Spectrum Analysis of Pulse Modulated Waves
By J. C. LOZIER

The problem here is to find the frequency spectrum produced by the simul-
taneous application of a number of frequencies to various forms of amplitude
limiters or switches. The method of solution presented here is to first resolve the
output wave into a series of rectangular waves or pulses and then to combine the
spectrum of the individual pulses by vectorial means to find the spectrum of the
output. The rectangular wave shape was chosen here as the basic unitin order to
make the method easy to apply to pulse modulators.

INTRODUCTION

The rapidly expanding use of pulse modulation? in its various forms is
bound to make the frequency spectrum of pulse modulated waves a subject
of increasing practical importance. The purpose of this paper is to show
how to determine the frequency spectrum of these waves by methods based
as far as possible on physical rather than mathematical considerations. The
physical approach is used in an attempt to maintain throughout the analysis
a picture of the way in which the various factors contribute to a given result.
To further this objective the fundamentals involved are reviewed from the
same point of view,

The method is used here to analyze two distinct types of pulse modulation,
namely, pulse position and pulse width modulation.?2 These two cases are
especially important for illustrative purposes because their spectra can be
tied back to more familiar methods of modulation. Thus it will be shown
that, as the ratio of the pulse rate to the signal frequency becomes large,
pulse position modulation becomes a phase modulation of the various carrier
frequencies that form the frequency spectrum of the unmodulated pulse
wave, and pulse width modulation becomes a form of amplitude modulation
of its equivalent carriers. The analysis also shows certain interesting input-
output relationships that may be obtained from such modulators, treatmg
them as straight transmission elements at the signal frequency.

These relationships are of more than theoretical interest. The pulse
position modulator has already been used as phase or frequency modulator
to good advantage.? The use of a pulse width modulator as an amplifier is

1 . M. Deloraine and E. Labin, “Pulse Time Modulation”, Electrical Communications,
Vol. 22, No. 2, pp. 91-98, Dec. 1944; H. S. Black “AN-TRC-6 A Microwave Relay Sys-
tem”, Bell Labs. Record, V. 33, pp. 445-463, Dec. 1945.

2By pulse position modulation is meant that form of pulse modulation in which the
length of each pulse is kept fixed but its position in time is shifted by the modulation, and
by pulse width modulation that form in which the length of each pulse varies with the
modulation but the center of each pulse is not shifted in position.

3L. R. Wrathall, “Frequency Modulation by Non-linear Coils”, Bell Labs. Record,
Vol. 23, pp. 445-463, Dec. 1945.
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another practical application, of which the self oscillating or hunting servo-
mechanism is an example,

The quantitative analysis of such systems depends on the ratio of the
pulse repetition rate to the signal frequency. When this ratio is low, the
solution can be obtained by a method shown here for resolving the modulated
waves into selected groups of effectively unmodulated components. This
technique is powerful since it can be done by graphical means whenever the
complexity of either the system or the signal warrants it. When the ratio of
pulse rate to signal frequency becomes high enough, such methods are no
longer practical. However, under these conditions other methods become
available, especially in cases like those mentioned above where the spectrum
of the modulation approaches one of the more familiar forms. An important
example of this occurs in the case of the pulse position modulator where, as
the spectrum approaches that of phase modulated waves, the solution can
often be found by the conventional Bessel’s function technique used in
analyzing phase and frequency modulators.

The method proposed here for obtaining the spectrum analysis of pulse
modulated waves is based on the use of the magnitude-time characteristic
of the single pulse and its frequency spectrum as a pair of interchangeable
building blocks, so that the analysis will develop this relationship. Before
doing this the elementary theory of spectrum analysis will be reviewed

REvViEw oF THE ELEMENTARY THEORY OF SPECTRUM ANALYSIS

A complex wave may be represented in two ways. One way is by ils
magnitude at each instant of time. The other way is by its frequency
spectrum, that is, by the various sinusoidal components that go to make up
the wave. The two representations are interchangeable.

The transformation from a given frequency spectrum to the corresponding
magnitude vs. time function is straight-forward, for it is apparent that the
various components in the frequency spectrum must add up to the desired
magnitude-time function. The necessary additions may be difficult to
make in some cases but they are not hard to understand.

