSs 4 2hTe8iSs + 2ishSs + 2h68:S6)
— (U 8:51 + 2i6aSs + 258y + 2inisaSs + 235855 + 2568:S5)
— (2h5:8551 + 215832 + 2h5380Sa + 2h5:8:Ss + 2558aSs + 2ize8sSe)
—(2y1'P51dQ 4+ 298PSdQ + 245" Ss dQ
+ 295°SudQ + 245 "SedQ + 2 "SedQ)
FAr(BiTsY + 2855 6i8s + 2885 818y + Bar s + 283 628y + Bas 03)

(dQ)*
Ly

— (2¢1"8dQ + 242"8:dQ + 2¢5"8:dQ) +

Equations (53) can be derived from this expression by employing the partial
derivatives
_ v, alu au

En=Goni %07 5a0)

(56)

The other form for writing the elastic, piezoelectric, pyroelectric and di-
electric relations is to take the strains, displacements, and entropy as the
fundamental variables and the stresses, fields and temperature increments
as the dependent variables. If we develop them in terms of their partial
derivatives as was done in (44), use the relations between the partial deriva-
tives shown in equation (57).

9n _ S,  9S, _ g . 9bn _ do 57)
T, @E,’ @0 0T, 980 OE,

and substitute for the partial derivatives their equivalent elastic, piezo-
electric, pyroelectric, temperature expansions, dielectric and specific heat
constants, there are 10 equations of the form
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Sn=suPTi+ smsTe+ smyTa+ sns Lo+ sma Ts + sns Ts + dor By
+ dasEs + dasEs + aad®
= d5nT1 + donT2 + d5uTs + dinTy + d3nTs + donTs

T.0 - 7e T.0
+ 2L B+ T B, 4+ T By + plde  (58)
47 4 47
dQ =0 do = Blar T+ azTo+ as T3 + as Ty + a5 Ts + ag Ts)
+ O[pTEy + piE: + piEs) + pCEdo.

n=1to6, m=1to3

The superscripts E, 0, and T indicate respectively constant field, constant
temperature and constant stress for the measurements of the respective
constants. It will be noted that the elastic compliance and the piezo-
electric constants d,. are for isothermal conditions. The a* constants are
the temperature expansion constants measured at constant field, while the
p” constants are the pyroelectric constants relating the ratio of § = D/4r
to increase in temperature dO, measured at constant stress. Since there is
constant stress, these constants take into account not only the “true” pyro-
electric effect which is the ratio of § = D/4r to the temperature at constant
volume, but also the so called “false” pyroelectric effect of the first kind
which is the polarization caused by the temperature expansion of the crystal.
This appears to be a misnomer. A better designation for the two effects
is the pyroelectric effect at constant strain and the pyroelectric effect at
constant stress. C7j is the specific heat at constant pressure and constant’
field.

If we substitute these equations into equation (42), the total free energy
becomes

6 6 L] 3 6
W= 33 smiTaTo+2 32 3 dulubi +2 3 oiT.d0

\ . n=1 0=1 ) ne=l (59)
Eop T Pci
+ZZ EJE,+ 2, piE,do + 7 de.
=1 p=1 4r =1 o
Equation (58) can then be obtained by partial derivatives of the sort
oU alU dQ U
Sw=or %= ag, =9 = a@e)

By tensor transformations the expression for U in (59) can be shown to
be equal to the expression for U/ in (55).
The adiabatic equations holding for a rapidly vibrating crystal can be
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obtained by setting dQ) equal to zero in the last of equations (58) and elim-
inating d0© from the other nine equations. The resulting equations are
Sy = SﬁlT‘l + Sﬁsz + snaTs + sna Ty

+ 5u6Ts + smeTe + duEy + duoEa + d Es

bm = dinT) + Gon T2 + don Ts + dim T (60)

T T T
+ dom Ts + dom T +£ﬂ-‘-1E1+e—mE2 +TE3
47 47 4

where the symbol ¢ for adiabatic is understood and where the relations
between the isothermal and adiabatic constants are given by
bl O . Emn _ e _ pmpn®

pCE 7 Ar 47 pC%

anah©

Eo 2,0 m0n O _ 48

Smn = Sma — ! d;—d{m_
PCp

Hence the piezoelectric and dielectric constants are identical for isothermal
and adiabatic conditions provided the crystal is not pyroelectric, but differ
if the crystal is pyroelectric. The difference between the adiabatic and
isothermal elastic compliances was discussed in section (1.4) and was shown
to be small. Hence the equations in the form (60) are generally used in
discussing piezoelectric crystals.

Two other mixed forms are also used but a discussion of them will be
delayed until a tensor notation for piezoelectric crystals has been discussed.
This simplifies the writing of such equations.

3. GENERAL PROPERTIES OF TENSORS

The expressions for the piezoelectric relations discussed in section 2 can
be considerably abbreviated by expressing them in tensor form. IFurther-
more, the calculation of elastic constants for rotated crystals is considerably
simplified by the geometrical transformation laws established for tensors.
Hence it has seemed worthwhile to express the elastic, electric, and piezo-
electric relations of a piezoelectric crystal in tensor form. It is the purpose
of this section to discuss the general properties of tensors applicable to
Cartesian coordinates.

If we have two sets of rectangular axes (Ox, Oy, Oz) and (0x’, Oy', O3)
having the same origin, the coordinates of any point P with respect to the
second set are given in terms of the first set by the equations

'

2 = hx + my + nz
v = Lx + myy + naz (61)
g = by + may + naz.
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The quantities (¢, - - -, n3) are the cosines of the angles between the various
axes; thus £y is the cosine of the angle between the axes Ox’, and Ox; 73 the
cosine of the angle between Oz’ and Oz, and so on. By solving the equations
(61) simultaneously, the coordinates x, v, 2 can be expressed in terms of
x’, 9, 2’ by the equations.

X = ’5196’ + ff_wy’ + {';Z’
y = mx’ + myy’ + my7’ (62)
z = ma’ + my + nys'.

We can shorten the writing of equations (61) and (62) considerably by
changing the notation. Instead of «, ¥, 2 let us write «;, #» , 23 and in place
of &', v/, 5" we write x1, %5, 3. We can now say that the coordinates with
respect to the first system are x; , where i may be 1, 2, 3 while those with
respect of the second system are x;, where j = 1, 2 or 3. Then in (61)
each coordinate x is expressed as the sum of three terms depending on the
three x;. FEath x; is associated with the cosine of the angle between the
direction of x; increasing and that of x; increasing. Let us denote this
cosine by @;;. Then we have for all values of j,

3
!
X, = ;% + Q2j X + a3; X3 = Z Qi % - (63)
=1
Conversely equation (62) can be written
: 4
= 2 0% (64)
i=1

where the a;; have the same value as in (63), for the same values of 7 and 7,
since in both cases the cosine of the angle is between the values of x; and x;
increasing. Such a set of three quantities involving a relation between two
coordinate systems is called a tensor of the first rank or a vector.

We note that each of the equations (63), (64) is really a set of three equa-
tions. Where the suffix 7 or j appears on the left it is to be given in turn
all the values 1, 2, 3 and the resulting equation is one of the set. In each
such equation the right side is the sum of three terms obtained by giving j
or ¢ the values 1, 2, 3 in turn and adding. Whenever such a summation
occurs a suffix is repeated in the expression for the general term as @iy .
We make it a regular convention that whenever a suffix is repeated it is
to be given all possible values and that the terms are to be added for all.
Then (63) can be written simply as

!
Xy = ;%

the summation being automatically understood by the convention.
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There are single quantities such as mass and distance, that are the same
for all systems of coordinates. These are called tensors of the zero rank
or scalars.

Consider now two tensors of the first rank #; and 9, . Suppose that each
component of one is to be multiplied by each component of the other, then
we obtain a set of nine quantities expressed by #; v, where 7 and % are
independently given all the values 1, 2, 3. The components of #; v with
respect to the x; set of axes are 1,2 , and

u: vz = (a:ju:) (argor) = @ijarguvy. (65)

The suffixes 7 and k are repeated on the right. Hence (65) represents nine
equations, each with nine terms. Each term on the right is the product
of two factors, one of the form a;;ax,, depending only on the orientation of
the axes, and the other of the form #,v: , representing the products of the
components referred to the original axes. In this way the various u; 1‘2 can
be obtained in terms of the original % . But products of vectors are not
the only quantities satisfying the rule. In general a set of nine quantities
w i referred to a set of axes, and transformed to another set by the rule

‘w;g = Qijdgp Wik (66)

is called a tensor of the second rank.

Higher orders tensors can be formed by taking the products of more
vectors. Thus a set of # quantities that transforms like the vector product
x¢x; -+ xpis called a tensor of rank », where » is the number of factors.

On the right hand side of (66) the i and k are dummy suffices; that is,
they are given the numbers 1 to 3 and summed. It, therefore, makes no
difference which we call 7 and which & so that

r

Wi = a,-ja,-.-tw;k = a.k,-a,-gwu . (67)
Hence 1y, transforms by the same rule as w ;. and hence is a tensor of the
second rank. The importance of this is that if we have a set of quantities
Wi W Wi
W W2 W (68)
Wa Wi Wss
which we know Lo be a tensor of the second rank, the set of quantities
wn wWa Wa
Uz W Wi (69)
Wiz Wiz s

is another tensor of the second rank. Hence the sum (w i + ws:) and the
difference (w4 — wr;) are also tensors of the second rank. The first of
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these has the property that it is unaltered by interchanging ¢ and %, and
therefore it is called a symmetrical tensor. The second has its components
reversed in sign when 7 and % are interchanged. It is therefore an antisym-
metrical tensor. Clearly in an antisymmetric tensor the leading diagonal
components will all be zero, i.e., those with ¢ = & will be zero. Now since

Wik = % (w ik T+ wki) + % (wik — ‘wki) (70)

we can consider any tensor of the second rank as the sum of a symmetrical
and an antisymmetrical tensor. Most tensors in the theory of elasticity
are symmetrical tensors.

