Probability Functions for the Modulus and Angle of the
Normal Complex Variate

By RAY S. HOYT

This paper deals mainly with various ‘distribution functions’ and ‘cumulative
distribution functions’ pertaining to the modulus and to the angle of the ‘normal’
complex variate, for the case where the mean value of this variate is zero. Also,
for auxiliary uses chiefly, the distribution function pertaining to the reciprocal
of the modulus is included. For all of these various probability functions the
paper derives convenient general formulas, and for four of the functions it supplies
comprehensive sets of curves; furthur, it gives a table of computed values of the
cumulative distribution function for the meodulus, serving to verify the values
computed by a different method in an earlier paper by the same author.!

INTRODUCTION

N THE solution of problems relating to alternating current networks
and transmission systems by means of the usual complex quantity
method, any deviation of any quantity from its reference value is naturally
a complex quantity, in general. If, further, the deviation is of a random
nature and hence is variable in a random sense, then it constitutes a ‘complex
random variable,’ or a ‘complex variate,’ the word ‘variate’ here meaning
the same as ‘random variable’ (or ‘chance variable’—though, on the whole,
‘random variable’ seems preferable to ‘chance variable’ and is more widely
used).

Although a complex variate may be regarded formally as a single ana-
lytical entity, denotable by a single letter (as Z), nevertheless it has two
analytical constituents, or components: for instance, its real and imaginary
constituents (X and ¥); also, its modulus and amplitude (| Z| and ).
Correspondingly, a complex variate can be represented geometrically by
a single geometrical entity, namely a plane vector, but this, in turn, has
two geometrical components, or constituents: for instance, its two rec-
tangular components (X and ¥); also, its two polar components, radius
vector and vectorial angle (R = | Z | and ).

This paper deals mainly with the modulus and the angle of the complex
variate,? which are often of greater theoretical interest and practical im-

1¢Prohability Theory and Telephone Transmission Engineering,” Bell System Tech-
gicpairgoumal, January 1933, which will hereafter be referred to merely as the “1933

1 Throughout the paper, I have used the term ‘complex variate’ for any 2-dimensional
variate, because of the nature of the contemplated applications indicated in the first
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portance than the real and imaginary constituents. The modulus variate
and the angle variate, individually and jointly, are of considerable the-
oretical interest; while the modulus variate is also of very considerable
practical importance, and the angle variate may conceivably become of
some practical importance.

The paper is concerned chiefly with the ‘distribution functions’ and the
‘cumulative distribution functions’ pertaining to the modulus (Sections 3
and 5) and to the angle (Sections 6 and 7) of the ‘normal’ complex variate,
for the case where the mean value of this variate is zero. The distribution
function for the reciprocal of the modulus is also included (Section 4).

The term ‘probability function’ is used in this paper generically to include
‘distribution function’ and ‘cumulative distribution function.’

To avoid all except short digressions, some of the derivation work has
been placed in appendices, of which there are four. These may be found
of some intrinsic interest, besides facilitating the understanding of the

paper.

1. DistrizutioN FuncrioNn anp CumurATive DistriBuTiON FUNCTION
IN GENERAL: DEFINITIONS, TERMINOLOGY, NOTATION, RELATIONS,
AND FORMULAS

The present section constitutes a generic basis for the rest of the paper.

Let 7 denote any complex variate, and let p and ¢ denote any pair of
real quantities determining = and determined by 7. (For instance, p and
¢ might be the real and imaginary components of r, or they might be the
modulus and angle of r.) Geometrically, p and ¢ may be pictured as gen-
eral curvilinear coordinates in a plane, as indicated by Fig. 1.1.

Let 7' denote the unknown value of a random sample consisting of a
single 7-variate, and p’ and ¢’ the corresponding unknown values of the
constituents of 7.

Further, let G(p, ¢) denote the ‘areal probability density’ at any point
p,c in the po-plane, so that G(p,o)d4 gives the probability that 7 falls
in a differential area dA4 containing the point 7; and so that the integral of

paragraph of the Introduction, and also because the present paper is a sort of sequel to
my 1933 paper, where the term ‘complex variate’ (or rather, ‘complex chance-variable’)
was used throughout since there it seemed clearly to be the best term, on account of the
field of applications contemplated and the specific applications given as illustrations.
However, for wider usage the term ‘bivariate’ might be preferred because of its prevalence
in the field of Mathematical Statistics; and therefore the paper should be read with this
alternative in view,

3The term ‘distribution function’ is used with the same meaning in this paper as in
my 1933 paper, although there the term ‘probability law’ was used much more frequently
than ‘distribution function,” but with the same meaning.
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G(p,0)dA over the entire p,o-plane is equal to unity, corresponding to
certainty.

For the sake of subsequent needs of a formal nature, it will now be as-
sumed that G(p,¢) = 0 at all points p,0 outside of the p1, p2, o1, o2 quad-
rilateral region in the p,o-plane, Fig. 1.1, bounded by arcs of the four heavy
curves, for which p has the values p; and p, and ¢ the values o, and o3,
with p; and ¢; regarded, for convenience, as being less than ps and a3 respec-
tively. Further, G(p,0) will be assumed to be continuous inside of this

Fig. 1.1—Diagram of general curvilinear coordinates. -

quadrilateral region, and to be non-infinite on its boundary. Hence, for
probability purposes, it will suffice to deal with the open inequalities

< p < pe, (1.1) a <o < o2, (1.2)

which pertain to this quadrilateral region excluding its boundary; and thus
it will not be necessary to deal with the closed inequalities p; £ p = p2
and oy £ ¢ £ o,, which include the boundary.!

4The matters dealt with generically in this paragraph may be illustrated by the fol-
lowing two important particular cases, Wl:uch occur further on, namely:

POLAR COORDINATES:p = |r| = R,e = 8 = ang]e of r. Thenp, = R, =0,
pr=Ro= 0,0y =0, =000 =0 = 21r, whence (1.1) and (1.2) become 0 < R <
and 0 <8 < 21r, respec:tlve]

RECTANGULAR COORDINATES: p=Rer=x,06=Imr=9 Thenp =2a,=
— W, py =M= W, 0] =Y = — 0,00 = yp= ® whence{l 1) and (1.2) become — = <
x < wand — = < y< w0 respectwely
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A generic quadrilateral region contained within the quadrilateral region
pt, p2, 01, oz in Fig. 1.1 is the one bounded by arcs of the dashed curves
p3, pa, 03, 04, where ps < ps and o3 < o5. Here, as in the preceding
paragraph, it will evidently suffice to deal with open inequalities.

Referring to Fig. 1.1, the probability functions with which this paper
will chiefly deal are certain particular cases of the probability functions
P(p, o), P(p| oas) and Q(pss , o34) occurring on the right sides of the follow-
ing three equations respectively:

plo <p <p+4dp,o <o <o+ ds) = Plp,o)dpda, (1.3)
plo <p' < p+dp oy <d <ay) = Plp|os)dp, (1.4)
Cplps < p' < piyos < o' <aw) = Qlpas, oas). (1.5)

These equations serve to define the above-mentioned probability functions
occurring on the right sides in terms of the probabilities denoted by the
left sides, each expression p( ) on the left side denoting the probability
of the pair of inequalities within the parentheses.’ TInspection of these
equations shows that: P(p,s) is the ‘distribution function’ for p and &
jointly; P(p| o) is a ‘distribution function’ for p individually, with the
understanding that ¢/ is restricted to the range os-to-os; Qlpss,05) is a
‘cumulative distribution function’ for p and ¢ jointly.

Since the left sides of (1.3), (1.4) and (1.5) are necessarily positive, the
right sides must be also. Hence, as all of the probability functions occur-
ring in the right sides are of course desired to be positive, the differentials
dp and do must be taken as positive, if we are to avoid writing | dp | and
| do | in place of dp and de respectively.

Returning to (1.3), it is seen that, stated in words, P(p,o) is such that
P(p,o)dpda gives the probability that the unknown values p’ and o’ of
the constituents of the unknown value 7’ of a random sample consisting
of a single 7-variate lie respectively in the differential intervals dp and do
containing the constituent values p and ¢ respectively. Thus, unless
dpde is the differential element of area, P(p,0) is not equal to the ‘areal
probability density,” G(p,e), defined in the fourth paragraph of this section.
In general, if E is such that Edpdo is the differential element of area, then
P(p,0) = EG(p,s). (Anillustration is afforded incidentally by Appendix A.)

P(p,a), defined by (1.3), is the basic ‘probability function,” in the sense
that the others can be expressed in terms of it, by integration. Thus

8 Thus p in #( ) may be read ‘probability that’ or ‘probability of.’
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P(p | os4) and P(o | pss), defined respectively by (1.4) and by the correlative
of (1.4), can be expressed as ‘single integrals,’” as follows®:

Polow = [ Poards, (16) Pllwd =] Ploo)do (LD

Q(paa, oas), defined by (1.5), can be expressed as a ‘double integral,” funda-
mentally; but, for purposes of analysis and of evaluation, this will be replaced
by its two equivalent ‘repeated integrals’:

o = [ [ [ P ao o= [*[ [ PGo) an | as, 18

the set of integration limits being the same in both repeated integrals
because these limits are constants, as indicated by Fig. 1.1. On account
of (1.6) and (1.7) respectively, (1.8) can evidently be written formally
as two single integrals:

Qoo = [ Polodds = [ Polade,  (19)

but implicitly these are repeated integrals unless the single integrations in
(1.6) and (1.7) can be executed, in which case the integrals in (1.9) will
actually be single integrals, and these will be quite unlike each other in
form, being integrals with respect to p and ¢ respectively—though of course
yielding a common expression in case the indicated integrations can be
executed.