The reverse process of finding the frequency spectrum when the magni-
tude-time characteristic is given is more involved, though using Fourier anal-
ysis, the problem can generally be formulated readily enough. Furthermore
the mathematical procedures involved can be interpreted physically in
broad terms by modulation theory. However, these procedures become
more difficult to perform, and the physical relationships more obscure, as the
wave form under analysis becomes more complex. This is particularly
true when general or informative solutions rather than specific answers are
required. Pulse modulated waves are sufficiently new and complex to give
such difficulties.
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The process of finding the frequency spectrum of a complex wave from its
magnitude-time function has a simple mathematical basis. It depends on
the fact that the square of a sinusoidal wave has a positive average value
over any interval of time, whereas the product of two sinusoidal waves of
different frequencies will average zero over a properly chosen interval of
time.*

In theory then, as the magnitude-time function of a complex wave is the
sum of all the components of the frequency spectrum, we have only to mul-
tiply this magnitude-time function by a sinusoidal wave of the desired
frequency and then average the product over the proper time interval to
find the component of the spectrum at this frequency

One physical interpretation of this procedure can be given in terms of
modulation theory. The product of the magnitude-time function with a
sinusoidal wave will produce the beat or sum and difference frequencies be-
tween the frequency of the sinusoid and each component of the frequency
spectrum. Thus, if the spectrum contains the same frequency, a zero beat
or dc term is produced, and this term may be evaluated by averaging the
product over an interval that is of the proper length to make all the ac
components vanish.

The application of this principle for spectrum analysis is simple when the
magnitude of the wave in question is a periodic function of time. The very
fact that the wave is periodic is sufficient proof that the only frequencies
that can be present in the wave are those corresponding to the basic repeti-
tion rate and its harmonics. Thus the frequency spectrum is confined to
these specific frequencies and so it takes the form of a Fourier series. Know-
ing that the possible frequencies are restricted in this way, the problem of
finding the frequency spectrum of a complex periodic wave is reduced to one
of performing the above averaging process at each possible frequency. The
périod of the envelope of the Complex Wave is the proper time interval for ‘
averaging, and the integral formulation for obtaining this average is that
for determining the coefficients in a Fourier series.

The principle holds equally well when the magnitude-time function is non-
periodic, but the concept is complicated by the fact that the frequency
spectrum in such cases is transformed from one having a discrete number of
components of harmonically related frequencies to one having a continuous-
band of frequencies.® Such spectra contain infinite numbers of sinusoidal

4 The proper time interval is generally some integral multiple of the period correspond-
ing to the difference in frequency of the two sinusoid waves.

5 In practice it is generally necessary to multiply by both sine and cosine functions
because of possible phase differences.

& One exception to this statement is the fact that any wave made up of two or more
incommensurate frequencies is nonperiodic. Yet such waves will have a discrete spectrum
if the number of components is finite. This incommensurate case is neglected throughout
the discussion.
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components, each of infinitesimal amplitude and so close together in fre-
quency as to cover the entire frequency range uniformly.

The continuous band type of frequency spectrum is just as characteristic
of non-periodic waves as the discrete spectrum is of periodic waves. This
can be shown as a logical extension of the Fourier series representation of
periodic waves. The transition from a frequency spectrum consisting of a
series of discrete frequencies to one consisting of a continuous band of fre-
quencies can be made by treating the non-periodic function as a periodic
function in which the period is allowed to become very large. As the period
approaches infinity the fundamental recurrence rate approaches zero, so
that the harmonics merge into a continuous band of frequencies.

This does not of course change the basic realtionship between the fre-
quency spectrum of a wave and its magnitude-time function. The mag-
nitude-time function is still the sum of the components of the frequency
spectrum.  Also the frequency spectrum can still be obtained frequency by
frequency, by averaging the product of the magnitude-time function and a
unit sinusoid at each frequency. However, the actual transformations
in the case of the non-periodic functions require summations over infinite
bands of frequencies and over infinite periods of time and so fall into the
realm of the Fourier and similar integral transforms.