The operation of putting two suffixes in a tensor equal and adding the
terms is known as contraction of the tensor. It gives a tensor two ranks
lower than the original one. If for instance we contract the tensor u; v
we obtain

U = Ml + Usle + Usls (71)

which is the scalar product of #; and »; and hence is a tensor of zero rank.

We wish now to derive the formulae for tensor transformation to a new
set of axes. For a tensor of the first rank (a vector) this has been given
by equation (61). But the direction consines £; to 73 can be expressed in
the form

' ox ax'  ox ' oxy
‘51 = —_— = — ; 1] = — = — ; = — = —
dx  dn dy 0%z 0z 03
3y ox 8y _ oz, 3y ox
= = " = = __": Ny = = = _=% 2
b ox  dx’ e dy  dxp’ * 7 9 dx3 (712)
{_az'__ax;_ m__éLz'=6x£_ = 0% _om
2T 0x ox’ 2T 0y o’ YT 9z om
Hence equation (61) can be expressed in the tensor form
dx;
x; = g B = @i (73)

Similarly since a tensor of the second rank can be regarded as the product
of two vectors, it can be transformed according to the equation

! ! I !
ror ij Ba:t 6x,- axt
Fi%e (61:; ”) (ax,, x") Eror T (74)

which can also be expressed in the generalized form

o= By, (75)
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In general the transformation equation of a tensor of the #th rank can be
written
6.\?,-1 6.17,‘2 6.1:,-,,

Xivon, Xjinwein- (76)

4. APPLICATION OF TENSOR NOTATION TO THE ELASTIC, PIEZOELECTRIC
AND DieELECTRIC EQUATIONS OF A CRYSTAL

Let us consider the stress components of equation (7)

T:J: sz Tzz
TH-T- TIIFI T!J z
sz sz T zz

from which equation (8) is derived
Ty = Ty ;T = T;x;Tyz= T.,

and designate them in the manner shown by equation (77) to correspond
with tensor notations

Tll T12 T13 Tll T]2 Tla
Ty Tm Tu|=|Tw Tun Txn )
Ta T Tam Ty Tw Tan

by virtue of the relations of (8). We wish to show now that the set of 9
elements of the equation constitutes a tensor, and by virtue of the relations
of (8) a symmetrical tensor.

The transformation of the stress components to a new set of axes a’, y', 2’
has been shown by Love® to take the form

Tl = 6 Toe + miTyy + 0iT.: + 26omT ey + 26mTz: + 2mm Ty

T;,, = 06yT oo+ mumaTyy 4 nanaT oz + (b + fam)) Ty + (bina + Lann) T
+ (mune + mms) Ty,

where £ to ns are the direction cosines between the axes as specified by
equation (61). Noting that from (72)

the first of these equations can be put in the form

1 See “Theory of Elasticity,” Love, Page 80.
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: dxy’ dx1 0 dx1 @
Ty = (—1)17“11'1‘—lil Ty + — %1 xlTu

axl 6x1 a Xo ax1 axa
4 Ox1 oy dx dx1 dxy . _ O%1 ;
t om om L 1+( 2) tomom P " Gmom ()

6:1:1 axl 6:1:1 &xl a.'x]_
+6—'v36_xlT +6 62T32+( ) Ty

while the last equation takes the form

ron i g i
tam Pt Rm R a R ®
oy g
The general expression for any component then is
= j—j}k ‘;—L T (81)

which is the transformation equation of a tensor of the second rank. Hence
the stress components satisfy the conditions for a second rank tensor.
The strain components

Sza: S::y S.-u
SII-T-‘ Sw Suz
Sz.z- Szy S:z

do not however satisfy the conditions for a second rank tensor. This is
shown by the transformation of strain components to a new set of axes,
which have been shown by Love to satisfy the equations

See = £ 8o + miSyy + niS.. + fmSey + LS. + munSy.

S:-y = 20£0S:: + 2m1maSyy + 2011280 + (Dime + Lo Soy

+ (bna + mbo)Sze + (mumy + mam) Sy
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If, however, we take the strain components as

fo ] )
Su = S:z =k£; SEZ = Suu = a—‘;; Sa = st = 35
_ _ Say 1 fon , OEY, _ _ Su )
Sl2—Sﬂl——2'—‘2—(a—x+a—y ] 315—831—7 (83)
1 (ot . _ Sy _ 10t | a9
2( +6‘x)’ 52‘-‘*3““7—5(3—,,+a
the nine components
Sy S Sz
Sm S2‘_’ 523 (83)
Sm Sz Sm

will form a tensor of the second rank, as can be shown by the transformation
equations of (82).
The generalized Hooke’s law given by equation (22) becomes

Tii=cijkgSke (84)

it is a fourth rank tensor. The right hand side of the equation being
the product of a fourth rank tensor by a second rank tensor is a sixth rank
tensor, but since it has been contracted twice by having & and ¢ in both
terms the resultant of the right hand side is a second rank tensor. Since
¢ijkg is a tensor of the fourth rank it will, in general, have 81 terms, but on
account of the symmetry of the T';; and Skg tensors, there are many equiva-
lences between the resulting elastic constants. These equivalences can be
determined by expanding the terms of (84) and comparing with the equiva-
lent expressions of (22). For example

Tu = cunSiz + cmaSie + S
+ cuaSa + cn29Se + cu2Sa (85)
+ cunSa + 6113253 + cn3sSss -

Comparing this equation with the first of (22) noting that Si = Su =
57’", etc., we have

Cuil = €11 €z = €nm = €15 ; Cusg = C13 ; €13 = Cust = €16 (86)

Cl122 = €12 ; €2z = €132 — Cu4 .
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In a similar manner it can be shown that the elastic constants of (22)
correspond to the tensor elastic constants ¢ g according to the relations

€11 = €11 €12 = Cne2 = C2o11 5 C13 = Cilaz = C3311 , €14 = €23 = €132 =
Co311 = C3211 »C16 = €13 = €131 = C1311 = 63111, C16 = C1112 = €1 = €1 =
Co111 ; €2z = Co2a99 5 Ca3 = (o233 = (3302 ; Cag4 = (o3 = Co232 = Cagon = Ca2o2
Cop = (2213 = C2231 = C1332 = (3122 5 C2g — Cazpz = C2221 = (1202 = (2122 5 (33 =
C3333 ; C34 = C3ges = C3332 = C2333 = (3233 5 €36 = 3313 — (3331 = C1333 = C3133 ;

(87)

C3g = Caziz = C3321 = C1233 = C€2133 ; C44 = Cazay = C2332 = Cgasa = (3232 5 Cap =
(o313 = Ca331 = C3213 = C3231 = 1323 — 1332 — (3132 — C3123 ; C46 = C2312 =
Cogz1 = Cgo12 = C3pa1 = Ci223 = Cie2 — C2123 = Comz; Cps — C1313 = Cis1 =
Cang = Cs131 5 €56 = Cl312 = €301 = C3n2 = Cz21 = G213 = G2 = Cong =
C2131 ; €66 = Cl212 = Cl221 = Came — C€2121.

Hence there are only 21 independent constants of the 81 ¢, constants
which are determined from the ordinarily elastic constants ¢;; by replacing

1 by 11; 2 by 22; 3 by 33; 4 by 23; 5 by 13; 6 by 12 (88)

and taking all possible permutations of these constants by interchanging

them in pairs.
The inverse elastic equations (26) can be written in the simplified form

Sij=5ippTre- (89)
By expanding these equations and comparing with equations (26) wecan
establish the relationships

S14
S11 = 81 ; S12 = S22 = 20115 813 = S133 = Saz11 ;4 T S123 = Suaz = Sun =
2

S15 S16
Szo11 —5 = Sm3 = Sug = Spu = S ? = Si2 = Su21 = S = S

S24 _ 326
Soo = Sonp  Se3 = Soo3 = a3z ) 5 = Sa203 = S22a2 = Sogee = Sz E =
(90A)
[— —_— —_— . S?E — — e —_— . — .
S2013 = 82031 = S22 = Sa1o2 E = Sa012 = o201 = S1220 = S;122 ; S33 = S3zss

Sa4 _ _ _ S _ _ _ - . 936
— = 33303 = S33z2 = Soaas = Sn2s3 —2— = S3313 = Sagal — S1a = Saws 7

2
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Sa4 S45
S3312 = S3321 = S1283 = S2133 E = S2323 = S1332 = 3223 = 3232 Z = Sa13 =

S46
S2331 = 83213 T S3231 = S1323 < S1332 = 3123 = S3132 5 Z = So312 = Sy =
s (90 B)
55
S3212 = 3221 = S1a23 = Sz = S2u03 = Saa0 Z = Sz = S = Smg =

556
S3131 T = Sz = S = Sue = Snor = S1213 = Sigar = Seng = Sanan

S66 _
e = S = Sp21 = Soue = Soum .
Here again the s;;¢ elastic constants are determined from the ordinary

elastic constants s;; by replacing
1 by 11, 2 by 22, 3 by 33, 4 by 23, 5 by 13, 6 by 12.

However for any number 4, 5, or 6 the elastic compliance s;; has to be di-
vided by two to equal the corresponding s;;k¢ compliance, and if 4, 5 or
6 occurs twice, the divisor has to be 4.