The particular cases of (1.4) and (1.5) with which this paper will chiefly
deal are the following three: .

plo <p' <p+ dp, o1 <o <a2) = Plp|ow)dp = P (p)dp, (1.10)
plor < o' < p, o1 < o' < 02) = Q(< pyorr) = Qlp), (1.11)
plo<p <p,01 <o <og) =Q(> p,o12) = Q*(p). (1.12)

8 The single-integral formulation in (1.6) can be written down directly by mere inspec-
tion of the left side of (1.4). Alternatively, (1.6) can be obtained by representing the left
side of (1.4) by a repeated integral, as follows:

Plo | osidp = f " [ [ :'p(,., a)da] do = [ [ :'p(,,, am]dp,

whence (1.6); the last equality in the abgve chain equation in this footnote evidently
+dz

z
results from the fact that, in general, f f(x)dx = f(x)dx, since each side of this equa-

z
tion represents dA, the differential element of area under the graph of f(x) from x to
x + dx.
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In each of these thice equations the very abbreviated notation at the ex-
treme right will be used wherever the function is being dealt with exten-
sively, as in the various succeeding sections. Such notation will not seem
unduly abbreviated nor arbitrary if the following considerations are noted:
In (1.10), 0}, corresponds to the entire effective range of o, 50 that P(p | 012)
is the ‘principal’ distribution function for p. Similarly, in (1.11), Q(< p,012)
is the ‘principal’ cumultive distribution function for p. In (1.12), the star
indicates that Q*(p) is the ‘complementary’ cumulative distribution func-
tion, since Q(p) + Q*(p) = Q(p12, o12) = 1, unity being taken as the measure
of certainty, of course.
For occasional use in succeeding sections, the defining equations for
the probability functions pertaining to four other particular cases will
" be set down here:

plp<p <p+dpor<d <a)=Plp| <o)dp, (1.13)
plo<p <p+dpa<d <o2)=Plp| > q)dp, (1.14)
o1 <p <pn<d <o) =Q(<p, <o), (1.15)
plo<p <pr,o1<a' <a)=Q>p <o) (1.16)

It may be noted that (1.13) and (1.14) are mutually supplementary, in the
sense that their sum is (1.10). Similarly, (1.15) and (1.16) are mutually
supplementary, in the sense that their sum is Q(p12,< o) = Q(< o,012),
which is the correlative of (1.11).

This section will be concluded with the following three simple trans-
formation relations (1.17), (1.18) and (1.19), which will be needed further
on. They pertain to the probability functions on the right sides of equa-
tions (1.3), (1.4) and (1.5) respectively. % and % denote any positive real
constants, the restriction to positive values serving to simplify matters
without being too restrictive for the needs of this paper.

Plip, ko) = 1. P(pyo), (117)
P(hp | kags) = %P(ﬂ aa0), (1.18)
QUhpssy kaz) = Qlpas, oaa)- (1.19)

Each of the three formulas (1.17), (1.18), (1.19) can be rather easily
derived in at least two ways that are very different from each other. One
way depends on probability inequality relations of the sort

pl<t <t+dt) = plge<gl <gt+dlgl), (1.20)
ﬁ(fs<3’<h) = p(gla<gi’<gh), (1.21)
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where ¢ stands generically for p and for ¢, and g is any positive teal constant,
standing generically for % and for &; (1.20) and (1.21) are easily seen to be
true by imagining every variate in the universe of the f-variates to be
multiplied by g, thereby obtaining a universe of (gf)-variates. A second
way of deriving each of the three formulas (1. 17) (1.18), (1. 19) depends on
general integral relations of the sort

j; f(&) dt = é f: f(8) d(gt) = % fa :b f(%) d. (1.22)

A third way, which is distantly related to the second way, depends on the
use of the Jacobian for changing the variables in any double integral; thus,

P(po) _ _ 1 d(\u) . ‘ 3(p,0)
P(\u) d(p,) (\u) ’

the first equality in (1.23) depending on the fact that the two sets of vari-
ables and of differentials have corresponding values and hence are so re-
lated that

p(p<p’ <pt+dp, 0<o'<otds) = PN <ANHdN, p<p/<ptdp), (1.24)

d\dp

Zode (1.23)

whence

P(p,0) | dpdo | = P(\u) | dNdp |.

2. Tar NorRMAL COMPLEX VARIATE AND ITs CHIEF PROBABILITY FUNCTIONS

The ‘normal’ complex variate may be defined in various equivalent ways.
Here, a given complex variate z = x + iy will be defined as being ‘normal’
if it is possible to choose in the plane of the scatter diagram of z a pair of
rectangular axes, # and o, such that the distribution function’ P(u,v)
for the given complex variate with respect to these axes can be written in

the form#

1 ot 72

Pt = 5rs.5. ""‘p[_ 25% 23] Pe)PG). @.1)

We shall call w = # + 4v the ‘modified’ complex variate, as it represents

the value of the given complex variate z = x + ¢y when the latter is referred

to the u,v-axes; P(u) and P(v) are respectively the individual distribution

functions for the # and v components of the modified complex variate; and
7 Defined by equation (1.3) on setting p = wand o = v,

8 This equation is (12) of my 1933 paper. It can be easily verified that the (double)
integral of (2 ? .1) taken over the entire %, v-plane is equal to unity.
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S. and S, are distribution parameters called the ‘standard deviations’ of
uand v respectively. If ¢ stands for » and for » generically, then

P(t) = \/2 3, exp[ i] (22) Si= [: £P(t) dt. (2.3)

From the viewpoint of the scatter diagram, the distribution function
P(u,v) is, in general, equal to the ‘areal probability density’ at the point
u,v in the plane of the scatter diagram, so that the probability of falling
in a differential element of area dA containing the point %, is equal to
P(u,0)dA; similarly, P(u) and P(v) are equal to the component probability
densities. In particular, the probability density is ‘normal’ when P(u,)
is given by (2.1).

Geometrically, equation (2.1) evidently represents a surface, the normal
‘probability surface,’ situated above the #, v-plane; and P(x, v) is the ordinate
from any point #,r in the #,0-plane to the probability surface.

The u,v-axes described above will be recognized as being the ‘principal
central axes,” namely that pair of rectangular axs which have their origin
at the ‘center’ of the scatter diagram of z = x + iy and hence at the center
of the scatter diagram of w = u + 47, so that @ = 0, and are so oriented.
in the scatter diagram that #v = 0 (whereas Z # 0 and xy # 0, in general).

In equation (2.1), which has been adopted above as the analytical basis
for defining the ‘normal’ complex variate, the distribution parameters are
Su and S, ; and they occur symmetrically there, which is evidently natural
and is desirable for purposes of definition. Henceforth, however, it will be
preferable to adopt as the distribution parameters the quantities S and b
defined by the pair of equations’

§'= 5%+ .52, (2.4) bS* = S% — 52, (2.5)
whence

_Su =S _ 1 — (S./8.)°

Sy S 14 (S./S)Y

From (2.4), S is seen to be a sort of ‘resultant standard deviation.’ The
last form of (2.6) shows clearly that the total possible range of b is

(2.6)

—1=bh=1, c;)rresponding to © =5,/5,=0.
The pair of simultaneous equations (2.4) and (2.5) give
25% = (14085, (2.7) 28, = (1-0)8?, (2.8
which will be used below in deriving (2.11).

* Equations (2.4) and (2.6) are respectively (14) and (13) of my 1933 paper.



326 BELL SYSTEM TECHNICAL JOURNAL

With the purpose of reducing the number of parameters by 1 and of
dealing with variables that are dimensionless, we shall henceforth deal
with the ‘reduced’ modified variate W = U + iV defined by the equation

W = w/S = u/S+ /S =U-+iV. (2.9

Thus we shall be directly concerned with the scatter diagram of W =
U + iV instead of with that of w = % + 1.

The distribution function P(U,V) for the rectangular components U
and V of any complex variate W = U + iV is defined by (1.3) on setting
p = Uand ¢ = V; thus,

PUVYAUAY = p(UU'QUAdU, VLV'<V+dV). (2.10)

When the given variate z = x + iy is normal, so that the modified variate
w = u + iv is normal, as represented by (2.1), then, since S is a mere con-
stant, the reduced modified variate W = U + iV defined by (2.9) will
evidently be normal also, though of course with a different distribution
parameter. Itsdistribution function P(U,V') is found to have the formula"

1 RIS
2UY) = mm[— T+5 1— b:l = P(U)P(V),  (211)

where P(U) and P(V) are the component distribution functions:

1 U2 )
PO = g =] i) o
1 v
P = i = b exp[— 1—_3] o (213

These three distribution functions each contain only one distribution
parameter, namely b; moreover, the variables U = u/S and V = v/S are
dimensionless.

The distribution function P(R,6) for the polar components R and 6 of
any complex variate W = R(cos 6 + i sin 6) is defined by (1.3) on setting
p = Rand ¢ = 6; thus

P(R0)dRd8 = p(R<R'<R+dR, 6<6'<6+d6). (2.14)

For the case where W is ‘hormal,’ it is shown in Appendix A that

P(RM) = W\/;R———fﬁ exp[l__R; (1 — bcos 29)] (2.15)

- %—E exp[—L(1 — bcos26)], (2.16)

10 This formula can be obtained from (2.1) by means of (2.7), (2.8), (2.9) and (1.17)
after specializing (1.17) by the substitutionsp = u, ¢ = v and h = k= 1/5. Itis (16)
of my 1933 paper, but was given there without proof. -
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where
L= RY/(1-0%). (2.17)

In P(R,0) it will evidently suffice to deal with values of # in the first
quadrant, because of symmetry of the scatter diagram.

The fact that P(R,f) depends on & as a parameter when W is ‘normal’
may be indicated explicitly by employing the fuller symbol P(R,6;b)
when desired; thus the former symbol is here an abbreviation for the latter.

In P(R,0) = P(R, 6; b) it will suffice to deal with only positive values of
b, that is, with 0=b=1 (whereas the total possible range of b is —1=0=1).
For (2.15) shows that changing b to —b has the same effect as changing 26
to w==26, or 6 to m/2-£0; that is, P(R,8; —b) = P(R, n/2-:6; b).