However, in any case the problem of spectrum analysis reduces to an
averaging process. The process can be performed by mathematical inte-
gration in all cases where a satisfactory analytical expression for the mag-
nitude-time function is available. Fourier analysis provides a very powerful
technique for setting up the necessary integrals in such cases.

This averaging process can also be done graphically. It is apparent from
the theory that if the product of the magnitude-time function and the
sinusoid is sampled at a sufficient number of points, spaced uniformly over
the proper time interval, then the average of the samples gives the desired
value. This technique is fully treated elsewhere? so that it will not be con-
sidered in detail here. However, use will be made of it in a qualitative way
to augment the physical picture.

NonN-LINEAR ASPECTS

The use of the frequency spectrum in transmission studies is generally
limited to cases where the system in question is linear; that is, where the
transmission is independent of the amplitude of the signal. However, the
same techniques can still be used on systems employing successive linear
and non-linear components, in cases where the transmission through the
non-linear elements is independent of frequency. Under these conditions,
the magnitude-time representation of the wave can be used in computing

7 Whittaker and Robinson, Calculus of Observations.
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the transmission over each non-linear section, where the transmission is
dependent only on the amplitude, and the freﬁuency spectrum used over
each linear section, where the transmission is dependent only on the fre-
quency. This a technique can be used on most pulse modulating systems
because such non-linear elements as the modulators and limiters generally
encountered are substantially independent of frequency.

FREQUENCY SPECTRUM OF THE SINGLE PULSE

The single pulse is a non-periodic function of time and so has a continuous
frequency spectrum. In this case the Fourier transforms aresimple. They
are derived in Appendix A. Figure 1 gives a graphical representation of
the magnitude-time function and the frequency spectrum of the pulse.
The expressions are general and hold for pulses of any length or amplitude.

It is instructive to note that the frequency spectrum in this case can be
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Fig. 1—Magnitude time and frequency spectrum representations of a single pulse.

determined by using the graphical technique mentioned previously. For
example, consider the product of the magnitude-time function of the single
pulse with a sinusoidal wave of given frequency and unit amplitude, so
arranged in phase that its peak coincides with the center of the pulse.
Theoretically the average of this product taken over the infinite period will
give the relative magnitude of the component in the frequency spectrum
of the pulse having the same frequency as the sinusoidal wave. In this
case however, the average need only be taken over the length of the pulse,
since the product vanishes everywhere else. Thus at very low frequencies,
where the period of the sinusoidal wave is very much greater than the length
of the pulse, the average is proportional to 2EL where E is the amplitude
and 2L thelength of the pulse. Then as the frequency increases, the average
of the product, and hence the relative amplitude of the component in the
spectrum, will first decrease. For the particular frequency such that the
length of the pulse is one half the period, the relative amplitude will have
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2/2 .
fallen to 2EL X - (‘ being the average value of a half wave of unit ampli
T

tude). Similarly when the frequency is such that the length of the pulse

is a full wavelength, the average will vanish, and when the pulse length is
one and a half times the wavelength, the average is negative, having two
negative and one positive half waves over the length of the pulse, and the

2 ;
relative magnitude is 2EL X 3 These products are shown graphically
™

on Fig. 2. Since these amplitudes correspond to those given in Fig. 1,
for the spectrum components at [ = f, = 1/4L, 2y, and 3fo, it is apparent
that the spectrum could be determined in this way.

WHERE f = 0 - WHERE f = 1/
O AVERAGE = 2EL u,’:,
g' g_s AVERAGE = 47 EL
2 T “k
E |
] E [
a >0
= 40
: | — g
-L 0 +L TIME, t @ -L -0  +L TIME,t —
WHERE f = 15
X
EL
+ AVERAGE =0 2 _ RESULTANT SPECTRUM
u I B
SN ui’ h
N L
E <
R ~-L +L 5 N
E‘” TIME, t — a S
o = -
~
v} < 4 = -
hd _ 4 c 2c \..______l___,_/asc
22 ac

FREQUENCY, f, IN TERMS OF C (WHERE C = 14, )

Fig. 2—Graphical derivation of spectrum of singlé pulse by averaging product of pulse
with sinusoidal waves of various frequencies.

Basic TECHNIQUE

In the analysis presented here, the single pulse and its spectrum will be
used in such a way that the need for individual integral transforms for each
complex wave form under study is avoided. The theory is simple.