The isothermal elastic compliance of equations (39) can be expressed
in tensor form

Si;i= 5ot Trt + ai; dO (91)

where as before a;; is a tensor of the second rank having the relations to
the ordinary coefficients of expansion

ay
Q) = aq, Qg = Qg a3 = O3 , E=ﬂt23;
G5 ag @
- = 013, - = di2.
2 ’ 2

The heat temperature equation of (35) is written in the simple form
dQ = + ol Tkt o0 + pCp doe. (92)

By eliminating dO from (92) and substituting in (91) the adiabatic constants
are given in the simple form
i Ol ]

oC, (93)

Skt = S?,-kﬂ -
The combination elastic and piezoelectric equations (60) can be written
in the tensor form
T

Si = SIE':L-CTL-( + dm:'jEm ; 6y = Z"—T:Em + dart Tir . (94)



108 BELL SYSTEM TECHNICALJOURNAL

Here d,.;; is a tensor of third rank and émn one of second rank. The dn;;
constants are related to the eighteen ordinary constants d;; by the equations

d d
du = dm ;dm = diz ;dm = dus ;; = diy = dun ;%‘ = dy = dia )
dis _ _ B _ . _ . — . da — — .
7= dye = din ; dn = doy ;des = dam 3 dg = dog iy = dozy = dage ;
d dag 95)
%’ = dpz = dam1 ; '21 = dygo = dam ;dsnn = dan ; ds2 = dam s dss = dams ;
d. dsp d3s
%‘ = dszy = dap ,7 = dai3 = dam1 ; 33— = dae = dan .

The tensor equations (94) give a simple method of expressing the piezo-
electric equations in an alternate form which is useful for some purposes.
This involves relating the stress, strain, and displacement, rather than the
applied field strength as in (94). To do this let us multiply through the
right hand equation of (94) by the tensor 47Bmn , obtaining

41T,an5n = EmnﬁmﬂEﬂa + 47rdnkf.6mn ch (96)

where Bmn is a tenzor of the “free” dielectric impermeability obtained from
the determinant.

T
AE

-1 (m+n) ﬂ 97

(—=1) A 97

Bumn
where A*” is the determinant
T T T
€11 €12 €13
Ezl
A = E{rz Gg'g EzTa (98)
T T T
€13 €23 €33
T . - . .
and A&, the minor obtained from this by suppressing the mth row and nth

column. If we take the product er . Bmn for the three values of m, we have
as multipliers of Ei, E;, Es, respectively

€1Tl 1317'1 + 6{2 ﬁ{ﬂ + Elrs B;a =1
e B + ese Bz + exs B = 1 (99)
&1 B3 + €52 Biz + €3 Bas = 1.

But by virtue of equations (97) and (98) it is obvious that the value of
each term of (99) is unity. Hence we have

E'n = 47"]'3:;7: 0n — (47[' dﬂk‘ B::n) Tl" (lm)
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Since the dummy index # is summed for the values 1, 2, and 3, we can set
the value of the terms in brackets equal to

gkt = 47 duit Brn = 4xldint o1 + dont Bra + dust Bms)  (101)
and equation (100) becomes

En = 47 Bmn 80 — gut Tit . (102)

Substituting this equation in the first equations of (94) we have
Sii=stnt Tt + gai;dn (103)
where
ST = STkt — i j gkl = Stipt — 478 Al dmis]-

By substituting in the various values of 7, j, % and £ corresponding to the 21
elastic constants, the difference between the constant displacement and
constant potential elastic constants can be calculated. If equations (102)
and (103) are expressed in terms of the Si,- - -, S strains and 77, - - Ty
stresses, the g.:; constants are related to the g;; constants as are the corre-
sponding d;; constants to the d,:; constants of equation (95).

Another variation of the piezoelectric equations which is sometimes em-
ployed is one for which the stresses are expressed in terms of the strains
and field strength. This form can be derived directly from equations (94)
by multiplying both sides of the first equation by the tensor c¥jx¢ for the
elast1c constants, where these are defined in terms of the corresponding
st; elastic compliances by the equation

Gﬁ- — (_I)(HJ') A:','E/A

o (104)
where A is the determinant

E E E E B B
S11 S12 13 S14 S15  S16

E E E E E E

S12 S22 S23  S2a S25  Sap

E E E E E E

A'E _ | %13 Se3 S3az S3s S35 Sap

E E E E E E
S14  S24  S34  S44  S45 S4s

E E E E E E
S156 S256 S35 Sa5 Sp5  Soe

E K E E E E
516 S26  S36  S46 Ss6 S

and A'.-f in the minor obtained by suppressing the ith row and jth column. -
Carrying out the tensor multiplication we have

ciiet Sij = cijt Sijpt Tt + dmi; c5iae Enm . (105)
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As before we find that the tensor product of ¢ijx¢ s3;x¢ is unity for all values
of kand £. Hence equation (105) can be written in the form

Tit = it Sij — emit Enm (106)
where emif is the sum
emkl = drru',l' ijkﬂ (107)

cummed for all values of the dummy indices 7 and j. If we substitute the
equation (106) in the last equation of (94) we find

S
€Emn
6l': = E Em + em'jSij (108)
where €. the clamped dielectric constant is related to the free dielectric
constant en. by the equation

Efrn’t = t’ﬁn - 47rll-.dr|kf emk‘]- (109)

Expressed in two index piezoelectric constants involving the strains Sy - - - Si2
and stresses Ty~ - - T2 the relation between the two and three index piezo-
electric constants is given by the equation

el = €111 ; €12 = €122 ; €13 = €133 ; €14 = €123 = €132 ; €15 = ey = €131,

€16 = €112 = €121 ; €1 = €211 ; €aa = €2 €23 = €33 5 €4 = €93 = €32
(110)

€5 = €213 = €231 ; €2 = €212 = €201 ; €31 = €311 €32 = €322 3 €33 = €333 )
€34 = €33 = €332 ; €35 = €313 = €331 ; €36 = Cm2 = Co1 -

Finally, the fourth form for expressing the piezoelectric relation is the
one given by equation (53). Expressed in tensor form, these equations
become

Twt = C?jkaij — Ml bn; En= 471'13;1“ On — Pmi; Si; (111)
In this equation the three index piezoelectric constants of equation (111) are
related to the two index constants of equation (53) as the e constants of
(110). These equations can also be derived directly from (106) and (108)
by eliminating E, from the two equations. This substitution yields the

additional relations
il = Amenil Bun ; et = cimt + emil hmii = Cikt
s (112)
_I_ 47" Emkl Cnij .an

where
Bow = (=)™ An,/A
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in which

8 K] s
€11 €12 €13
S
€ 8 S S .
A" = €12 €2 €23 |.
8 8 8
€13 €23 €33

The four forms of the piezoelectric equations, and the relation between
them are given in Table L.

TaBLE I

Four Forus or Tur Evastic, DILECTRIC, AND Piezo ELEcTRIC EQUATIONS
AND THEIR INTERRELATIONS

Form Elastic Relation Electric Relation
B ET
1 Sii = sijtTet + dmiiEm 8, = 4—’;_" E,+ducgTrg
D T
2 Sii = sijitTrt + gnijbn En = 47Bmndn — gmitTrt
E es
3 Trg = cijfeSii — emitEnm 5= ;’" En + €0iSi;
4 Typ = C?iktst‘i — hurtdn E, = dnfh .8, — ImiiSey
Form Relation Between _Relation Between Relation Between
Elastic Consten.s Plczoelectnc Constants Dielectric Constants
T T
U sfue = Siug — dmiitnt | gmit = 4m8T.d 0 | BL = (=1)"*W 4L /a¢
iti)asE
2 | = (-1t +’]A:,- /A | enng = d,,..,c”k[ e =T — dn(dutemrt)

I
3 cl'Dikﬂ = cf}'kt + e"‘“‘b”‘” I‘"*l = 4‘"‘ﬁmﬂ mk{ ‘B.?:m = ﬂ:n + g"%:’”'"f

4 (el = (DAY |t = g = (-p™mag /a®

vﬂrl

5. EFFECT OF SYMMETRY AND ORIENTATION ON THE DIELECTRIC PIEZO-
ELECTRIC AND E1ASTIC CONSTANTS OF CRYSTALS

All crystals can be divided into 32 classes depending on the type of sym-
metry. These groups can be divided into seven general classifications
depending on how the axes are related and furthermore all 32 classes can
be built out of symmetries based on twofold (binary) axes, threefold (trig-
onal) axes, fourfold axes of symmetry, sixfold axes of symmetry, planes of
reflection symmetry and combinations of axis reflection symmetry besides
a simple symmetry through the center. Each of these types of symmetry
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result in a reduction of the number of dielectric, piezoelectric, and elastic
constants.