Seven formulas which will find considerable use subsequently are obtain-
able from the integrals corresponding to equations (1.13) to (1.16), by setting
p= Rando = forelse p = 6 and ¢ = R, whichever is appropriate, and
thereafter substituting for P(R,0) the expression given by (2.16), and
lastly executing the indicated integrations wherever they appear possible.!!
The resulting formulas are as follows:

T ']
PR| <6) = —\—{F—L exp(—L) j; exp(bL cos 26) d, (2.18)
AT =81 — exp[—L(1 — b cos 26)]
POl <R = 27 1 — b cos 260 ! (2.19)
_ V1 — b2 exp[—L(1 — b cos 58)]
P@| > R) = 27 1 — bcos 26 ) (2.20)

O(< R, <6) = }rf I:\/Z exp(—L) [ exp(bL cos 26) de] iR (2.21)

\/1 = "1 — exp[—L(1 — b cos 26)]
o 1 — bcos 20

g,  (2.22)

0(> R, < 6) = If [ T exp(— L)f exp(bL cos 26) d8:| iR (2.23)

V1 =8

_ — exp(bL cos 26)
- 2T exp( -1 f

— b cos 20 (2.24)

Formulas (2.21) to (2.24) are obtainable also by substituting (2.18) to
(2.20) into the appropriate particular forms of (1.9).
When a #-range of integration is 0-to-g(w/2), where ¢ = 1, 2, 3 or 4, this

U Except that in (2,22) the part 1/(1 — b cos 26) is integrable, as found in Sec. 7,
equations (7.6) and (7.7).



328 BELL SYSTEM TECHNICAL JOURNAL

range can be reduced to 0-to-r/2 provided the resulting integral is mul-
tiplied by g; that is,

q(x/2) =2
[ r@an = 4 [ F@a, (2.25)
0 0

because of symmetry of the scatter diagram.

3. Tar DisTrRIBUTION FUNCTION FOrR THE MoDULUS

The distribution function P(R | 6;;) = P(R) for the modulus R of any
complex variate W = R(cos 8 + isin ) is defined by equation (1.10) on
settingp = R,0 = 0,01 = 6 = Oand oy = 62 = 2m; thus

P(R)YAR = p(R<R'<R+dR, 0<6'<2m). (3.1)

An integral formula for P(R) is immediately obtainable from (1.6) by

settingp = R, 0 = 6,03 =01 = 01 = 0 and ¢4 = o2 = 62 = 2m; thus

P(R) = fo " P(RS) db. 3.2)

The rest of this section deals with the case where W = R(cos 8 + isin 0)
is ‘normal.’ Since this case depends on b as a parameter, P(R) is here an
abbreviation for P(R;b). A formula for P(R;b) can be obtained by sub-
stituting P(R, 6) from (2.15) into (3.2) and executing the indicated integra-
tion by means of the known Bessel function formula

j; ) exp(n cos ¥) dy = wlo(n), (3.3)

Io( ) being the so-called ‘modified Bessel function of the first kind,” of
order zero.!? The resulting formula is found to be'

2R —R? bR?
P(R; b) = m exp[l — bz] Iy [1 _ bz] . (34)
This can also be obtained as a particular case of the more general formula
(2.18) by setting 6 = 2 in the upper limit of integration and then apply-
ing (3.3).
In P(R;p) it will suffice to deal with positive values of &, that is, with
0=<b=1, as (3.4) shows that P(R; —b) = P(R;b).

12 Tt may be recalled that Io(s) = Jo(iz), and in general that I,(s) = i—Ja(iz).

In the list of references on Bessel functions, on the last page of this paper, the ‘modified
Bessel function’ is treated in Ref. 2, p. 20; Ref. 3, p. 102; Ref. 4, p. 41; Ref. 1, p. 77.

Regarding formula (3.3), see Ref. 1, p. 181, Eq. &), » = 0; Ref. 1, p. 19, Eq. (9), fourth
expression, » = 0; Ref. 2, p. 46, Eq. (10),# = 0; Ref. 3, p. 164, Eq. 103, n = 0.

13 This formula was given in its cumulative forms, f P(R; b)dR, as formulas (51-A)

and (53-A) of the unpublished Appendix A to my 1933 paper.
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It will often be advantageous to express Pg;s in terms of & and one or
the other of the auxiliary variables L and T' defined by the equations

_ R2 _ _ bR‘A
Formula (3.4) thereby becomes, respectively,
P(R;b) = 2+/L exp(—L)I,(bL), (3.7
P(Rb) = 2 ,‘/ 1—; exp[lbi-" ] (7). (3.8)

Formula (3.8) will often be preferable to (3.7) because the argument of
the Bessel function in (3.8) is a single quantity, T.

Because tables of Io(XX) are much less easily interpolated than tables of
. My(X) defined by the equation

Mo(X) = exp(— X)Io(X), (3.9)

extensive tables of which have been published,** it is natural, at least for
computational purposes, to write (3.4) in the form

2R —R? bR? '

For use in equation (3.16), it is converient to define here a function
M, (X) by the equation

My(X) = exp(—X)(X), (3.11)

corresponding to (3.9) defining Mo(X). Mi(X) has the similar property
that it is much more easily interpolated than is I;(X); and extensive tables
of M1(X) are constituent parts of the tables in Ref. 1 and Ref. 6.

The quantity bR?/(1—b%) = T, which occurs in (3.4) and (3.8) as the
argument of Io( ), and in (3.10) as the argument of Mo( ), evidently
ranges from () to « when R ranges from 0 to « and also when & ranges
from 0 to 1. Formula (3.10) is suitable for computational purposes for all
values of the above-mentioned argument dR?/(1—5*) = T not exceeding
the largest values of X in the above-cited tables in Ref. 1 and Ref. 6. For
larger values of the argument, and partiularly for dealing with the limiting

1 Ref. 1, Table IT (p. 698-713), for X = 0 to 16 by .02. Ref. 6, Table VIII (p. 272-
283), for X = 5 to 10 by .01, and 10 to 20 by 0.1. Each of these references conveniently
includes a table of exp(X) whereby values of I3(X) can be readily and accurately evalu-
ated if desired. Values of I4(X) so obtained would enable formulas (3.4), (3.7) and (3.8)
of the present paper to be used with high accuracy without any difficult interpolations,
since the table of exp(X) is easily interpolated by utilizing the identity exp(X, + X)) =
exp(X,) exp(Xa).
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case where the argument becomes infinite, formula (310)—and hence (3.4)—
may be advantageously written in the form

P(R; b) = \}2;5 exp[l'f zb] No I:Iifz—b’:l' (3.12)

where
No(X) = V22X exp(=X)[(X) = V2rX Mo(X), (3.13)

an extensive table of which has been published.’® The natural suitability
of the function No(X) for dealing with large values of X is evident from
the structure of the asymptotic series for No(X), for sufficiently large values
of X, which runs as follows:!®

1 13 1735’

T + + -, (314)

No(X) ~ 1+ FTEXR T 31EX)

whence it is evident that
No(») = 1. (3.15)

For use in Appendix C, it is convenient to define here a function N;(X)
by the equation

Ni(X) = V21X exp(—= X)[1(X) = V22X M,\(X), (3.16)

corresponding to (3.13) defining No(X), with M;(X) defined by (3.11).
The asymptotic series for N1(X), which will be needed in Appendix C, is"®

NiX) ~1 =3 [”;X + i+ o :l (3.17)
whence it is evident that .
Niy() = 1. (3.18)
When & is very nearly but not exactly equal to unity, so that
bR’ R _ K

(3.19)

R oT—r 21 =0)
it is seen from (3.4) that P(R;b) is, to a very close approximation, a function

% Ref. 7, pp. 45-72, for X = 10 to 50 by 0.1, 50 to 200 by 1, 200 to 1000 by 10, and
for various larger values of X.

18 Ref. 1, p. 203, with (v, m) defined on p. 198; Ref. 5, p. 366; Ref. 2, p. 58; Ref. 3, p.
163, Eq. 84; Ref. 4, pp. 48, 84.

i E’g xg’g ) is tabulated along with No(X) in Ref. 7 already cited in connection with equa-
tion (3.13).

18 Ref. 1, p. 203, with (v, m) defined on p. 198; Ref. 5, p. 366; Ref. 2, p. 58; Ref. 3, p.
163, Eq. 84.
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of only a single quantity, which may be any one of the three very nearly
equal expressions in (3.19)—but the last of them is evidently the simplest.
Fig. 3.1 gives curves of P(R;b), with the variable R ranging continuously
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from O to 2.8 and the parameter & ranging by steps from 0 to 1 inclusive,
which is the complete range of positive . Fig, 3.2 gives an enlargement
(along the R-axis) of the portion of Fig. 3.1 between R = 0 and R = 0.4,
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and includes therein curves for a considerable number of additional values
of & between 0.9 and 1 so chosen as to show clearly how, with b increasing
toward 1, the curves approach the curve for & = 1 as a limiting particular’
curve; or, conversely, how the curve for & = 1 constitutes a limiting par-
ticular curve—which, incidentally, will be found to be a natural and con-
venient reference curve. This curve, for & = 1, will be considered more
fully a little further on, because it is a limiting particular curve and be-
cause of its resulting peculiarity at R = 0, the curve for & = 1 having at
R = 0 a projection, or spur, situated in the P(R;b) axis and extending from
0.7979 to 0.9376 therein (as shown a little further on).

The formulas and curves for & = 0 and & = 1, being of especial interest
and importance, will be considered before the remaining curves of the set.

For the case b = 0, formula (3.4) evidently reduces immediately to

P(R)0) = 2R exp (—R?). (3.20)

This case, & = 0, is that degenerate particular case in which the equiprob-
ability curves in the scatter diagram of the complex variate, instead of
being ellipses (concentric), are merely circles, as noted in my 1933 paper,
near the bottom of p. 44 thereof (p. 10 of reprint).

For the case b = 1, the formula for the entire curve of P(R; b) = P(R;1),
except only the part at R = 0, can be obtained by merely setting b = 1
in®® (3.12) as this, on account of (3.15), thereby reduces immediately to

2 R?
P'(R;1) = \/_ﬂ exp[—‘z‘], (R # 0), (3.21)

P'(R;1) denoting the value of P(R;b) when & = 1 but R # 0, the restriction
R 5 0 being necessary because the quantity R2/(1—4?) in (3.12)—and in
(3.4)—does not have a definite value when & = 1if R = 0. Thus, in Figs.
3.1 and 3.2, the curve of P'(R;1) is that part of the curve for & = 1 which
does not include any point in the P(R; b) axis (where R = 0) but extends
rightward from that axis toward R = +400. The curve of P/(R;1) is the
‘effective’ part of the curve of P(R;1), in the sense that the area under the
former is equal to that under the latter, since the part of the curve of
P(R;1) at R = 0 can have no area under it.