A complex wave form may be approximated to any desired accuracy by a
series of pulses, varying with respect to time in length, in amplitude, and
in position. Now the spectra of these individual pulses are already known.
Therefore, to find the frequency spectrum of the complex wave in question,
it is necessary only to combine properly the spectra of the various pulses
representing the complex wave.

Thus the process is theoretically complete. The procedure is first to
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break down the given complex wave into a series of single pulses. Next
the spectrum of each pulse is determined separately. Then the spectrum
of the complex wave is obtained by combining the spectra of the various
single pulses involved. Oneof the things to be demonstrated here is that it
is perfectly feasible in many cases to perform these summations graphically,
even though basically it does involve the handling of spectra each containing
an infinite number of frequency components.

There are other wave forms that could be used as the fundamental build-
ing block instead of the single pulse. The unit step function is one possi-
bility, since it is used in transient analysis for a similar purpose. However,
the single pulse has obvious advantages when the complex wave to be ana-
lyzed is itself a series of pulses, as in pulse modulation. Again it would be
nice to be able to choose as the fundamental unit a wave that has a discrete
rather than a continuous band frequency spectrum, but it seems that any
wave flexible enough to make a satisfactory building unit is inherently non-
periodic and so has a continuous frequency spectrum. However the fact
that the fundamental units have continuous spectra does not of itself compli-
cate the results. If for example, the wave to be analyzed is periodic, the
sum of the spectra of the various pulses must reduce to a discrete frequency
spectrum. In the cases of interest here, when the pulse train under analysis
is repetitive, combinations of identical pulses will be found to occur with the
same fundamental period, and generally the first step in the summation of
such spectra is to group the series of pulses into periodic waves with discrete
spectra.

MANIPULATIONS OF SINGLE PULSES

In its use, the single pulse may be varied in amplitude, in length, and in
position with respect to time. These changes have independent effects on
the frequency spectrum. A variation in the amplitude of a pulse does not
change its spectrum, except to increase proportionately the magnitudes of
all components. A change in position of a pulse with time does not change
the amplitude vs. frequency characteristic of the spectrum, but it does
shift the phase of each component by an amount proportional to the product
of the frequency and the time interval through which the pulse was shifted.
A change in the length of a pulse will change the shape of the amplitude vs.
frequency characteristic of the spectrum. = Figure 3 shows this effect. How-
ever, if the center point of the pulse is not shifted in time, the relative phases
of the components are not affected by such changes in length.

The single pulse can also be modulated to aid in the resolution of more
complicated wave forms. This process is based on the use of the pulse asa
function having a value of unity over a chosen time interval and a value of
zero at all other times. Thus, to show a part of a sinusoidal wave, we need
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only multiply this wave by a pulse of the correct length and proper phase
with respect to the sinusoid to show only the desired piece of the wave. In
this simple case it is not difficult to derive the spectrum because what are
produced are the sum and the difference products of the modulating fre-
quency with the spectrum of the pulse. This gives two single pulse spectra
shifted up and down in frequency by the frequency of the modulation. An
example of this is shown in Fig. 4, where the spectrum of a single half cycle
is determined.

PuLse PosITioN MODULATION

For the first example, a simple form of pulse position modulation will be
analyzed. The pulse train in this case is made up of pulses spaced T seconds
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Fig. 3—Change in frequency spectrum with pulse length.

apart and the width of each pulse is a very small part of the spacing 7.
Such a pulse train is shown on Fig. 5. The pulse train is modulated by ad-
vancing or retarding the position (time of occurance) of the pulses by an
amount proportional to the instantaneous amplitude of the signal at sampled
instants T seconds apart. Figure 5 also shows the signal, in this case a sine
wave of frequency 1/107, and the resulting modulated pulse train. The
peak amplitude of the modulating sine wave is assumed to shift the position
ofapulseby 1/47. Thelength and the amplitude of the pulses are the same
since neither is affected in this type of modulation.