Since the tensor equation is easily transformed to a new set of axes by
the transformaion equations (76) this form is particularly advantageous
for determining the reduction in elastic, piezoelectric and dielectric con-
stants. For example consider the second rank tensors e and oy¢ for the
dielectric constant and the expansion coefficients. Ordinarily for the most
general symmetry each tensor, since it is symmetrical, requires six inde-
pendent coefficients. Suppose however that the X axis is an axis of twofold
or binary symmetry, i.e., the properties along the positive Z axis are the
same as those along the negative Z axis. If we rotate the axes 180° about
the X axis so that 4 Z is changed into — Z, the direction cosines are

o1 a1 dx1
H=—=1; = =0; = — =
! Bxl ! e sz ! " 8x3
_ Bx; _ _ 0% _ . _ 0%s _
tg—a—xl—o, m2—'a—x=— 1, n!_a;_o (113)
_ax;_ . _c'ix;_ . _6‘::;_

The tensor transformation equations for a second rank tensor are

’ ax Bx;-

== o, el 1

€ij B2y, 0L €l ‘ (1 4)
Applying (113) to (114) summing for all values of k and ! for each value of
i, and § we have the six components
! ! ’ ’ ! ’

€11 = €11 €12 = —€12; €13 = — €3 ; €2 = €2 ; €23 = €23 ; €33 = €33. (115)
Since a crystal having the X axis a binary axis of symmetry must have the

same constants for a +Z direction as for a —Z direction, this condition
can only be satisfied by A
€12 = €13 = 0. (116)
The same condition is true for the expansion coefficients since they form a
second rank tensor and hence

ap = ag = 0. (117)
In a third rank tensor such as djk, €:jk, Gijk, Mik, we similarly find that
of the eighteen independent constants
hae = Mg 3 s = Mgy han = hoy ;b = haa §hosy = hou

(118)

hazs = has ;hau = ha ;hazz = Jia ;h:m = lt34 ;hm = has.

are all zero. The same terms in the dijx , €:j , g4 tensors are also zero. .



PIEZOELECTRIC CRYSTALS IN TENSOR FORM 113

In a fourth rank tensor such as ¢;jz¢, si;z¢, applying the tensor trans-
formation equation

Cijkt = (gm E E 5;:’ Cmnop - (119)
and the condition (113) we similarly find
€18 = C16 = €26 = Cog = Cag = Cag = Cug = C4g = (. (120)

If the binary axis had been the ¥ axis the corresponding missing terms
can be obtained by cyclically rotating the tensor indices. The missing
terms are for the second, third and fourth rank tensors, transformed to
two index symbols,

€3, e2; hu, Me, Mg, bis, hoay Mas, oy, b, e, b ;

(121)
Cia, €16, C24, (26, Cad, C36 , Cd5, CG5 -
Similarly if the Z axis is the binary axis, the missing constants are
€1, €13; hu, Mo, s, Mue, hay, haa, Fos, has, has, M ; (122)

Cl4, Cig, C24, C25, C34, C35, Ci6, Cg6 -

Hence a crystal of the orthorhombic bisphenoidal class or class 6, which
has three binary axes, the X, ¥ and Z directions, will have the remaining
terms,

€1, €2, €3; M, s, N y €,y C12, C13, Co2, C23, C33, €44, Cp5, Cgs (123)

with similar terms for other tensors of the same rank. Rochelle salt is a
crystal of this class.

If Z is a threefold axis of symmetry, the direction cosines for a set of
axes rotated 120° clockwise about Z are,

axy axy ox,
= —_—= =D = — = —, . = — = 0
£ o S s 866; m o
axé Bx; Bx;
= —_— =, : = — = —_5 : = —— = O
{s EP 866 y e 325 H g 3% (124)
axy axs dxs
[ = —_——= - = —_— = O . [ p———
8 6x1 ! s 61’.2 ? " Bx3

Applying these relations to equations (114) for a second rank tensor, we
find for the components

a1 = .25e;+ 433e+ . T5en ; €1 = —.433en + 25613 + 433 €09
en = —.Sen —.866€n; e = J5en — 433e + 25en  (125)

g = .866€s — Sex ; €= €.
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For the third and fifth equations, since we must have €13 = €3 €3 = €5
in order to satisfy the symmetry relation, the equations can only be satis-

fied if

€ = €3 = Q. (126)
Similarly solving the first three equations simultaneously, we find
ez =0; en= exn. (127)

Hence the remaining constants are
€11 = €20 ; €33 . (128)

Similarly for third and fourth rank tensors, for a crystal having Z a trigonal
axis, the remaining terms are

hn y Jhe = —hn 7 1113 = 0; N y fzjﬁ y e = — g0
hay = —]122, y2% y fiog = 0, hog = s H hag = — i f by = —hmn (129)

hs; ;hsg = ].731 ;]1'33 ;fls.; = 0; ]1'35 = 0; has =0

Cn ;6o ;s ;01 Cs = —C2p 5 €15 = 0
C1g ; Cap = C11 ;€03 = €13 ; C24 — —C14 ;€25 5 C26 = 0
C13 ;€2 = C13 ;033 ; €34 = 0; cz5 = 0; ¢z = 0
(130)
cu = —cu;cu=0; cu;cs=0; cas = ci5
C1g = —Cg5 ;025 ; G35 = 0; cs5 = 0; cs5 = Caa 5 Co6 = Cua

c16=0; ca6 = 0; cz6 = 0; ca6 = C25 ;Co6 = C14 ; Co6 = 1 (cu—c1).

If the Z axis is a trigonal axis and the X a binary axis, as it is in quartz,
the resulting constants are obtained by combining the conditions (116),
(118), (120) with conditions (128), (129), (130) respectively. The resulting
second, third and fourth rank tensors have the following terms

en; e =0; ag =10
en=0; e = €n; e = 0 (131)
a3 = 0; e3=0; e
By iy = —hu iyl =0; a3l =05 g=10
Boi=0; hoy=0; hoy=0; hoy = 0; Jos = —hua5hss = —hn (132)
b =0; he=0; by =0; hu = 0; has = 0; hass= 0
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026 ;65=0; cig=0
C12 ;60 = €11 563 = €13 ;04 = —Cu 3025 = 05 ¢ = 0
€13 560 = 1z 5¢83 ;634 = 0; ¢35 = 0; ¢c36 =0
(133)

= —Cu;u=0; cu;c5=0; c4e= 0
5= 0; ¢35 =0; ¢35 = 0; ca5 = 0; ¢55 = €14 ; Cs6 = Cua
ci6 = 0; s = 0; c36 = 0; ¢35 = 0; 55 = 14 ; o6 = 5 (cu—c2).

5.1 Second Rank Tensors for Crystal Classes

The symmetry relations have been calculated for all classes of crystals.
For a second rank tensor such as ¢;;, the following forms are required

Tricliﬂic Classes 1and 2 €11, €12, €13
€12, €2, €3
€13, €23, €33

Monoclinic sphenoidal, ¥ a binary axis, Class 3 en, 0 , €3

Monoclinic domatic, ¥ a plane of symmetry, Class 4 0 0

Monoclinic prismatic, Center of symmetry, Class 5 » 1,
€13, 0 , €33

Orthorhombic e1,0 ,0

Classes 6, 7, 8 0, en,0 (134)
0 y 0 , €33

Tetragonal, Trigonal e1,0 ,0

Hexagonal

Classes 9 to 27 0, en,0
O 3 0 ; €33

Cubic er,0,0

1 28 to 32
Classes 0 0, en,0
0 y 0 y €11
5.2 Third Rank Tensors of the Piezoelectric Type for the Crystal Classes
Triclinic Assymetric (Class 1) No Iy, ey s, g, g, I
Symmetry

Iy By hios y oy Jtos , Tas

hayy Traay Biss y laa s sy Jras
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Triclinic piﬁacoidal, (center of symmetry) & = 0 (Class 2)
Morioclinic Sphenoidal (Class 3) Yis |0 ,0 ,0 , /4,0 , he
binary axis or ) Fas, By O s, 0
0,0 ,0 ,hs,0 ,hss
Monoclinic domatic (Class 4) ¥ plane |/u, #2113, 0, /s, 0
is plane of symmetry 0.0 0 ,hu,0 ks
har, hsgy sz, O, Fas, O
Monoclinic prismatic (center of symmetry) 7 = 0 (Class 5)
Orthorhombic bisphenoidal (Class 6) |0 ,0 ,0 , k4,0 ,0
X, ¥, Z binary axes 0.0 ,0 ,0 s,0
0,0 ,0,0,0,b@s;s
0,0 ,0 ,0 ,hs,0
0,0 ,0 ,hu,0 ,0
hiay y haz y has, 0,0 ,0

Orthorhombic pyramidal (Class 7) Z
binary, X, ¥, planes of symmetry

Orthorhombic bipyramidal (center of symmetry) # = 0 (Class 8)

Tetragonal bisphenoidal (Class9) |0 , 0 ,0 ,  hu, /s, 0
. ¢ .
7 is quaternary alternating 0., 0,0 ,—hs,h,0

1131,‘—;?31,0 y 0 ,0 ,hsu

Tetragonal pyramidal (Class 10) Z [0 ,0 ,0 ,hu, /5,0
is quaternary 0,0 ,0 ks, —hu,0

]fﬂljhﬂljhi’rﬂjo 3 0 JO

Tctré,gonal scalenohedral (Class11) Z |0 ,0 ,0 , /4,0 ,0
t X and V bi
quaternary, inary 0.0 .,0,0 ,hu,0

0,0 ,0,0 ,0 ks

Tetragonal trapezohedral (Class 12) [0 ,0 ,0 ,/s, 0 ,0
Z quaternary, X and ¥ binary 0.0 0,0, —h,0
0,0 ,0

0
0, 0,0

H

1 ’

(135)
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Tetragonal bipyramidal (center of symmtery) # = 0 (Class 13)
Ditetragonal pyramidal (Class 14) Z |0 ,0 ,0 ,0 ,/u;,0
quaternary, X and ¥V planes of 0,0 .0 ks, 0,0
symmetry
Favy Bz, Bz, 0,0 L0
Ditetragonal bipyramidal (center of symmetry) 7 = 0 (Class 15)
Trigonal pyramidal (Class by, —h, 0 By, g, —he
16) Z trigonal axis R A (R T .,
Iy, ha,hun,0 , 0, 0
Trigonal rhombohedral (Class 17) center of symmetry, 1 = 0
iy, =, 0 by, 0, 0
0, 0,0 ,0 ,—hy, —hy
0, 0,0,0, 0, 0

Trigonal trapezohedral (Class |

18), Z trigonal, X binary

Trigonal bipyramidal (Class I, —hi, 0 ,0 | 0, —has
19), Z trigonal, plane of

_/122, ]122 ) 0 ’ 0 , 0 B —'ku
symmetry

, 0,0,0, 0, 0

0, 0,0 ,0 , fug, —ha
—.’120 y /t‘-y_- y 0 y ’115 N () . 0

Ditrigonal pyramidal (Class |
20) Z trigonal, ¥ plane of |
symmetry E

,J';;l » 1131 ) ]133 ’ 0 y 0 ' 0

Ditrigonal scalenohedral (Class 21) center of symmetry, # = 0

Ditrigonal bipyramidal (Class |hn, —/m,0 ,0 , 0 , 0
2y 7 tngon'al, Z plane of sym- 0, 0,0,0, 0  —hn
metry and ¥ plane of symmetry

0o, 0,0,0, 0, O

Hexagonal pyramidal (Class 23) |0 0

Z hexagonal

0 sy g, 0O

0, 0,0 ks, —lhy, O

By,  ha, b, 0, 0, 0
0
0

Hexagonal trapezohedral (Class [0 , 0 ,0 k4, 0
24) Z hexagonal, X binary

?