P(0;1) denoting (by convention) the value, or values, of P(R;b) when
R = 0 and b = 1, that is, the value, or values, of P(R;1) when R = 0, it
is seen, from consideration of the curves of P(R;b) in Figs. 3.1 and 3.2 when
b approaches 1 and ultimately becomes equal to 1, that the curve of P(0;1)
consists of all points in the vertical straight line segment extending upward
in the P(R;b) axis, from the origin to a height 0.9376 [= Max P(R;1)],0

19 Use of (3.12) instead of (3.4), which is transformable into (3.12), avoids the indefinite
expression =.0.% which would result directly from setting b = 1 in (3.4).

2 As shown near the end of Appendix B, Max P(R;1) is situated at R = 0 and is
equal to 0.9376.



34 BELL SYSTEM TECHNICAL JOURNAL

together with all points in the straight line segment extending downward
from the point at 0.9376 to the point at 0.7979 [= 2/ /2% = P'(R;1) for
R = 0+]. The curve of P(0; 1), because it has no area under it, is the
‘non-effective’ part of the curve of P(R;1).

Starting at the origin of coordinates, where R = 0, the complete curve
of P(R;1) consists of the curve of P(0;1), described in the preceding para-
graph, in sequence with the curve of P'(R;l1j, given by (3.21). Thus the

"complete curve of P(R;1) is the locus of a tracing point moving as follows:

Starting at the origin of coordinates, the tracing point first ascends in the
P(R; b) axis to a height 0.9376 [= Max P(R;1)]; second, descends from
0.9376 to 0.7979 [= 2/ +/2x = P'(R;1) for R = 0+]; and, third, moves
rightward along the graph of P'(R;1) [b = 1] toward R = +-e. The locus
of all of the points thus traversed by the tracing point is the complete
curve” of P(R;1). -

In addition to being the principal part (‘effective’ part) of the curve of
P(R;1), the curve of P'(R;1), whose formula is (3.21), has a further impor-
tant significance. For the right side of (3.21), except for the factor 2, will
be recognized as being the expression for the well-known 1-dimensional
‘normal’ law; the presence of the factor 2 is accounted for by the fact that
the variable R = | R | can have only posiive values and yet the area under
the curve must be equal to unity. This case, b = 1, is that degenerate
particular case in which the equiprobability curves, instead of being ellipses,
are superposed straight line segments, so that the resulting ‘probability
density’ is not constant but varies in accordance with the 1-dimensional
‘normal’ law (for real variates), as noted in my 1933 paper, at the top of p. 45
thereof (p. 11 of reprint).

All of the curves of P(R;b), where 0=b=1, pass through the origin,
the curve of P(R;1) [b = 1] being no exception, since the part P(0;1) passes
through the origin.

Formula (3.12), supplemented by (3.15), shows that P(R; b) = 0 at
R = o; and this is in accord with the consideration that the total area
under the curve of P(R:b) must be finite (equal to unity).

Sincé P(R;b) = 0 at R = 0 and at R = o, every curve of P(R;b) must
have a maximum value situated somewhere between R = 0 and R = «—
as confirmed by Figs. 3.1 and 3.2. These figures show that when b increases
from O to 1 the maximum value increases throughout but the value of R
where it is located decreases throughout.

The maxima of the function P(R;b) and of its curves (Figs. 3.1 and 3.2)
are of considerable theoretical interest and of some practical importance.

2 The presence, in the curve of P(R; 1), of the vertical projection, or spur, situated in
the P(R; b) axis and extending from 0.7979 to 0.9376 therein, is somewhat remindful

(qualitatively) of the ‘ Gibbs phenomenon’ in the representation of discontinuous periodic
functions by Fourier series.
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The cases b = 0 and & = 1 will be dealt with first, and then the general
case (b = b).

For the case b = 0t is easily found by differentiating (3.20) that P(R;}) =
P(R;0) is a maximum at R = 1/ 4/2 = 0.7071 and hence that its maximum
value is 4/2 exp (—1/2) = 0.8578, agreeing with the curve for & = 0 in
Fig. 3.1.

Tor the case & = 1, which is a limiting particular case, the maximum
value of P(R;b) = P(R;l1) apparently cannot be found driectly and simply,
as will be realized from the preceding discussion of this case. Near the
end of Appendix B, it is shown that the maximum value of P(R;1) occurs at
R = 0 (as would be expected) and is equal to 0.9376. This is the maximum
value of the part P(0;1 of P(R;1). The remaining part of P(R;1), namely
P'(R;1), whose formula is (3.21), is seen from direct inspection of that
formula to have a right-hand maximum value at R = 0+, whence this
maximum value is 2/4/2r = 0.7979.

For the general case when b has any fixed value within its possible positive
range (0=b=1), it is apparently not possible to obtain an explicit expression
(in closed form) either for the value of R at which P(R;?) has its maximum
value or for the maximum value of P(R;b); and hence it is not possible to
make explicit computations of these quantities for use in plotting curves of
them, versus b, of which they will evidently be functions. However, as
shown in Appendix B, these desired curves can be exactly computed, in an
indirect manner, by temporarily taking b as the dependent variable and
taking T, defined by (3.6), as an intermediate independent variable. For
let R¢ denote the critical value of R, that is, the value of R at which P(R;b)
has its maximum value; and let T¢ dendte the corresponding value of T,
whence, by (3.6),

Te = bRG/(1—b"). : (3.22)
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Fig. 3.3—Functions relating to the maxima of the distribution function for the modulus.
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Then, computed by means of the formulas derived in Appendix B, Fig. 3.3
gives a curve of Re and a curve of Max P(R;b), each versus b. Since the
curve of Rg cannot be read accurately at & & 1, there is included also a
curve of Re/A/1 — B, from which Rc can be accurately and easily com-
puted for any value of b; incidentally, the curve of Re/ /1 = B is simul-
taneously a curve of /T¢/b, on account of (3.22). From Fig. 3.3 it is
seen that R varies greatly with & but that Max Py varies only a little,
as also is seen from inspection of Figs. 3.1 and 3.2 giving curves of P(R;b)
as function of R with b as parameter.

In Fig. 3.3, the curve of Rc shows that for b = 1 the maximum of P(R;b)
occurs at R = 0; and the curve of Max P(R;b) shows that Max P(R;1) ~
0.94, agreeing to two significant figures with the value 0.9376 found near
the end of Appendix B.

4. Tue DisTRIBUTION FUNCTION FOR THE RECIPROCAL OF THE MoDULUS

At first, let R denote any real variate, and P(R) its distribution function.
Also let 7 denote the reciprocal of R, so that r = 1/R; and let P(r) denote
the distribution function for . Then *

P(r) = R*P(R) = P(R)/r. (4.1)

1f P(R) depends on any parameters, P(r) will evidently depend on the
same parameters.

The rest of this section deals with the case where W = R(cos 6 4 i sin 6)
is ‘normal.’ Since this case depends on & as a parameter, P(R) and P(r)
are here abbreviations for P(R;b) and P(r;b) respectively.

As P(R;b) has the distribution function given by (3.4), the distribution
function for r will be

2 —1 b
P(f,b) = (_\/i—_—‘b—z)ra EXP[(I _ bz)rz] ID [(l _ bz)'}] ] (‘4-2)
obtained from the right side of (3.4) by changing R to 1/r and multiplying

2 For if r and R denote any two real variates that are functionally related, say F(r, R)
= 0, and if dr and dR are corresponding small increments, then evidently

PG) _|dR| _| oF/or
P(R) |adr OF/dR |’

P(r) |dr| = P(R)|dR| whence

In particular, if r = 1/R, whence F = r — 1/R, then (4.1) results immediately.

For a somewhat different and more detailed treatment of change of the variable in
distribution functions, see Thorton C. Fry, “Probability and its Engineering Uses,”
1928, pp. 153-155. (Cases of more than one variate are treated on pp. 155-174 of the
same reference.)
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the result by 1/7%, in accordance with (4.1). Evidently P(r;—b)
= P(r;b). ‘
By means of (4.1), formulas (3.7) and (3.8) give, respectively,

P(rp) = 200—8)L"* exp(— L)Io(BL), (4.3)
3/2 _
P(rd) =201 — b)) [%1] exp[TT:l I(T), (4.4)

wherein L and T are defined by (3.5) and (3.6) respectively, but will now
be written in the equivalent forms
1 s T=bl=—b 4
(1 — B)rt (1 =)
which are evidently more suitable for the present section.

A few particular cases that are especially important will be dealt with
in the following brief paragraph, ending with equation (4.8).

-For the two extreme values of r, namely 0 and =, P(r;d) is zero for all
values of b in the b-range (0=b=Z1).

When b = 0,

L=

Prip) = P(r0) = éexp[ll]. @.7)

r?

When b = 1,
2 1 —1
P(rip) = P(r;1) = ViFeXP[E‘E]' (4.8)

Fig. 4.1 gives curves of P(r;b), with the variable r ranging continuously
from O to 1.4 and the parameter b ranging by steps from 0 to 1; however,
in the r-range where r is less than about 0.6, alternate curves had to be
omitted to avoid undue crowding. Fig. 4.2 gives an enlargement of the
section betwen » = 0.2 and r = 0.5, and includes thérein the curves that
had to be omitted from Fig. 4.1,

In Fig. 4.1 it will be noted that with the scale there used for P(r;b) the
values of P(r;b) are too small to be even detectable for values of 7 less
than about 0.25. Even in the enlargement supplied by Fig. 4.2, the values
of P(r;b) are not detectable for r less than about 0.2.

The curves of P(r;b) in Figs. 4.1 and 4.2 would have had to be computed
from the lengthy formula (4.2)—or its equivalents—except for the fact
that curves of P(R;b) had already been computed in the preceding section
of the paper. The last circumstance enabled the P(r;b) curves to be
obtained from the P(R;b) curves by means of the very simple relation (4.1).