The first step in the analysis is to determine the spectrum of the pulse
train before modulation. Kach pulse contributes a spectrum of the form
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shown on Fig 1. Now the phase of each component in such a spectrum
is so arranged that the spectrum forms a series of cosine terms all of which
have zero phase angle at the center of the pulse. From successive pulses 7'
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seconds apart, the component at any given frequency will have the same
amplitudes, but the relative phases will be 2rfT radians apart. It isappar-
ent that frequencies for which 27 is 27 or some multiple of 27 radians
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apart, the contributions from all pulses add in phase. These are the fre-
1 .
quencies n¢, where n = 1,23 and ¢ = T It is also apparent that at fre-

quencies for which the phase differences between the components are not an
exact multiple of 2r radians apart, the contributions from enough pulses
must be spread in phase over an effective range of 0 to 2 radians in such a
way as to cancel one another. For example, take the particular frequency
for which the difference in phase between pulses is 361° instead of 360°.
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Fig. 5—Formation of pulse position modulated pulse train and its resolution into subsidiary
unmodulated pulse trains.

The contribution from each preceding pulse will be effectively advanced in
phase 1° with respect to its successor, so that the contributions from pulses
180 periods apart will be exactly 180° out of phase. Therefore over a
sufficient number of pulses, the net contribution is zero.

The spectrum of the unmodulated pulse train is thus made up of a dc
term plus harmonics of the frequency C = 1/T. The dc termis the average,
and therefore is equal to E X 2L/T, where E is the magnitude of the pulse.
Allof theother components have the same relative magnitudes that they have
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in the single pulse spectrum. This gives a spectrum like that shown on
Fig. 6. Figure 6 also shows for comparative purposes the spectrum of the
subsidiary pulse wave consisting of every 6th pulse.

Thus in the unmodulated case, the pulses have a uniform recurrence rate
and the resultant spectrum, found by adding those of the individual pulses,
reduces to a train of discrete frequencies comprised only of the harmonics of
the recurrence rate of the pulses. The fundamental frequency, correspond-
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ing to the recurrence rate, and its harmonics will be called the carrier fre-
quencies of the pulse train. The effect of modulating the pulse train is to
modulate each of these carriers, producing sidebands of the signal about
them.

When the pulse train is position modulated, the pulses are shifted in posi-
tion by an amount A7, corresponding to the instantaneous amplitudes of
the modulating function. The spectrum of each pulse is unchanged, since
the pulse length remains constant. However, components of successive
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pulsesat the carrier frequency ¢ and its harmonics will no longer add directly,
because of the phase shifts that accompany the change in position. This
phase shift is equal to AT, the shift in position, times the radian frequency
of the component in question.

However, when the signal function is periodic, each pulse will have the
same shift in position as any other pulse that occurs at the same relative
instant in a later modulating cycle. Furthermore, when the carrier fre-
quency is an exact multiple of the signal frequency i.e., ¢ = nv, there will
be a pulse recurring at the same relative instant in each cycle of 2. Under
these conditions, the pulse position modulated wave can be broken down into
a group of unmodulated waves, each being made up of that series of pulses
that recur at a given part of each modulating cycle, as shown in Fig. 5.
These subsidiary waves are effectively unmodulated because, as each pulse
recurs at the same instant in the modulating cycle, they are shifted to the
same extent and hence will be uniformly spaced. This uniform spacing
between pulses in a given wave is equal by definition to the period of the
modulating function, and there will be as many of these unmodulated pulse
trains as there are pulses in a single cycle. Thus, if ¢ = nv, there will be n
such pulse trains.

The reason for grouping the pulses into these unmodulated pulse tains is
that unmodulated periodic trains have spectra of discrete frequencies. Since
the pulse widths are all equal, and since the spacing between pulses is the
same for each wave, the spectra of these unmodulated waves will all be
identical. Furthermore, these spectra will be the same as that of the
original carrier wave of pulses before modulation, except for two factors.
First, the fundamental frequency is now v, corresponding to the modulating
period, so that there are » times as many components as before. Secondly

1 .
the amplitudes are reduced by the factor W because there is only one pulse

in these new waves to every n pulses in the original wave. Thus, instead
of having a spectrum made up of the carrier frequency and its harmonics,
we now have one made up of harmonics of 2. Since ¢ = v, such frequencies
asc, ¢, =+ v, ¢ & 2v, etc., are included. An example of the spectra of both
the subsidiary and original pulse waves is shown on Fig. 6, for the case
where n = 6.