0, 0,0 ,0,—hy,
o, 0,0

0, 0, 0

b
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Hexagonal bipyramidal (Class 25) center of symmetry, # = 0

Dihexagonal pyramidal (Class 26) X |0 ,0 ,0 ,0 , g, 0
hexagonal ¥ plane of symmetry 0,0 ,0 ,is,0 ,0

)'Iu,frm,ii’as,o ,0 ,0

]

Dihexagonal bipyramidal (Class 27) center of symmetry, & = 0

Cubic tetrahedral-pentagonal-dedo- |0 ,0 ,0 ,/u,0 ,0
cahedral (Class 28) X, ¥, Z binary 0,0 ,0 ,0 ,iu,0
0,0 ,0 ,0 ,0 ,iu

Cubic pentagonal-icositetetrahedral (Class 29) & = 0

Cubic, dyakisdodecahedral (Class 30) center of symmetry, z = 0

Cubic, hexakistetrahedral (Class 31) [0 ,0 ,0 ,/n,0 ,0
X, Y, Z quaternary alternating 0,0 ,0,0 ,hu,0
0,0 ,0,0,0

) H

Cubic, hexakis-octahedral (Class 32) center of symmetry, # = 0
This third rank tensor has been expressed in terms of two index symbols
rather than the three index tensor symbols, since the two index symbols

are commonly used in expressing the piezoelectric effect. The relations
~ for the / and ¢ constants are

Wi, hig, i are equivalent to Jris, ftas, hiue (136)

in three index symbols, whereas for the di; and g:; constants we have the
relations

— — d?!ﬁ are equivalent to d.‘gs y d,‘]a, d.‘10_ (137)

Hence the d; relations for classes 16, 18, 19, and 22 will be somewhat dif-
ferent than the /& symbols given above. These classes will be
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Class 18

Class 19

Class 22
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du —dn 0 dy dis  —2dun
—da dp 0 diy —duy —2dn
dy dyy dyy O 0 0

dy —du 0 dy 0 0
0 0 0 0 —du —2dn

o o0 o0 0 O

(138)
dy —du 0 0 0 —2dy

—dye dpy 0 0 0 —2dy
0 0 0 0 0 0

dp —dn 0 0 0 0
0 0 0 0 0 —2dy
0 0 000 0

5.3 Fourth Rank Tensors of the Elastic Type for the Crystal Classes

Triclinic System €1 €2 €13 €4 Ciz  Cle The s tensor is
(Classes 1 and 2) 21 entirely analo-
. €z Coa  Cag  Caq4 Cap  C2p
moduli gous
€13 Cag €33 (34 C35 (38
€14 C24 €34 Cyq4 Ca5  C4p
€15 €25 (35  Ca5 Css  Cse
Clg  Coe €36 Ca6 Co6  Co6 (139)
Monoclinic  System | ¢u ¢z e O cs 0 The s tensor i8
(Classes 3, 4 and 5) 12 entirely analo-
. 2 oy 0 ¢ 0
moduli gous
ca €3 ¢z 0 cs O
0 0 0 ca 0 (13
s C c3s O ¢z 0
0 0 0 Cag 0 Cge
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Rhombic System
(Classes 6, 7 and 8)
9 moduli

Tetragonal system, Z
afourfold axis (Classes
9, 10, 13) 7 moduli

Tetragonalsystem, Za
fourfold axis, X a two-
fold axis (Classes 11,
12, 14, 15) 6 moduli

Trigonal system, Z a
twofold axis, (Classes
16, 17) 7 moduli

‘u
C12
C13
0
0
0

tn
C12

C13

C1s

(311
C12

C13

i
C12
C13
C14

—C2

C12
Caa
Ca3
0
0
0
C12
1

C13

—C16

C12
1

C13

C12
471
C13
—Cu

Cag

€13
Ca3
C33
0
0
0

c13
C13

C33

C13
C13

C33

0

C13
C13

C33

0
0
0
(27)
0
0

0
0
0

Ca4

0

Cay
0
0

0
0
0
0

(413

0

0
0
0
0

Cy

—C25

C25

0
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0
0
0
0
0

Cop

C16
—C16

0
0
0

Co6

0

0
Cag
C14

€11 — C12

The s tensor is
entirely analo-
gous

The s tensor is
entirely analo-
gous

The s tensor is
entirely analo-
gous

The s tensor is
analogous  ex-
cept that s46 =
2505, 555 = 28514,
Sg6 = 2(5‘11 - Sm)
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Trigonal system, Z a
trigonal axis, X a
binary axis (Classes
18, 20, 21) 6 moduli

Hexagonal system,Z a
sixfold axis, X a two-
fold axis (Classes 19,
22, 23, 24, 25, 26, 27)
5 moduli

Cubic system (Classes
28, 29, 30, 31, 32) 3
moduli

Isotropic hbodies, 2

moduli

311
C12
C13

14

tn

C12

C13

cn

€12

C12

n
C12

C12

C12

(411

C13

—C14

C1a

n

€13

C12
cn

C12

C12
n

C12

as ¢ O 0
g —cu 0 0
a 0 0 0
0 cae O 0
0 0 Ciy  Cu
n—¢
0 0 o™ ; 12
s 0 O 0
cs 0 0 0
s 0 0 0
0 ¢ O 0
0 0 cu O
tn—¢
o 0o o= 5 =
a2 0 0 0
az 0 0 0
m 0 0 0
0 cu O 0
0 0 ca 0
0 0 0 Cas
ca 0 0 0
az 0 0 0
en 0 0 0
0 . o1
11 — C
0o o= 5 20
o 0 o “-®™
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The s tensor is
analogous  ex-
cept that sz =
2514, Se8 =

2(-5‘11 - Sn)

The s tensor is

analogous  ex-
cept ses =
2(su — s12)

The s tensor is
entirely analo-
gous

The s tensor
analogous ex-
cept last three
diagonal terms
are 2(sy — 51)
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5.4 Piezoelectric Equations for Rotated Axes

Another application of the tensor equations for rotated axes is in deter-
mining the piezoelectric equations of crystals whoselength, width, and thick-
ness do not coincide with the crystallographic axes of the crystal. Such
oriented cuts are useful for they sometimes give properties that cannot be
obtained with crystals lying along the crystallographic axes. Such proper-
ties may be higher electromechanical coupling, freedom from coupling to
undesired modes of motion, or low temperature coefficients of frequency.
Hence in order to obtain the performance of such crystals it is necessary to
be able to express the piezoelectric equations in a form suitable for these
orientations. In fact in first measuring the properties of these crystals a
series of oriented cuts is commonly used since by employing such cuts the
resulting frequencies, and impedances can be used to calculate all the pri-
mary constants of the crystal.

The piezoelectric equations (111) are

Tip = ciineSii — huigdn 5 Em = 4nBmndn — humisSij - (111)

The first equation is a tensor of the second rank, while the second equation is
atensor of the first rank. If we wish to transform these equations to another
set of axes &', ¥, =/, we can employ the tensor transformation equations

x5, - ducy, dxp

Th = =
M o, dxy M7 o dxg

' [Cflk{Sn + 26?2!;6312 + 26?3&-6515 + C?zktszz

dxy, 0
+ 2cmit Ses + caant Sal — 6.:? —ﬂ [larg &y + horts + hare83] (140)

axm ax,,,
E:n = a [ﬁm151 + ﬁmzﬁz + Biﬂi 63] ox

v 11 St A 212 S1a + 2wz S1s + Fmoa Saz 4 2himaa Sas + fimas Saal

These equations express the new stresses and fields in terms of the old strains
and displacements. To complete the transformation we need to express
all quantities in terms of the new axes. For this purpose we employ the
tensor equations

61:. 6\:, , %, ,

Sif ax;a { ij) 5,. ahé,. ) (141)

ax;
where — 9. 2Te the direction cosines between the old and new axes. It is
’l

. ax ax; . N
obvious that a—x‘ = -B;; and the relations can be written
i 1
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¢ _dxy _ 0my _ 0x dx,

CSam ad Tl 4T
0x2 0% 31\52

M= ael’ M=l T 5yl (142)
_ o _ s o

ny (')x g 6 Ny = Bx;'

Hence substituting equations (141) in equations (140) the transformation
equations between the new and old axes become

’ D axk 61( 0x; ax, ax;b 6x¢ Bx,,
Tt = ¢i S 5
Kl = ikl A%k dxy ax’: dx) - dxy 9xh
0x,, 0 dx,, dx; 0 (143)
] 8 .’Vm Xn ot xm X; 0X%;
m = mn o on — iml —
Em = 4mBon 50 oa "™ S 0% 0! S%

These equations then provide means for determining the transformation of
constants from one set of axes to another.