It will be observed that each curve of P(r;b) [Fig. 4.1] has a maximum
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ordinate, whose value and location depend on b. When & increases from
0 to 1, the maximum ordinate decreases throughout but the value of r where
it is located remains nearly constant, at about 0.82, until b becomes about
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Fig. 4.1—Distribution function for the reciprocal of the modulus (r = 0 to 1.4).

0.7, after which the location of the maximum value moves rather rapidly
to about 0.71 for & = 1.

For the cases b = 0 and b = 1, it is easily found, by differentiating (4.7)
and (4.8), that the maximum ordinates are located at r = V4 2/3 = 0.8165
and at r = 1/4/2 = 0.7071 respectively; and hence, by (4.7) and (4.8),
that the values of these maximum ordinates are (3+/3/2exp (—3/2) =
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0.8198 and (4/A/2x)exp (—1) = 0.5871 respectively. These results for
the cases b = 0 and b = 1 agree with the corresponding curves in Fig. 4.1.
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For the general case where & has any fixed value in the b-range (0=<6=1),
it is apparently not possible to obtain an explicit expression (in closed form)
either for the value of r at which P(r;b) has its maximum value or for the
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maximum value of P(r;d). However, as shown in Appendix C, curves of
these quantities versus b can be computed, in an indirect manner, by
temporarily taking b as the dependent variable and taking T, defined by
(4.6), as an intermediate independent variable. For let r, denote the
critical value of 7, that is, the value of 7 at which P(r;d) has its maximum
value; and let T, denote the corresponding value of T, whence, by (4.6),

T, = b/(1—b)rs. (4.9)

Then, computed by means of the formulas derived in Appendix C, Fig. 4.3
gives a curve of 7, and a curve of Max P(r;b), each versus b. From these
curves it is seen that 7, and Max P(r;b) do not vary greatly with b, as also
is seen from inspection of Fig. 4.1 giving curves of P(r;b) as function of 7
with b as parameter.
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Fig. 4.3—Functions relating to the maxima of the distribution function for the reciprocal
of the modulus.

5. Tue CUMULATIVE DISTRIBUTION FUNCTION FOR THE MODULUS

The cumulative distribution function Q(<R,01) = Q(R) for the
modulus R of any complex variate W = R(cos 6 + isin §) is defined by
equation (1.11) on setting p = R, 0 = 0, p1 = Ri=0,00= 86 = 0and
gy = f: = 2‘11’; thus

O(R) = p(0<R'<R,0<6 <2m). (5.1)
Similarly, from (1.12), the complementary cumulative distribution function
Q(>R,8:15) = Q*(R) is defined by the equation

Q*(R) = p(R<R' <= ,0< <2m). (5.2)

O*(R) is usually more convenient than Q(R) for use in engineering ap-
plications, because it is usually more convenient to deal with the relatively
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small probability of exceeding a preassigned rather large value of R than to
deal with the corresponding rather large probability (nearly equal to
unity) of being less than the preassigned value of R.

A ‘double integral’ for Q(R), in the forin of two ‘repeated integrals,’
can be written down directly by inspection of the p( ) expression in
(5.1) or by specialization of (1.8); thus

OR) = foR U: P(R,0) de] dR = foh I:f: PR,6) dﬂ] . (53)

Evidently these can be written formally as two ‘single integrals,’
R 27
OR) = [ P(R) dR = f PO| < R) db, (5.4)
0 0

by means of the distribution functions P(R) = P(R|#6:) and P(8| <R)
given by the formulas

P(R) = foh P(RS) db, (55) P@| <R) = fo “P(RA) AR, (5:6)

(5.5) is the same as (3.2). (5.6) is a special case of (1.6), and the left side
of (5.6) is a special case of P(p | <o) defined by (1.13).

Similarly, from (5.2), we arrive at the following formulas corresponding
to (5.3), (5.4), (5.5), and (5.6) respectively:

2

0*(R) = f: U: P(R) dﬂ] dR = fo [f: P(R,6) &R]do, (5.7)

0*(R) = f: P(R) dR = fo P@| > R) da, (5.8)

P(R) = fo Y p(RE) do, (5.9) P> R) = fn " P(RG) dR.  (5.10)

The rest of this section deals with the case where W = R(cos # + isin 8)
is ‘normal.’”® Since this case depends on b as a parameter, Q(R) and Q*(R)
are here abbreviations for Q(R;4) and Q*(R;b) respectively.

A natural and convenient way for deriving formulas for Q(R) is afforded
by the general formula (5.4) together with the auxiliary general formulas
(5.5) and (5.6), beginning with the two latter.

For the ‘normal’ case, P(R,f) is given by (2.15). When this is sub- °
stituted into (5.5) and (5.6), it is found that each of the indicated integra-

2 For the ‘normal’ case, the cumulative distribution function was treated in a very
different manner in my 1933 paper and its unpublished Appendix A. That paper included
applications to two important practical problems, and its unpublished Appendix C treated

a third such problem. (The unpublished appendices, A, B and C, are mentioned in foot-
note 3 of the 1933 paper.)
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tions can be executed, giving the two previously obtained formulas (3.4)
and (2.19) for P(R) = P(R;b) and P(8| <R) respectively. When these
are substituted into (5.4), there result two types of single-integral formulas
for Q(R): A primary type, involving an indicated integration as to R; and
a secondary type, involving an indicated integration as to 6. Formulas
of these two types for Q(R) will now be derived.

An integral formula of the primary type for Q(R) = Q(R;b) can be ob-
tained by substituting P(R) = P(R;b) from (3.4) into the first integral in
(5.4), giving _

k A —\? ha?
Q(R) = 2]{; N exp [1 _ be:l Iy [1 — bz] dh.  (5.11)
This can also be obtained as a particular case of the more general formula
(2.21) by setting 8 = 2 in the upper limit of integration and then apply-
ing (3.3).

In (5.11), A is used instead of R as the integration variable in order to
avoid any possible confusion with R as an integration limit. Thus the
integrand is a function of A with b as a parameter. Evidently Q(R;b) =
Q(R;—b). Formula (5.11) is evidently suitable for evaluation of Q(R) by
numerical integration.®

By suitably changing the variable in (5.11), we arrive at the following
various additional formulas, which, though equivalent to (5.11); are very
different as regards the integrand and the limits of integration. As previ-
ously, L denotes R?/(1—25%).

1 . = 2
Q(R) = \/—14__—_—?-/0. exp[l — b’] Iy [l — bﬂ] dx, (5.12)

QR) =1 - lLexp(-—)\) To(bN) dA, (5.13)
OR) = LV1 — 1 .L-lexp(—L)\) To(bLN) dx, (5.14)
QR) = V1 — P® 1 (_L)In(b log A) dA. (5.15)

These four additional formulas are of some theoretical interest, but ap-
parently they are less suitable than (5.11) for numerical integration with
respect to R. A formula differing slightly from {5.11) could evidently be
obtained by taking A/ 4/1 — b? as a new variable, and hence R/ V1i=p
as the upper limit of integration.

Corresponding formulas for Q*(R) = Q*(R;b) can of course be obtained
from the preceding formulas (5.11) to (5.15) inclusive for Q(R) = Q(R;b)

# In this connection, Appendix D may be of interest.
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by merely changing the integration limits correspondingly—for instance,
in (5.11), from 0, R to R, «;in (5.13), from 0, L to L, « ; and so on. How-
ever, the first four formulas for O*(R) so obtained would suffer the disad-
vantage of each having an infinite limit of integration, rendering those
formulas unsatisfactory for numerical integration purposes. This difficulty
can be avoided by making the substitution R = 1/ in each of those formulas
for Q*(R). The resulting formulas are the following five, correspondmg to
(5.11) to (5.15) respectlvely o

0*(R) = bzf e [_1/"}1 [Ibf‘b?] i, (5.16)
Q*(R) = \/1—1__755,[ ;2 e;\p[ _1/;]1’0[1 b_/_)\bz] dx,  (5.17)
Q*(R) = V1 =12 f " e‘(p[ ]I., [;] d\, (3.18)

Q*(R) = L1 — ¥ f 3 exp[ m] I I:b){‘] dx, (5.19)

exp(—L)
O*R) = VI = B fo Lo(5 log ) dh. (5.20)

As a check on (5.16), it is obtainable from (4.2) by integrating the latter
as to r.

For purposes of evaluation by numerical integration, formulas (5.11)
to (5.15) inclusive may evidently differ greatly as regards the amount of
labor involved and the numerical precision practically attainable. In
each of these formulas except (5.14) the integrand contains only one param-
eter, b, while the integration range involves either R or L = R*/(1—8.
In (5.14) the integrand contains two independent parameters, b and L,
while the integration range is a mere constant, 0-to-1. Similar statements
apply to formulas (3.16) to (5.20) inclusive.

A partial check on any formula for Q(R) can be applied by setting R = o,
since (=) should be equal to unity (representing certainty). If, for
instance, this procedure is applied to formula (5.13), the right side is found
to reduce to unity by aid of the known relation™ .

1

fexp (—AN) Jo(BN) d\ =

together with Io(BA) = Jy(iBM).
An integral formula of the secondary type for Q*(R) = Q*(R;b) can be
obtained by substituting (2.20) into the last integral in (5.8), utilizing (2.23),

% Ref. 1, p. 384, Eq. (1); Ref. 2, p. 65, Eq. (2); Rel. 4, p. 58, Eq. (4.5).
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changing the variable of integration by the substitution § = ¢/2, and
rearranging; thus it is found that™

/1 — b [ exp(bL cos ¢)
* =
0*(R) mexpL Jo 1 —bcos¢ dg- (5.22)

This formula can also be obtained as a particular case of the more general
. formula (2.24) by setting § = 2 in the upper limit of integration, utilizing
(2.25), and changing the variable of integration by the substitution 8 =
¢/2.