Thus the problem of finding the spectrum of such a pulse position modu-
lated wave is reduced by this procedure to adding up the # equal components
at each of the frequencies of interest, such as ¢ and ¢ & v, allowing for the
phase difference between components corresponding to the position of one
pulse with respect to that of the other #-I pulses in one modulating cycle.
As an example, suppose n = 10 and the frequency to be computed is ¢ 4 2.
Now ¢ + v is 109, higher in frequency than ¢. Thus in the unmodulated
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case, when the » pulses are equally spaced, they are 360° apart at ¢ and
consequently 360° + 36 or 396° at ¢ + v. Therefore in the unmodulated
case, each component-would be advanced in phase 36° with respect to the
previous one, so that the diagram of the 10 components would form the
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Fig. 7—Vector pattern of subsidiary pulse components.

vector pattern shown on Fig. 7A.  The successive components are numbered
1 to 10. ‘The sum in this unmodulated case is of course zero.

Now the effect of modulation is to shift the relative phases of these compo-
nents by an amount determined by the shift in position of the corresponding
pulses. When these relative phase shifts are such as to spoil the can-
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cellation of the 10 components, a net component of this frequency is pro-
duced in the frequency spectrum of the pulse wave. Taking the example
shown in Fig. 5, the 10 components in Fig. 7A would be shifted to the posi-
tions shown in Fig. 7B. These shifts in relative phase are determined in the
following way. Figure 5 shows that the number 1 pulse is retarded an
amount AT; equal to 159, of T, the normal spacing between pulses. Thus
at the carrier frequency ¢, the phase shift between the component from this
retarded pulse and the reference pulse is 15% more than 360° or 414°.
Thus the component at the carrier frequency ¢ from the first subsidiary
pulse train is shifted 54° from its unmodulated position.

At ¢ + v, since the frequency is 109, higher, the net shift is 109, more than
at ¢ or 59.5°. Thus the number 1 component on the vector diagram of
Fig. 7B is rotated 59.5° clockwise from its unmodulated position shown on
Fig. 7TA.

Similarly pulses 2 and 3 are each shifted in position by equal amounts,
AT, and AT;. These shifts in position give 85° phase shift at the carrier
frequency. Hence components 2 and 3 at ¢ + are each rotated 10% more
or 93.5° from their respective unmodulated reference positions shown on
Fig. 12A. Component number 4 is shifted 59.5° clockwise just as number 1.
Component 6 and 9 are also shifted 59.5° each, but in this case the modulat-
ing function has the reverse polarity so that the components are rotated
counterclockwise.  Similarly components 7 and 8 are rotated 93.5°
counterclockwise.

The sum of these components in the vector diagram of Fig. 7B gives a
resultant that is negative with respect to the reference direction and the
magnitude that is 589, of the reference magnitude, where the reference mag-
nitude and direction are those for the carrier ¢ with no modulation.

This gives the relative magnitude and phase of the c+v term produced by
pulse position modulation for the case where the modulating function is a
sine wave of frequency v = ¢/10 with a peak amplitude just large enough to
shift a pulse by 1/4 of T, where T"is the spacing between unmodulated pulses.
A shift of this magnitude will be defined here as 509, modulation on the
basis that 1009, modulation should be 1/2T, the maximum displacement
that can be used without possible interference between pulses.

In the same way the other component frequencies in the spectrum such as
¢, ¢ — v,¢==2v, etc., have been computed for the above case of 509, modulation,
and for other peak amplitudes of the modulating sine wave giving 25%,
70%, and 100%, modulation. In all cases the frequency of the modulating
function was held at » = ¢/10. This information is plotted on Fig. 8, show-
ing v, ¢ and the various components of the frequency spectrum that represent
the sidebands about the carrier frequency ¢, as a function of the peak %,
modulation.
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The above solution assumed a special case where ¢ was an exact multiple
of . The purpose of this assumption was to simplify the problem to the
extent that the periodicity of the modulated wave would be the same as
that of the modulating function. There are two other possible cases. For
one, the ratio of ¢ to v could be such that a pulse would occur at the same
instant of the modulating period only once every so many periods. The
actual periodicity of the modulated pulse wave would be reduced accordingly
because it would make the same number of periods of the modulating func-
tion before the modulated pulse train is repeated. This is a result of the
fact that pulse modulation provides for a discrete sampling rather than a
continuous measure of the modulating wave. The technique of spectrum
analysis demonstrated above is just as applicable to this case as it was to the
simpler one. However, there will be comparatively more terms to be
handled. The other possible case is the one where ¢ and v are incommen-
surate.® In this case, the resulting modulated wave is non-periodic. How-
ever, on the basis that the spectrum is practically always a continuous
function of the signal frequency, this case has received no special attention
here.