As an example let us consider the case of an ADP crystal, vlbra.tmg ]ong1-
tudinally with its length along the xy axis, its width along the x, axis and
its thickness along the xa axis, which is also the x; axis, and determine the
elastic, piezoelectric and dielectric constants that apply for this cut when
%1180 = 45° from 2, . Under these conditions

8x{ dxy Bx; dxy .
b om om0 % * T om - omD
dx; dx;
e = ——=_""_=0
3 dx;  dxi
axy  0xs dxs  Oxs
=_—=_— =sinf My = —— = — = cosf
™ m aw T b om0
(144)
o _om _
3 axz - Bxé
6x1 axa 6.12 8.1:3
= __~—=_—==80 ly = — = — = 0
" dxs  Oxi ’ 2 dxs  Oxs ’
axs 6.1:3
Hy = — = — =
s dx;  Oxi 1

Since ADP belongs to the orthorhombic bisphenoidal (Class 6), it will have
the dielectric, piezoelectric and elastic tensors shown by equations (134),
(135), (139). Applying equations (143) and (144) to these tensors it is
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readily shown that the stresses for © = 45° are given by the equations ex-
pressed in two index symbols

T = (etn + Gi;z + 2cgs) s/

+ (Cfl‘ + Gf)z - 263&)

2 Sz + c13S: — hads

T, = (ern + C% — 2cgs) s/

(145)

1 (chy + ez + 2c55)

> Sh 4+ 52 Sy + hwbs

T; = CfsSI + GfaS; + Ca.sS;

’

T4 = cix St + i 82 ; Ex = —huSs + 4x[Budi]
g 11451 + 4r[Buds]

T5=C£;S;—‘h1¢5;; Ey
D D
ﬂ=@§ﬂhh Ey = —hulSi — Sil + 47(Bi8il.

For a long thin longitudinally vibrating crystal all the stresses are zero
except the stress T along the length of the crystal. Hence it is more ad-
vantageous to use equations which express the strains in terms of the
stresses since all the stresses can be set equal to 2ero except Ty . All the
strains are then dependent functions of the strain S7 and this only has to
be solved for. Furthermore, since plated crystals are usually used to
determine the properties of crystals, and the field perpendlcular to a plated
surface is zero, the only ﬁeld exlstlng in a thin crystal will be Eg if the thick-
ness is taken along the x3 or Z' axis. Hence the equations that express the
strains in terms of the stresses and fields are more advantageous for calcu-
lating the properties of longitudinally vibrating crystals. By *orienting
such crystals with respect to the crystallographic axis, all of the elastic
constants except the shear elastic constants can be determined. All of
the piezoelectric and dielectric constants can be determined from measure-
ments on oriented longitudinally vibrating crystals.

For such measurements it is necessary to determine the appropriate
elastic, piezoelectric, and dielectric constants for a crystal oriented in any
direction with respect to the crystallographic axes. We assume that the
length lies along the xy axis, the width along the s axis and the thickness
along the x; axis. Starting with equations of the form

S-',- = s?fktTkt + dijmEm

7 (146)
b = :ﬂE,. + durt Tie
m
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and transforming to a rotated system of axes whose direction cosines are
given by (142), the resulting equation becomes

st = ot 0% dx; dx; Oy Ot dx; 0 Om
i = Jij

k+ ijm

ox; 9x; 0} o) Ox; 0x; 9
! . (147)
) €mn axﬂ 0%m 69:., xy 0xL 1
o, = E,, =T
A7 dx, 0% +ad Gx,, Oxi dx} u

All the stresses except T4, can be set equal to zero and all the fields except
Es vanish. Furthermore, all the strains are dependently related to Si; .
Hence for a thin longitudinal crystal the equation of motion becomes

8a 0wt Oy 3 g 4 4 6_5:{3_95_;%E

Su = sf
B Sk g o 9wl oz T 3 9x; Ok

(148)
’ e,,.,. ax; ax,,. a +d ax, ox;. oxt

5 0%k OX4
7 4 ox, 0xh 6 %, Ox1 Oxi

In terms of the two index symbols for the most general type of crystal, we
have

st = stli + (25T + sso)fimi + (2s%y + s55)bind
+ 25Ty + sea)limum + 2sTsling + 2sTelimy + saamy
+ (258 + sE)mint + 2sEoming + 2(sB 4 skymiton
+ 2s3mily + sznt + 2s3ninn + 2ssenth
+ 2(sss + sis)nilom
din = di = dulyli + dulami + dutani + dubmm + dislslim
+ diolslymy + damgli + doamgmi + dogmani + dogmamun,
+ dasnslmy + dagmalmy + dangls + dygngmi + dsgnan’
+ dangminy + dggnabiny + dsgngbim
o

T2 T T T 2 T T 3
€3 = enls + 2enalomy + 2eralang + eamz + 2eazmans + ezanz

Hence by cutting 18 crystals with independent direction cosines 9 elastic
constants and 6 relations between the remaining twelve constants can be
determined. All of the piezoelectric constants and all of the dielectric
constants can be determined from these measurements. These constants
can be measured by measuring the resonant and antiresonant frequencies
and the capacity at low frequencies. The resonant frequency fr is deter-
mined by the formula

EJ
S

(149)

fe = 11 —5 (150)
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for any long thin crystal vibrating longitudinally. Hence when the density
is known, si; can be calculated from the resonant frequency and the length
of the crystal. Using the values of sty obtained for 15 independent orienta-
tions enough data is available to solve for the constants of the first of
equations (149). The capacities of the different crystal orientations meas-
ured at low frequencies determine the dielectric constant €3 and six orienta-
tions are sufficient to determine the six independent dielectric constants
émn . The separation between resonance and antiresonance Af = f, — fz
determines the piezoelectric constant dy; according to the formula

dn = > 1/}57 1/ & sE (151)

The values of di; measured for 18 independent orientations are sufficient
to determine the eighteen independent piezoelectric constants.

The remaining six elastic constants can be determined by measuring long
thin crystals in a face shear mode of motion. Since this is a contour mode
of motion, the equations are considerably more complicated than for a
longitudinal mode and involve elastic constants that are not constant field
or constant displacement constants. It can be shown® that the fundamental
frequency of a crystal with its length along #; , width (frequency determining
direction) along x; and thickness (direction of applied field) along x5 , will be

1S o+ V(G — ) + 4

f= (152)
2‘6:;1 2p

where the contour elastic constants are given in terms of the fundamental

elastic constants by

E _E E E E E R
OF = §11 566 — S16 | SE = S12 518 — S11526 |
22 T 26 = —
A ’ A ’
£ B £? ' (133)
B __ S11822 — S12
Cgg — ————
A

where A is the determinant
E E E
S11, %12, J1s
E E E -
A = |51, s, 525 (154)
E E E
516, JS26, JS66

Since all of the constants except s}, and sgs can be determined by measure-
ments on longitudinal crystals and the value of (25t + s¢s) has been de-

5 This is proved in a recent paper “Properties of Dipotassium Tartrate (DKT) Crys-
tals,” Phys. Rev., Nov., 1946.
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termined, the measurement of the lowest mode of the face shear crystal
gives one more relation and hence the values of s1; and sgs can be uniquely
determined.

Similar measurements with crystals cut normal to x; and width along x3
and with crystals cut normal to x; and width along #, determine the constants
st1, ssa and sgs , s1s respectively. The equivalent constants are obtained
by adding 1 to each subscript 1, 2, 3 or 4, 5, 6 for the first crystal with the
understanding that 3 + 1 = 1and 6 4+ 1 = 4. For the second crystal 2
is added to each subscript.

Finally the remaining three constants can be determined by measuring
the face shear mode of three crystals that have their lengths along one of
the crystallographic axes and their width (frequency determining axis)
45° from the other two axes.

Any symmetry existing in the crystal will cut down on the number of
constants and hence on the number of orientations to determine the funda-
mental constants.

6. TEMPERATURE EFFECTS IN CRYSTALS

In section 2 a general expression was developed for the effects of tempera-
ture and entropy on the constants of a crystal. Two methods were given,
one which considers the stresses, field, and temperature differentials as the
independent variables, and the second which considers the strains, displace-
ments and entropy as the independent variables. In tensor form the 10
equations for the first method take the form

a a S'D
Tit = cijntSi; — hnetdn — Net dQ

Ep = —loiiSij+ 4mBmndn — gm dQ (155)
d

d0 = —O\}"S:; — 0¢%" 8. + %
pCy

The piezoelectric relations have already been discussed for adiabatic condi-
tions assuming that no increments of heat dQ have been added to the
crystal.

If now an increment of heat dQ is suddenly added to any element of the
crystal, the first equation shows that a sudden expansive stress is generated

proportional to the constant Mt which has to be balanced by a negative
stress (a compression) in order that no strain or electric displacement shall
be generated. This effect can be called the stress caloric effect. The
second equation of (155) shows that if an increment of heat dQ is added to
the crystal an inverse field E, has to be added if the strain and surface
charge are to remain unchanged. This effect may be called the field caloric
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effect. Finally the third equation of (155) shows that there is a reciprocal
effect in which a stress or a displacement generates a change in temperature
even in the absence of added heat dQ. These effects can be called the strain
temperature and charge temperature effects.