Two partial checks orr any general formula for Q(R) = Q(R;b) or for
O*(R) = Q*(R;b) can be applied by setting b = 0 and b = 1, and comparing
the resulting particular formulas with those obtained by integrating the
formulas for P(R;0) and P’(R;1) obtained in Section 3, namely formulas
(3.20) and (3.21) there. It is thus found that

0*(R; 0) = exp(—R%) = f " P(R; 0) dR, (5.23)

R 2 R

0(R; 1) = 2{%] exp [- 5] dR} - f P'(R; 1) dR.  (5.24)
V2w 2 0

It will be recalled that the quantity between braces in (5.24) is extensively

tabulated, and that it is sometimes called the ‘normal probability integral.’

Several of the above general formulas for Q(R) = p(R'<R) and for
Q*(R) = p(R'>R) are closely connected with my 1933 paper.” Indeed,
formulas (5.11), (5.14), (5.16), (5.19) and (5.22) above are the same as
(53-A), (56-A), (52-A), (55-A) and (22-A), respectively, of the unpublished
Appendix A to the 1933 paper; and (5.12), (5.13), (5.15), (5.17), (5.18) and
(5.20) above were derived in the same connection, although they were not
included in the Appendix A.

Formula (5.22) was employed in the unpublished Appendix A of the 1933
paper, being (22-A) there, as a basis for deriving two very different kinds
of series type formulas for computing the values of p(R'>R) = Q*(R)
underlying the values of pyo(R'>R) constituting Table I (facing Fig. 8)
in that paper.®

2 This formula, (5.22), was derived by me in a somewhat different manner in the un-
published Appendix A to my 1933 paper. Later I found that an equivalent formula,
easily transformable into (5.22), had been given by Bravais as formula (51) in his classical
paper ““Analyse mathématique sur les probabilités des erreurs de situation d’un point,”

published in Mémoires de ’Académie Royale des Sciences de I'Institut de France, 2nd
series, vol. IX, 1846, pp. 255-332. (This is available in the Public Library of New York
City, for instance.)

27 There the abbreviated symbols p(R’ < R) and p(R’ > R) were used with the same
meanings as the complete symbols on the right sides of equations (5.1) and (5.2), respec-
tively, of the present paper.

28 Each of the two kinds of series type formulas comprised a finite portion of a con-
vergent series plus an exact remainder term consisting of a definite integral. 1In the
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In the present paper, formulas (5.11) and (5.16) have been used for numer-
ical evaluation of Q(R) = p(R'<R) and of Q*(R) = p(R’'> R) by numerical
integration (employing ‘Simpson’s one-third rule’), aided by some of the
considerations set forth in Appendix D. However, only a moderate number
of values of these quantities have been thus evaluated—merely enough to
afford a fairly comprehensive check on Table I of my 1933 paper, by means
of a sample consisting of 60 values (about 26%,) distributed in a somewhat
representative manner over that table. These new values of Q*(R) =
P(R'>R) = 1 — Q(R) are presented in Table 5.1 (at the end of this section)
in such a way as to facilitate comparison with the old values, namely those
in the 1933 paper. Thus, for any fixed value of R in Table 5.1, there are
two horizontal rows of computed values of Q*(R), the first row (top row)
- coming from the 1933 paper, and the second row coming from the present
paper. The third row of each set of four rows gives the deviations of the
second row from the first row; and the fourth row expresses these deviations
as percentages of the values in the first row.

In the first row of any set of four rows, any value represents Q*(R) =
#o(R'>R) obtained, in accordance with Eq. (22) of my 1933 paper, by
adding exp (—R?) to pso(R'>R) given in Table I there. In the second
row of a set, any value represents 0% R) = 1 — Q(R) as computed by for-
mula (5.11) or (5.16) of the present paper: more specifically, the values for
R = 0.2, 04, 0.6 and 0.8 were computed by (5.11); and the values for
R = 1.6and R = 2 by (5.16), takingr = 1/1.6 = 0.625and r = 1/2 = 0.5
respectively.” '

In the 1933 paper, the values of p,(R'>R) = Q*(R;b) for b = 0 and for
b = 1 were omitted as being unnecessary there because their values could
be easily obtained from the simple exact formulas to which the general
formulas there reduced, for b = 0 and & = 1. Those reduced formulas
were the same as (5.23) and (5.24) of the present paper, except that (5.24)
gives Q(R;1) instead of giving Q*(R;1) = 1 — Q(R;1). The values obtained
from these two formulas, exact to the number of significant figures here
retained, are given in Table 5.1 at the intersections of the first row of each
set of four rows with the columns & = Oand & = 1. Therefore in these two
columns the deviations (in the third row of each set of four rows) are devia-
tions from exact values; the values in the second row of each set are, as

use of such a formula for numerical computations, the expansion producing the con-
vergent series was carried far enough to insure that the remainder definite integral would
be relatively small, though usually not negligible; and then this remainder definite integral
was evaluated sufficiently accurately by numerical integration.

¥ In the work of numerical integration, ‘Simpson’s one-third rule’ was employed for
R =02,04,06,08 and 2. For R = 1.6, so that » = 1/1.6 = 0.625, ‘Simpson’s one-
third rulfg was employed up to r = 0.620, and the ‘trapezoidal rule’ from r = 0.620 to
r = 0.625,
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already stated, those obtained by the methods of the present paper, employ-
ing numerical integration.

From detailed inspection of Table 5.1 it will presumably be considered
that the agreement between the two sets of values of Q*(R;b) = po(R'>R)
is to be regarded as satisfactory, at least from the practical viewpoint, the
largest deviation being less than one per cent (for R = 0.8, b = 0.9).

TasLE 5.1
VarvEes oF Q*(R) = p(R' > R)
b....... 0 0.3 0.4 0.5 | 0.6 | 0.7 0.8 0.9 0.95 1.00

0.2 0608 | .9590 | .9574 |.9550 |.9516|.9463| .9372(.9168| .8930( .84148
“ .9623 .9605 .9500 |.9567 |.9528/.9473| .9387|.9206| .8925 .84124
“ .0015 .0015 | .0016 |.0017 |.0012/.0010| .0015|.0038/—.0005|— .00024
“ .16 .16 A7 .18 .13 |11 .16 |.41 |—=.06 |—.03

0.4 8521 | .8462 | .8410 |.8335 |.8228|.8071| .7830(.7420| .7127| .68916
« 8537 | .8477 | .8427 |.8351 |.8240|.8081| .7841|.7459| 7125 .68897
“ .0016 | .0015 | .0017 |.0016 |.0012|.0010 .CO011|.0039|—.0002|—.00019
“ .19 .18 .20 |19 |15 12 .14 .53 |—.03 |—.03

0.6 6077 | .6880 | .6799 |.6686 |.6531|.6324| .6055|.5721] 5578 54851
“ 6992 | .6892 | .6814 |.6698 |.6540(.6334| .6065|.5764| 5572 54831
“ .0015 |- .0012 | .0015 |.0012 |.0009|.0010| .0010|.0043|— .0006|—.00020
« .22 17 .22 |18 [.14 |.16 A7 75 =11 |—.04

0.8 .5273 .5167 .5081 |.4969 |.4826|.4656| .4477|.4316| .4261) .42371
o 5200 | .5183 | .5099 |.4982 |.4840(.4672| .4488|.4357| .4266| .42355
“ .0017 .0016 | .0018 |.0013 |.0014{.0016 .0011|.0041] .0005|—.00016
i .32 .31 .35 .20 .29, |.34 .25 .95 .12 |—.04

1.6 07730, .07986| .08207(.08522(.0891(.0938| .0990.1042| .1070| .10960
‘e .07727| .07988| .08210|.08536(.0892|.0938) .0989(.1042| .1069| .10958
« |_.00003] .00002| .00003|.00014[.0001|.0000|— .0001|.0000|—.0001|—.00002
“ =04 .03 04 |16 .11 |.00 |—.10 |.00 [—.09 |—.02

2.0 .01832| .02153| .02394|.02681|.0301|.0337| .0375/.0414| .0435] .04550
« 01823 .02145| .02383|.02685|.0302(.0338| .0376/.0415( .0436| .04552
“« |~ .00009|— .00008|— .00011|.00004[.0001|.0001| .0001{.0001| .0001] .00002
“ |—.49 |[—.37 |—.46 |.15 .33 .30 27T .24 .23 .04

6. Tur DistriBuTioN FuncrioN For THE ANGLE

The distribution function P(8 | Ris) = P(6) for the angle 8 of any complex
variate W = R(cos 8 + isin 8) is defined by equation (1.10) on setting .
p=060=R,0.=R =0ando, = R, = ; thus

P(0)do = p(8< 8’ <044, 0<R' <), (6.1)

An integral formula for P(f) is immediately obtainable from (1.6) by

settingp = 6,0 = R, 00 = 01 = Ry = 0and g4 = 0a = Ry = o thus

P(6) = fn " PR, 6) dR. 6.2)
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The rest of this section deals with the case where W = R(cos 6 + i sin 6)
is ‘normal.” Since this case depends on b as a parameter, P(6) is here an
abbreviation for P(8;b).

A formula for P(6;6) = P(6) can be obtained by substituting P(R,0)
from (2.15) into (6.2) and executing the indicated integration, which can
be easily accomplished. The resulting formula is found to be

P@;b) = —Y 19 (6.3)

2m(1 — bcos26)

This formula can also be obtained as a particular case of either of the
more general formulas (2.19) and (2.20) by setting R = « in (2.19) or
R = 01in (2.20); also by adding (2.19) to (2.20) and then utilizing (1.10).

In P(6) = P(#;b) it will evidently suffice to deal with values of # in the
first quadrant, because of symmetry of the scatter diagram.

In P(6;b) it will suffice to deal with only positive values of &, as (6.3)
shows that changing b to —b has the same effect as changing 20 tor2=26,
or @ to w/2=0; that is, P(0;—b) = P(w/26;b).

Fig. 6.1 gives curves of P(0;b), computed from (6.3), as function of 8
with & as parameter, for the rangesa0 0=<60<90° and 0=b=1.