At frequencies for which ¢ is very much greater than v, so that the number
of component pulse trains becomes too numerous to handle conveniently in
the above fashion, the sidebands about each carrier or harmonic of the
switching frequency can be computed by the standard methods for phase
modulation, as the next section will demonstrate. This result follows
directly from the theorem that as the carrier frequency ¢ becomes large with
respect to v, pulse position modulation merges into a linear phase modulation
of each of the carriers.

Purse Position MopULATION Vs PHASE MODULATION

When a pulse, in a pulse position modulated wave, is shifted by 1/2 the
spacing between pulses (1009, modulation) it is apparent from the previous
discussion that the component of the carrier in the frequency spectrum of the
pulse is shifted by 180°. Therefore to compare the spectrum of a pulse
position modulated wave like that on Fig. 8 with the equivalent spectrum of
a phase modulated wave, what is needed is Fig. 9, showing the frequency
spectrum of a phase modulated wave of the form Cos(ct — k sin vt) as a func-
tion of k for values of % up to 7 radians or 180°. The computation of the
frequency spectrum of such a phase modulated wave has been adequately
covered elsewhere and all that is done here is to give the brief development
shown in appendix B.

8 Mr. W. R. Bennett has pointed out that this incommensurate case is the general one.

It requires a double Fourier series, which reduces to a single series when the signal and
carrier frequencies are commensurate. This analysis is based on the single Fourier series.
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A comparison of the spectra on Figs. 8 and 9 shows that the sidebands
have the same general pattern. However comparative sidebands are not
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quite equal in the two cases. In fact comparable upper and lower side-
bands in the case of the pulse modulated wave shown on Fig. 8 are not
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equal in absolute magnitude to each other. This lack of symmetry is due
to the fact that ¢ is only 10 times .
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One way of proving this is to go through the process of computing the
¢ — v termin this pulse modulated wave just as the ¢+ v term was computed
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earlier. Sincethefrequency ¢ — vis 109, lessthan ¢, the unmodulated pattern
of the 10 subsidiary components, as shown on Fig. 7C, is the mirror image of
that for ¢ + v in 7A, for the first component is now 360° less 109 or 324°,
and subsequent components are each retarded 36° with respect to the pre-
vious one. When the pulse train is modulated the effect is similar to the
case for ¢ + v and, for the same per cent modulation, the Vector pattern
of Fig. 7D is formed. The resultant in this case differs from that of 7B
in sign as well as in magnitude. The difference in sign comes from the fact
that, since component 1 in 7A corresponds to component 9 in 7C and com-
ponent 2 in 7A to component 8 etc., the modulationin the caseof ¢ — vrotates
these corresponding components in opposite directions. The difference in
magnitude is due to the fact that since ¢ — v'is an appreciabley lower fre-
quency than ¢ + vin this case (approx. 209), the phase shift corresponding
to a given shift in pulse position is proportionately less. Thus the corre-
sponding Vector components are not shifted the same number of degrees.
Thus the absolute magnitudes of ¢ 4 v and ¢ — v are not equal in this case.

It is apparent that this difference in magnitudes of ¢ + vand ¢ — v be-
comes smaller as the carrier frequency ¢ becomes larger with respect to .
In the limiting case of ¢ very much greater than v, ¢ 4- vand ¢ — v would
each be shifted the same number of degrees as ¢ itself. If this more or less
compromise shift of ¢ is used to compute the ¢ &= v, ¢ = 2v, and ¢ = 3v terms,
then the resulting frequency spectrum is that of the phase modulated carrier
on Fig. 9.