The second form’of the piezoelectric equations given by (58) are more
familiar. In tensor form these can be written

Si; = SlykﬂTlcl'{' dgl1JE + ai ,'de
B

= & T+ 5" : " En + p7d0 (156)

dQ = 0do = OartTwt + Gme,,. + pC% do

The af; are the temperature expansion coefficients measured at constant
field. In general these are a tensor of the second rank having six com-
ponents. The constants py are the pyroelectric constants measured at
displacements which relate the increase in polarization or surface charge
due to an increase in temperature. They are equal to the so-called “true”
pyroelectric constants which are the polarizations at constant volume caused
by an increase in tempeiature plus the “false” pyroelectric effect of the
first kind which represents the polarization caused by a uniform temperature
expansion of the crystal as its temperature increases by d©. As mentioned
previously it is more logical to call the two effects the pyroelectric effects
at constant stress and constant strain. By eliminating the stresses from
the first of equations (156) and substituting in the second equation it is
readily shown that

Pn = pn — aneni (157y
Hence the difference between the pyroelectric effect at constant stress and
the pyroelectric effect at constant strain is the so-called ““false” pyroelectric
effect of the first kind afe5:; .

The first term on the right side of the last equation is called the heat of
deformation, for it represents the heat generated by the application of the
stresses Tr¢. The second term is called the electrocaloric effect and it
represents the heat generated by the application of a field. The last term
is p times the specific heat at constant pressure and constant field.

The temperature expansion coefficients af; form a tensor of the second
rank and hence have the same components for the various crystal classes
as do the dielectric constants shown by equation (134).

The pyroelectric tensor pn and $% are tensors of the first rank and in
general will have three components p;, p2, and p;. In a similar manner
to that used for second, third and fourth rank tensors it can be shown that
the various crystal classes have the following components for the first rank
tensor p, .
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Class 1: components p; , p2, s .

Class 3: V axis of binary symmetry, components 0, #; , 0 (158)

Class 4: components p;, 0, ;.

Classes 7, 10, 14, 16, 20, 23, and 26: components 0, 0, #5 ; and Classes
2,5,6,8,9,11,12, 13,15, 17, 18, 19, 21, 22, 24, 25, 27, 28, 29, 30, 31, and
32: components 0, 0, 0, i.e., p = 0.

For a hydrostatic pressure, the stress tensor has the components

Tu=Tw=Tun=—p= pressure; T=Ty3=Ty=0 (159)

Hence the displacement equations of (156) can be written in the form

T
an=%§Em—dzp+p:de (160)

where

dop = dauTu + donTn + dauls

that is the contracted tensor d,uTs . This is a tensor of the first rank
which has the same components as the pyroelectric tensor p, for the various
crystal classes.

7. SEconp ORDER EFrFecrs IN PIEZOELECTRIC CRYSTALS

We have so far considered only the conditions for which the stresses and
fields are linear functions of the strains and electric displacements. A
number of second order effects exist when we consider that the relations are
not linear. Such relations are of some interest in ferroelectric crystals such
as Rochelle salt. A ferroelectric crystal is one in which a spontaneous
polarization exists over certain temperature ranges due to a cooperative
effect in the crystal which lines up all of the elementary dipoles in a given
“‘domain’ all in one direction. Since a spontaneous polarization occurs in
such crystals it is more advantageous to develop the equations in terms of
the electric displacement rather than the external field. Also heat effects
are not prominent in second order effects so that we develop the strains and
potentials in terms of the stresses and electric displacements D). By means
of McLaurin’s theorem the first and second order terms are in tensor form

. . 2g..
S = 3‘;; Txe + aai’ 8 + 1, La,;%- TutT.
+ 2 T, 66 Txto, 8656;6 ]+ - -+ higher terms
_ 9En E 1[ ®En (161)
En =310 T T 3, [anwr, Tule
+ 2 Tithn + 77 ay L rS,,&{I + - - - higher terms
BT;J&&,. 36,050

whereas before § = D/4x.
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In this equation the linear partial differentials have already been discussed
and are given by the equations
A » aS; OE, oE,,

= s, . = — . Ytm '= T
aT;_{ = Sijil ; 65,-, 6T':J' Biin ; 65.,1 47!',6,,," (162)

where stj;¢ are the elastic compliances of the crystal at constant displace-
ment, g;;. the piezoelectric constants relating strain to electric displacement
/4, and B, the dielectric ‘“‘impermeability” tensor measured at constant
stress. We designate the partial derivatives

0Ss . BSs  OE.

OTWoT, — © M7 0Tw00,  OTwT, (163)
. 16

ISy _ B _ o TEn _gp

85,08, 0T ;08, 88,08,

The tensors N, M, Q, and O are respectively tensors of rank 6, 5, 4 and 3
whose interpretation is discussed below. Introducing these definitions
equations (161) can be written in the form

Slj — Tk{[sljftc + qugquqr + Mi;kl"n ] + 6 [gwn + 2QU no&)]
Em = Tkt[gmkf+ iM x';'kfanr + Qk[mn r:] + aﬂ[%ﬁmn + iOmna ﬂ]

Written in this form the interpretation of the second order terms is obvious.
N7ty Tepresents the nonlinear changes in the elastic compliances stin’
caused by the application of stress T, . Since the product of N e, T,
represents a coniracted fourth rank tensor, there is a correction term for
each elastic compliance. The tensor M 2.%fn can represent either the non-
linear correction to the elastic compliances due to an applied electric dis-
placement D, or it can represent the correction to the piezoelectric constant
gijn due to the stresses T:¢. By virtue of the second equation of (162),
the second equivalence of (163) results. The fourth rank tensor %Q?,-,w
represents the electrostrictive effect in a crystal for it determines the strains
existing in a crystal which are proportional to the square of the electric
displacement. Twice the value of the electrostrictive tensor $Q7;40 , which
appears in the second equation of (164) can be interpreted gs the change
in the inverse dielectric constant or “impermeability”’ constant. Since a
change in dielectric constant with applied stress causes a double refraction
of light through the crystal, this term is the source of the piezo-optical effect
in crystals. The third rank tensor Op, represents the change in the “
permeability”” constant due to an electric field and hence is the source of
the electro-optical effect in crystals.

These equations can also be used to discuss the changes that occur in
ferroelectric type crystals such as Rochelle Salt when a spontaneous polariza-

(164)
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tion occurs in the crystal. When spontaneous polarization occurs, the
dipoles of the crystal are lined up in one direction in a given domain. For
Rochelle salt this direction is the =X axis of the crystal. Now the electric
displacement D; is equal to

a,=4D—;=f—;+P,D+P,,, =%’P,ﬂ (165)
where P,, is the electronic and atomic polarization, and P., the dipole
polarization The electronic and atomic polarization is determined by the
field and hence can be combined with the field through the dielectric constant
€, which is the temperature independent part of the dielectric constant.
When the crystal becomes spontaneously polarized, a field £, will result, but
this soon is neutralized by the flow of electrons through the surface and
volume conductance of the crystal and in a short time E; = 0. Hence for
any permanent changes occurring in the crystal we can set

b6z = % = P., = dipole polarization (166)
™

which we will write hereafter as P; .

In the absence of external stresses the direct effects of spontaneous polari-
zation are a spontaneous set of strains introduced by the product of the
spontaneous polarization by the piezoelectric constant, and another set
produced by the square of the polarization times the appropriate electro-
strictive components. For example, Rochelle salt has a spontaneous
polarization Py along the X axis between the temperatures —18°C to
+24°C. The curve for the spontaneous polarization as a function of
temperature is shown by Fig. 6.° The only piezoelectric constant causing
a spontaneous strain will be guz = gus. Hence the spontaneous polariza-
tion causes a spontaneous shearing strain

Ss = guP. = 120 X 107 X 760 = 9.1 X 107" (167)

if we introduce the experimentally determined values. Since S is the
cosine of 90° plus the angle of distortion, this would indicate that the right
angled axes of a rhombic system would be distorted 3.1 minutes of arc.
This is the value that should hold for any domain. For a crystal with
several domains, the resulting distortion will be partly annulled by the
different signs of the polarization and should be smaller. Mueller’ measured
an angle of 3’45” at 0°C for one crystal. This question has also been

6 This has been measured by measuring the remanent polarization, when all the domains

are lined up. See “The Dielectric Anomalies of Rochelle Salt,” H. Mueller, Annals of
the N. Y. Acad. Science, Vol. XL, Art. 5, page 338, Dec. 31, 1940.

7 “Properties of Rochelle Salt,” H. Mueller, Phys. Rev., Vol. 57, No. 9, May 1, 1940,
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investigated by the writer and Miss E. J. Armstrong by measuring the
temperature expansion coefficients of the ¥ and Z axes and comparing their
average with the expansion coefficient at 45° from these two axes. The
difference between these two expansion coefficients measures the change
in angle between the ¥ and Z axes caused by the spontaneous shearing
strains. The results are shown by Fig. 7. Above and below the ferro-
electric region, the expansion of the 45° crystal coincides with the average
expansion of the ¥ and Z axes measured from 25°C as a reference tempera-
ture. Between the Curie temperatures a difference occurs indicating that
the ¥ and Z crystallographic axes are no longer at right angles. The dif-
ference in expansion per unit length at 0°C (the maximum point) corresponds
t01.6 X 10 *cm per cm. This represents an axis d istortion of 1.1 minutes
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Fig. 6.—Spontaneous polarization in Rochelle Salt along the X axis.

of arc. Correspondingly smaller values are found at other temperatures
in agreement with the smaller spontaneous polarization at other tempera-
tures. It was also found that practically the same curve resulted for either
45° axis, indicating that the mechanical bias put on by the optometer used
for measuring expansions introduced a bias determining the direction of the
largest number of domains.