The curves in Fig. 6.1 indicate that P(#;b) is a maximum at § = 0° and
a minimum at # = 90°. These indications are verified by formula (6.3),
as this formula shows that:

Max P) = PO = 5- 4/ 124 (64)
Min P(6;3) = P(90°b) = % 1/:_;2. (6.5)

Min P(6;5)/Max P(8;5) = (1—b)/(1+D), (6.6)

Thence

P(6;b)/Max P(8;b) = P(6;0)/P(0°%h) = (1—=b)/(1—bcos26). (6.7)

The curves in Fig. 6.1 indicate also that P(@;b) is independent of 6 in
the case b = 0. This is verified by formula (6.3), as this formula shows that

P(6;0) = 1/2m. (6.8)
Thence (6.3) can be written

P(0;6)/P(8;0) = (/1 — 82)/(1—b cos 26). (6.9)

30 Beginning here, # will usually be expressed in degrees instead of radians, for prac-
tical convenience.
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By setting cos 260 = 0 in (6.3), so that § = 45° it is found that

(V1 = 08) /2% = P(45°b),
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Fig. 6.1—Distribution function for the angle.

whence (6.3) can be written

P(0;6)/P(45°;b) = 1/(1—b cos 26).

0.10

0.05

(6.11)
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In the case b = 1, the curves in Fig. 6.1 suggest, by limiting considera-
tions, that P(8;1) is zero for all 8 except 8 = 0° and that P(§;1) is infinite
for @ = 0°. These conclusions are verified by formula (6.3), as this formula
shows that:

P(8;1) = 0 for 0°<8<180% P(6;1) = « for 6 = 0°, 180°.

The curves in Fig. 6.1, though having the advantage of directly rep-
resenting P(0;b) as function of f with b as parameter, are somewhat trouble-
some to use because of their numerous crossings of each other. This
difficulty is not present in Fig. 6.2, which gives curves of P(6;b)/Max
P(6;b), obtained by dividing the ordinates P(6;b) of the curves in Fig. 6.1
by the respective maximum ordinates of those curves, as given by (6.4),
so that the equation of the curves in Fig. 6.2 is formula (6.7).

7. Tue CuMULATIVE DISTRIBUTION FUNCTION FOR THE ANGLE

The cumulative distribution function Q(<8,R:2) = Q(6) for the angle 8
of any complex variate W = R(cos 8+ isinf) is defined by equation
(1.11) on settingp = 6,0 = R,p1= 61 = 0,01 = Ri=0and oy = Ry = ;
thus

0(8) = p(0<8 <6,0<R'< ). (7.1)

A ‘double integral’ for Q(6), in the form of two ‘repeated integrals,’” can
be written down directly by inspection of the p( ) expression in (7.1)
or by specialization of (1.8); thus

00 = fo ’[ fo " PR, ) dR] o = fu i [ fo PR, 0) do] dR. (1.2)

Evidently these can be written formally as two ‘single integrals,’
E‘ [} L]
OB fu P@) do = j; P(R| < 0) dR, (1.3)

by means of the distribution functions P(6) = P(8| Ri2) and P(R| <6)
given by the formulas

P@) = j:nP(R, 6)dR, (14) P(R|<0) = [P(R, 6) ds.  (1.5)

(7.4) is the same as (6.2). (7.5) is a special case of (1.6), and the left side
of (7.5) is a special case of P(p | <o) defined by (1.13).

The rest of this section deals with the case where W = R(cos 8 + isin )
is ‘normal.’ Since this case depends on b as a parameter, Q(6) is here an

abbreviation for Q(0;b).
A natural and convenient way for deriving formulas for Q(6) is afforded
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by the general formula (7.3) together with the auxiliary general formulas
(7.4) and (7.5), beginning with the two latter.

It will be convenient to dispose of (7.5) before dealing with (7.4), as (7.5)
turns out to be the less useful. For when P(R,0) given by (2.16) is sub-
stituted into (7.5), the indicated integration cannot be executed in general,
as (7.5) becomes (2.18), wherin the indicated integration can be executed
only for certain special values of the integration limit 6—by means of the
special Bessel function formula (3.3).

When P(R,8) given by (2.15), which is equivalent to (2.16) used above,
is substituted into (7.4), it is found that the indicated integration can be
executed, giving the previously obtained formula (6.3) for P(8) = P(6;b).

A f-integral formula for Q(8) = Q(6;6) can be obtained by substituting
P(6) = P(0;0) from (6.3) into the first integral in (7.3), giving

: 1 il _Vi-E f dg (7.6)

ul—bcosZB 4T 1 —bcoso’

Q(8; 8) =

This formula can also be obtained as a particular case of the more general
formulas (2.22) and (2.24) by setting R = c in (2.22) or R = 0 in (2.24);
also by adding (2.22) to (2.24) and then utilizing (1.11).

The integral in (7.6) is of well-known form, and the indicated integration
can be executed, yielding the following two equivalent formulas for Q(6;0):

1 1 148 ‘
- tan [4/1 — btanﬂ:l

Q(8; b) = -

(7.1

cos_l[ cos 20 — b :H
4 1 — bcos 26

In Q(8;b) it will evidently suffice to deal with values of 6 in the first quad-
rant, because of symmetry of the scatter diagram, and the resulting fact
that Q(n 90°) = n/4, where n = 1, 2, 3 or 4.

In Q(0;0) it will suffice to deal with positive values of b, as (7.7) shows
that®

0w - = |1 -0 (F+0:0)|.

Fig. 7.1 gives curves of Q(6;6) = (Q(6) computed from (7.7), as function
of 8 with & as parameter, for the ranges 0=6=90° and 0=b=1.

Consideration of the scatter diagram of W or of its equiprobability curves,
which are concentric similar ellipses, affords several partial checks on the
curves in Fig. 7.1 and on formula (7.7) from which they were plotted.

3 This relation can also be derived geometrically from the fact that the scatter dia-

gram for —b is obtainable by merely rotating that for b through 90°, as shown by (2.6),
or (2.7) and (2.8), or (2.11).
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Fig. 7.1—Cumulative distribution function for the angle.

Thus, the fact that the curve for b = 0 is a straight line, whose equation is
Q(8;0) = 6/2r = 6°/360°, (b = 0),

corresponds to the fact that for # = 0 the equiprobability curves are circles.



PROBABILITY FUNCTIONS FOR COMPLEX VARIATE 353

The fact that the curve for b = 1 is the straight line Q(8;1) = 1/4 = 0.25
corresponds to the fact that for & = 1 the scatter diagram has degenerated
to be merely a straight line coinciding with the real axis, so that no point
outside of this line makes any contribution to Q(6;1).

The fact that, at 8 = 90°, Q(8;) = ((90°;b) has for all b the value 1/4 =
0.25 corresponds to the fact that the area of a quadrant of the scatter
diagram is one-fourth the area of the entire scatter diagram. Hence
Q(360°;0) = 4Q(90°;6) = 1, which is evidently correct.
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APPENDIX A

DERIVATION OF FormuLA (2.15) For P(R,6)

(2.15) will here be derived from (2.11) by utilizing the fact that the ‘areal
probability density’, G, at any fixed point in the scatter diagram must be
independent of the system of coordinates; for G d4 gives the probability
of falling in any differential element of area d4, and this probability must
evidently be independent of the shape of d4 (assuming that all linear dimen-
sions of d4 are differential, of course). Thus, indicating the element of
area by an underline, we have, in rectangular coordinates,

GdUdV = P(U,V)dUdYV, (A1) whence G = P(U,V). (A2)
Imr coordinates,
GRd0dR = P(R,0)dRd6, (A3) whence G = P(R,6)/R. (A4)
Co;p;ring these two expressions for G shows that®™

P(R,0) = RP(U,V). (AS)

Thus, a formula for P(R,68) can be obtained from (2.11) by merelv multiply-
ing both sides of that formula by R. However, in the resulting formula it
will remain to express U/ and 1 in terms of R and 8, by means of the relations

U = Rcos @, (A6) V' = Rsin 6. (A7)
The final result, after a simple reduction, is (2.15), which is thus proved.
APPENDIX B

Formuras or THE CURVES IN FIG. 3.3
As in equation (3.22), R, will here denote the critical value of R, that is,
the value of R at which P(R) = P(R;b) has its maximum value; and T

# Formula (A5) can be easily verified by the entirely different method which utilizes

(1.23)
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will denote the corresponding value of T', whence T'¢ is given in terms of
R and b by (3.22).

A formula for dP(R)/dR could of course be obtained directly from (3.4)
but it will be found preferable to obtain it indirectly from the less cumber-
some formula (3.8) containing the auxiliary variable T' defined by (3.6).
Evidently, since b does not depend on R,

dP(R) _ dP(R) dT" _ 2bR dP(R) (B1)

dR dT dR 1 — b dT

Thus, since the factor 26R/ (1—5%) cannot vanish for any value of R (except
R = 0), the only critical value of R must be that corresponding to the value
of T at which dP(R)/dT vanishes, namely T'¢, since T has been defined
to be the value of T corresponding to R¢. (Incidentally, equation (B1)
shows that T¢ is equal to the value of 7" at which P(R) is an extremum
when P(R) is regarded as a function of T.) From (3.22),

Re _ Te

1—6 b

Evidently T¢ and R must ultimately be functions of only b. The next
paragraph deals with T¢, which evidently has to be known before Re can

be evaluated.
From (3.8) it is found that, since dIy(7)/dT = I(T),

PE _ gl 14 1D 1]
ar =~ B T T 6l (B3)
Hence, since P(R) does not vanish for any value of R (except R = 0 and
R = =), T¢ will be a root of the conditional equation obtained by equating
to zero the expression in brackets in (B3). This conditional equation is
transcendental in T and apparently has no closed form of explicit solution
for T¢; and its solution by successive approximation, or otherwise, would
likely be rather slow and laborious. However, the brackel expression in
(B3) shows that b can be immediately expressed explicitly in terms of T¢
by the equation

(B2)

_ 2T¢
b= 1+ 2TGI1(TC)/IO(TC) ' (B4)

For some purposes, the following two equations, each equivalent to (B4),
will be found more convenient:

Te 1 I(Tc)
5 -2t T”I.,(Tc)’ (BS)
Te 1/2 (B6)

b 1= iW(Te)/In(Te)
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On account of (B2), the right sides of (B5) and (B6) are equal not only to
Te/b but also to Ry/(1—b%).

Since the utilization of formulas (B4), (B5) and (B6) for computing the
curves in Fig. 3.3 will involve taking T¢ as the independent variable and
assigning to it a set of chosen numerical values, the natural first step is to
find approximately the range of T corresponding to the b-range, 0=b=<1,
in order to be able to choose only useful values of T¢. This step will be
taken in the next paragrapb.

Equation (B6) shows that T'¢/b = 1/2 when b = 0, and hence that T¢ = 0
when & = 0; and this last is verified by (B4). The other end-value of the
T¢-range, namely the value of T'¢ for & = 1, cannot be found explicitly
and exactly. However, rough values of limits between which it must lie
can be found fairly easily as follows: To begin with, each of the equations
(BS5) and (B6) shows that T¢= b/2, for all values of b in 0=6=1;in par-
ticular, T¢ > 1/2 when & = 1. An upper limit for 7¢ for any value of
b can be found from (B5) by utilizing the power series expressions for
I,(T¢) and Io(T¢c), whereby it is found that

L(Te)  Tc - . TG
(T H-2—, (B7) where H=1 3 < 1. (B8)

On substituting (B7) into (B5) and then solving for T¢ in terms of & and
H, it is found that

Te = b/(1+ /1 — Hb). (B9)
On account of (B8), (B9) shows that
Te < b/(1+ /1= 8), (B10)

whence, in particular, T¢<1 when & = 1. By successive approximation
or otherwise, it can now be rather quickly found that, when & = 1, T¢ =
0.79 (to two significant figures).®

From the preceding paragraph, it is seen that, when & ranges from 0 to 1,
T ranges from 0 to about 0.79; T'¢/b ranges from 0.5 to about 0.79; and,
on account of (B2), R¢ ranges from /0.5 = 0.707 down to 0.
 The curves in Fig. 3.3 are constructed with the aid of the formulas and
methods of this appendix as follows: First, a set of values of T is chosen,
ranging from 0 to 0.79 and slightly larger. Second, for each such chosen
T the right side of (B3) is computed, thereby evaluating T¢/b and also
R%/(1—0%), these two quantities being equal by (B2). Third, the cor-
responding value of 4 is found by dividing T'¢ by T'¢/b; less easily, it could

%3 Because of the special importance of & = 1 in other connections, T'¢ for b = 1 was
later evaluated to four significant figures and found to be T'¢ = 0.7900; thence, by sub-

stituting this value of T into (3.8), along with b = 1, it was found that Max. P(R;1)
= 0.9376, which occurs at R = R = 0, by (B2).
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be found by substituting 7 into (B4). Fourth, from T'¢/b the value of
A/T/b is found, and thereby the value of Re/+/1 — 4% and thence Re.
Finally, Max. P(R;b) is computed by inserting the critical values into any
of the various (equivalent) formulas for P(R;b), namely (3.4), (3.7), (3.8),
(3.10) or (3.12).

APPENDIX C

Fomuras oF THE CURVES 1IN FiG. 4.3

The first six equations of this appendix are given without derivation
and almost without any comments because they correspond exactly and
simply to the first six equations, respectively, of Appendix B. Beginning
with the second paragraph of the present appendix, the close correspondence
ceases.

dP(r) _ dP(ndl _ _ —2b dP(r) (C1)
“dr  dT dr (1 =) dT
1 T,
ET i R ©
dP(r) 3 L) 1
A =0+ 1~ 5 )
2T,
s 3 + 2T I(T.)/1o(Te) (ch
T, 3 I(T.)
7 -2t Ty ©)
T. 3/2 (C6)

b1 — bN(T)/Io(Te)
The bracketed expression in (C3) is seen to be obtainable from that in (B3)
by merely changing I' to T/3 wherever T does not occur as the argument
of a function; hence the three equations following (C3) are obtainable from
the three equations following (B3) by correspondingly changing 7 to
T./3. (In this appendix, as in Section 4, small ¢ is purposely used as a
subscript to indicate a ‘critical’ value, whereas in Section 3 and in Appendix
B, capital C is used for that purpose.)

For use below, it will here be noted that

Il(Tc)/IU(Tc) = Nl(Tc)/ND(TG)I (C7)
as will be seen by dividing (3.16) by (3.13). Onaccount of (3.17) and (3.14),
(C7) shows that for large values of T the right side of (C7) is equal to 1
as a first approximation, and to 1 — 1/27, as a second approximation;
thus, for large T,
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I(Te)/T(Te) = 1 — 1/2T, = 1. (C8)

The first step toward computing the curves in Fig. 4.3 is to find approxi-
mately the T-range corresponding to the d-range, 0=6=1. This is done
in the course of the next four paragraphs.

When & = 0, equation (C6) shows that 7T./b = 3/2 and hence that
T: = 0; or, what is equivalent, /7. = 2/3 and hence 1/T, = o« (since
b=0).

When & = 1, T, = =, as can be easily verified from equation (C4),
(C5) or (C6) by utilizing (C8).

Thus, from the two preceding paragraphs, it is seen that, when & ranges
from 0 to 1, /T, ranges from 2/3 to 0; T,/b from 3/2 to o« ; and T, from
0 to oo,

Since T, = « when b = 1, the choosing of a set of finite values of T,
will necessitate an approximate formula for computing 7', for values of
b nearly equal to 1, which means for very large values of 7. Such a formula
is easily obtainable from (C5) by utilizing the approximation 1 — 1/27,
in (C8), whereby it is found that, for large T,

T, = b/(1—b), (C9) b/T, = 1—b. (C10)

As examples, these approximate formulas give: When & = 0.99, T, = 99,
b/T, = 0.01; when b = 09, T, = 9, b/T, = 0.1. It will be found that
even in the second example the results are pretty good approximations.

The curves in Fig. 4.3 are constructed with the aid of the formulas and
methods of this appendix as follows: First, a set of values of T is chosen,
ranging from 0 to about 100 (the latter figure corresponding approximately
to b = 0.99). Second, for each such chosen T, the right side of (C5) is
computed, thereby evaluating 7'./b and also 1/(1—8)r;, these two quan-
tities being equal by (C2). Third, the corresponding value of & is found
by dividing T, by T./b; less easily, it could be found by substituting T,
into (C4). Fourth, from 7./ the value of /7,/b is found, and thereby
the value of 1/7,4/1 — #? and thencer.. Finally, Max P(r;b) is computed
by inserting the critical values into any of the (equivalent) formulas for
P(r;b), namely (4.2), (4.3) or (4.4).

APPENDIX D

SoME SIMPLE GENERAL CONSIDERATIONS REGARDING THE EVALUATION OF
CuMULATIVE DISTRIBUTION FUNCTIONS BY NUMERICAL INTEGRATION

This appendix gives some simple general considerations and relations
that may sometimes facilitate and render more accurate the evaluation
of cumulative distribution functions by numerical integration.
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Some of these considerations and relations have found application in
Section 5 in the evaluation of the cumulative distribution function’ for the
modulus R = |W|. For this reason, the variate in the present section
will be denoted by R, though without thereby restricting R to denote the
modulus; rather, R will here denote any positive real variate, though it
should preferably be a ‘reduced’ variate, so as to be dimensionless, as in
equation (2.9). The restriction of R to positive values is imposed because
it is strongly conducive to simplicity and brevity of treatment, without
constituting an ultimate limitation. The reciprocal of R will be denoted
by r, as previously.®

We may wish to evaluate numerically the cumulative distribution func-
tion p(R'<R) = Q(R) or p(R">R) = Q*(R) or both. Since these are not
independent, their sum being equal to unity, the evaluation of either one
determines the other, theoretically. However, when the evaluated one is
nearly equal to unity, the remaining one may perhaps not be evaluable
with sufficient accuracy (percentagewise) by subtracting the evaluated one
from unity. Then it would presumably be advantageous to introduce
for auxiliary purposes the variable » = 1/R, since evidently

p(R'>R) = p(1/R'<1/R) = p(r'<r), (D1)
PR'<R) = p(r'>r) = 1 — p(r'<r). (D2)

Thus, if p(R’>R), in (D1), is small compared to unity, it is presumably
evaluable with higher accuracy percentagewise by dealing with (' <r)
than with 1 — p(R'<R). Incidentally, after p(»'<r) has been evaluated,
it might be used in (D2) to arrive at a still more accurate value of P(R'<R)
than had originally been obtained directly by numerical integration.

Assuming that we have a plot (or a table) of the distribution function
P(R), we can evidently evaluate

RO

P(R'<R") = A P(R)dR (D3)

directly by numerical integration, provided the plot is sufficiently extensive
to include R’; if not, we can, by (D2), resort to

p(R'<R") =1 — P <) =1 — j: P(r)dr, (D4)

assuming that a sufficiently extensive plot (or table) of P(r) is available
and applying numerical integration to it.
Even if the plot of P(R) used in (D3) is sufficiently extensive to include

8 The restriction of R, and hence of r, to positive values is seen to be absent from equa-
tions (D1), (D2), (D5) and (D6) but present in (D3), (D4), (D7) and (D8).
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R’, so that (D3) could be evaluated, it might be that (D4) would result
in greater accuracy; this would presumably be the case when p(R’'<R’)
is nearly equal to unity.

Evidently an evaluation of

p(R'>R") = f °:_P(R)dk (D5)

directly by numerical integration would be less satisfactory than the evalua-
tion of p(R'<R") in the preceding paragraph. For, due to the presence
of the infinite limit in the integral in (D5), the plot of P(R) would have to
be carried to a large enough value of R so that the integral from there to «
would be known to be negligible. This difficulty can be avoided by start-
ing with the relation

p(R'>R") =1 — p(R'<R" (D6)

and substituting therein the value of p(R'<R") given by (D3) or (D4),
resulting respectively in the following two formulas:

p(R'>R) =1 — fn ’ P(R)dR, (D7)

p(R'>R) = p(r' <r’) = fo PG, (D8)

the integrals in which are evidently suitable for evaluation by numerical
integration, none of the integration limits being infinite. If p(R'>R’)
is small compared to unity, (D8) would presumably be more accurate
(percentagewise) than (D7). If the plot of P(R) is not sufficiently exten-
sive to include R°, (D7) evidently could not be used; but, instead, (D8)
could be used if the plot of P(r) were sufficiently extensive to include #°.
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