The second order terms caused by the square of the spontaneous polariza-
tion is given by the expression

Sij = Q¥mPi (168)
Since Q is a fourth rank tensor the possible terms for an orthorhombic
bisphenoidal crystal (the class for Rochelle salt) are

Su = QhwPi; Su = QmuPi; Sus = QauPi (169)
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In an effort to measure these effects, careful measurements have been made

of the temperature expansions of the three axes X, ¥ and Z. The results
are shown by Table IT. On account of the small change in dimension from

10-4

¢ 1.11" OF ARC

EXPANSION PER UNIT LENGTH FROM 25° C.

-28
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TEMPERATURE IN DEGREES CENTIGRADE

Fig. 7.—Temperature expansion curve along an axis 45° between Y and Z asa
function of temperature.

the standard curve it is difficult to pick out the spontaneous components
by plotting a curve. By expressing the expansion in the form of the
equation

Af’* = a(T-25) + as(T-25)" + as(T-25)" (170)
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TasLe 11
MEASURED TEMPERATURE EXPANSIONS FOR THE THREE CRYSTALOGRAPHIC AXES

Temperature Expansion Expansion Expansion
in °C. Xa%s | Tempopwre | XA | TEPREMC | FAGs
39.6 10.2 +35.0 4.45 +34.9 +4.9
38.7 9.46 30.3 2.5 29.9 2.5
35.2 6.96 25.25 0.2 25.05 +.05
30.2 3.63 23.9 —0.42 24.0 —.5
27.2 1.41 22.9 —0.88 19.95 —2.62
26.2 0.71 19.35 —2.4 14.95 —5.11
25.15 0.06 14.9 —4.25 +9.75 —7.55
24.0 —0.71 10.0 —6.25 +4.9 —-9.9
23.0 —1.39 5.4 —8.18 0 —12.31
21.8 —2.37 +0.3 —10.15 —6.35 —15.3
16.0 —6.5 —9.7 —13.98 —10.5 —17.29
15.2 —7.05 —16.3 —16.41 —15.0 —19.42
4.9 —14.12 —20.85 —17.94 —18.0 —20.86
+0.3 —17.28 —25.1 —19.22 —23.2 —23.08
—4.7 —20.3 —30.3 —20.8 —25.1 —23.96
—10.7 —24.0 —35.0 -22.23 —31.1 | —26.59
—15.3 —26.6 —39.7 —23.54 —35.0 —28.28
-20.7 —30.2 —53.2 —27.60 —40.0 —30.4
—25.7 —32.7
—30.1 —35.2
—34.7 —37.85
—40.7 —41.25
—45.0 —44.0
—50.5 —47.0

and evaluating the constants by employing temperatures outside of the
ferroelectric range, a normal curve was established. For the X, ¥, and Z
axes these relations are

‘f‘ 69.6 X 10~°(T-25) 4+ 7.4 X 107(T-25)* — 3.13 X 107°(T-25)"

(X direction)
ALL 43.7 % 107%(T-25) + 8.16 X 107*(T-25)* = 3.60 X 107°(T-25)°

(¥ direction) (171)
AL

— 49.4 % 107%(7-25) + 1.555 X 107%(T-25)" — 2.34 X 107°(T-25)"
(Z direction)
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The difference between the normal curves and the measured values in the
Curie region is shown plotted by the points of Fig. 8. Thesolid and dashed
curves represent curves proportional to the square of the spontaneous
polarization and with multiplying constants adjusted to give the best fits
for the measured points. These give values of Qi1 , Q21 , Q3 equal to

0%y = —86.5 X 107, Q= +17.3 X 107
Qan= —242X 107 (172)

Another effect noted for Rochelle salt is that some of the elastic constants
suddenly change by small amounts at the Curie temperatures. This is a
consequence of the tensor M7jf., for if a spontaneous polarization P

(172)
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Fig. 8.—Spontaneous electrostrictive strain in Rochelle Salt along the
three crystallographic axes.

occurs, a sudden change occurs in some of the elastic constants as can be seen
from the first of equations (164). The second equation of (164) shows
that this same tensor causes a nonlinear response in the piezoelectric con-
stant. Sincea change in the elastic constant is much more easily deter-
mined than a nonlinear change in the piezoelectric constant, the first effect
is the only one definitely determined experimentally. Since all three crys-
tallographic axes are binary axes in Rochelle salt, it is easily shown that
the only terms that can exist for a fifth rank tensor are terms of the types

M fms H M?ma H M ?2333 (173)

with permutations and combinations of the indices. Hence when a spon-
taneous polarization Py occurs, the elastic constants become

stit — MiptPy (174)
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Comparing these with the relation of (90) we see that the spontaneous
polarization has added the elastic constants

_ (M + M + Mo + Msan) Py

3?4 = 2
o — (Mo + Mings + M3z + M3amm) Py
24 =

2
2 — (M Bsaan + Mg + Mssm + Misan) Py (175)
3 =

2

(MPy + MPson + Miua + M3ian
= + MPua + Miwn + Maus + Maisu) Py
56 =
2

between the two Curie points. Hence while the spontaneous polarization
P, exists, the resulting elastic constants are

S, Sz, Sw, Su,

S13, So3, 33, Sa,

0
S12, Swa, S, Su, 0,

0

0 (176)

S o © ©

S14, S, Ssm, Su,

0, 0, 0,0, 8555 566
0, 0, 0, 0, So6 s S66
Comparing this to equation (139) which shows the possible elastic constants
for the various crystal classes, we see that between the two Curie points,
the crystal is equivalent to a monoclinic sphenoidal crystal (Class 3) with
the X axis the binary axis. Qutside the Curie region the crystal becomes
orthorhombic bisphenoidal. This interpretation agrees with the tempera-
ture expansion curves of Fig. 7.

The sudden appearance of the polarization P, will affect the frequency
of a 45° X-cut crystal, for with a crystal cut normal to the X axis and with
the length of the crystal at an angle © with the ¥ axis, the value of the
elastic compliance s along the length is

s2 = 5B cos' © + 252 cos’ O sin © + (258 + siy) sin® © cos’ ©

+ 255, sin® © cos © + s5y sin’ ©
Hence for a crystal with its length 45° between the ¥ and Z axes, elastic
compliance becomes

D D D D D D
sin _ Sa + 2(soy + 23 + sas) + Ssa + 533
22 =

4

177)

(178)
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For a 45° X-cut crystal we would expect a sudden change in the value of
542 as the crystal becomes spontaneously polarized between the two Curie
points due to the addition of the sm and siy elastic compliances. Such a
change has been observed for Rochelle salt® as shown by Fig. 9 which shows
the frequency constant of a nonplated crystal for which the elastic com-
pliances s7; should hold.
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Fig. 9.—Frequency constant and Q of an unplated 45°X cut Rochelle Salt crystal
plotted as a function’of temperature.
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Hence the sudden change in the elastic constant is a result of the two
second order terms s% + s , which are caused by the spontaneous polariza-
tion. The value of the sum of these two terms at the mean temperature
of the Curie range, 3°C is

P+ 5P =41 x 1074 cm’/dyne (179)

Crystals cut normal to the ¥ and Z axes should not show a spontaneous
change in their frequency characteristic since the spontaneous terms s,
524, 524 and sg; do not affect the value of Young’s modulii in planes normal
to ¥ and Z. Experiments on a 45° ¥-cut Rochelle salt crystal do not show
a spontaneous change in frequency at the Curie temperature, although there
is a large change in the temperature coefficient of the elastic compliance
between the two Curie points. This is the result of third order term and is

8 “The Location of Hysteresis Phenomena in Rochelle Salt Crystals,” W. P. Mason,
Phys. Rev., Vol. 50, p. 744-750, October 15, 1940.
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not considered here. The spontaneous ss; constant affects the shear con-
stant sg for crystals rotated about the X axis and could be detected experi-
mentally. No experimental values have been obtained.

The effects of spontaneous polarization in the second equation of (164)
are of two sorts. For an unplated crystal, a spontaneous voltage is gen-
erated on the surface, which, however, quickly leaks off due to the surface
and volume leakage of the crystal. The other effects are that the spon-
taneous polarization introduces new piezoelectric constants through the
tensor sz,,.n , changes the dielectric constants through the tensor On,, and
introduces a stress effect on the piezoelectric constants through the tensor
M pmer . Since piezoelectric constants are not as accurately measured as
elastic constants, the first effect has not been observed. The additional
piezoelectric constants introduced by the tensor Qimn are shown by equa-
tion (180)

gu gz g3 gu 0O O
0 0 0 0 g g (180)
0 0 0 0 835  f36

Since the only constants for the Rochelle salt class, the orthorhombic
bisphenoidal, are gu , ges , gse , this shows that between the two Curie points
the crystal becomes monoclinic sphenoidal, with the X axis being the
binary axis. The added constants are, however, so small that the accuracy
of measurement is not sufficient to evaluate them. From the expansion
measurements of equation (172) and the spontaneous polarization values,
three of them should have maximum values of

gn=—66X10"°% go=+13X10"° gz=—18X 107" (181)

These amount to only 6 per cent of the constant g4, and hence they are
not easily evaluated from piezoelectric measurements.

The effect of the tensor O, is to introduce a spontaneous dielectric
constant €3 between the Curie temperatures so that the dielectric tensor
becomes

en, 0, 0
’ 0, ez, es (182)
0, €3, e

As discussed at length by Mueller’ this introduces a spontaneous bire-
fringence for light passing through the crystal along the X, ¥ and Z axes
which adds to the birefringence already present.

942)“Properl:iess of Rochelle Salt I and IV,” Phys. Rev. 47,175 (1935); 58, 805 November 1,