The higher harmonics of ¢ in the pulse position wave are similarly phase
modulated and the interesting point is that 2¢ is modulated through twice as
many degrees phase shift and 3¢ 3 times as many degrees, etc. Thus a
single pulse position modulator could be designed to produce a harmonic of
¢ with almost any desired degree of phase modulation. This is a useful
method for obtaining a phase modulated wave, or with a 6 db per octave
predistortion of the signal, a frequency modulated wave.

Figure 8 also shows a term in v itself, which has been neglected so far in
the discussion. It is apparent that the components at v contributed by the
10 subsidiary unmodulated waves must form the same kind of vector pattern
as those of ¢ 4+ vin Fig. 7. However, in this case ¢ 4 v is eleven times v in
frequency, so that the components of v are rotated only one eleventh as
much for a given pulse diplacement. Thus the magnitude of v at 100%,
modulation is equal to that of ¢ + v at approximately 99 modulation. For
different frequency ratios of ¢ to v the relationship of the v term to ¢ + v will
vary, and it is apparent that for ¢ very much greater than z, the » term will
vanish. The relationship is such that the amplitude of the v component out
of the madulator at a given per cent modulation is directly proportional to
its own frequency v for all frequencies less than approximately one quarter
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of ¢, and the phase is 90° with respect to the input. Thus the modulator
puts out a signal component that is the derivative of the input signal.

To summarize the case of pulse position modulation, the frequency spec-
trum may be determined by the methods based on subdividing the modu-
lated pulse train into a series of unmodulated ones when the ratio of ¢ to v
is small, and by treating each harmonic of the carrier as a phase modulated
wave of the form Cos n (ct + 0), where 6 is the modulating function, when the
ratio of ¢ to vis large. - In the case treated here, the modulating function was
a simple sinusoidal wave. Of course the analysis holds for more complicated
wave shapes having frequency spectra of their own. In this event however
the restriction on the relative magnitudes of the frequencies v and ¢ should
be taken as one on ¢ and the highest frequency in the modulating spectrum.
The complexity of the modulating function does not affect the analysis when
it is done by this technique of subdividing the pulse train, since all that need
be known is how much each pulse is shifted, and this can be done graphically.
The analysis given here has neglected the length of the individual pulses.
This was done when it was assumed that the individual contributionsfrom
the various pulse trains had the same amplitude at all frequencies. For any
finite pulse width, the relative magnitudes of the various components must

be modified by the a%gc factor of the single pulse, as shown on Fig. 6.

As mentioned in the introduction, a complex wave could be analyzed by
multiplying its magnitude-time characteristic by unit sinusoids at each
frequency in question, sampling the product at a sufficient number of points
uniformly spaced over a cycle of the envelope of the complex wave, and then
averaging the values of the product thus obtained. This technique is par-
ticularly applicable to the analysis of pulse position modulated waves since,
by taking the centers of the pulses of the modulated wave as the sampling
instants, it is possible, with a finite number of samples (same as the number of
pulses) to get the same results as though a very much greater number of
uniformly spaced samples were taken. The interesting thing to note here
is that the actual computations that would be involved in applying this
sampling method of analysis to a pulse position modulated wave are almost
identically the same calculations as required by the technique of resolving
the pulse train into unmodulated subsidiary pulse trains used here.

Purse WipTH MODULATION

Pulse Width Modulation as defined here could also be termed “pure”
pulse length modulation. The pulse train in the reference or unmodulated
condition is a recurrent square wave, and the lengths of the pulses will be
varied by the modulation without changing the position of the centers of
the pulses. The term “pure” pulse length modulation is applicable to this
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special case where the phase relationship between spectra of adjacent pulses
does not change with modulation because the centers of the pulses are not
shifted by the modulation. The conventional form of pulse length modula-
tion, where one end of the pulse is fixed in position, combines both this
pulse width modulation and the pulse position modulation previously ana-
lyzed. The interest in this case of pulse width modulation arose in con-
nection with the analysis of “hunting” servomechanisms, and the analysis
provides a basis for a general solution of the response of a two-position
switch or ideal limiter to various forms of applied voltages.

Since the unmodulated wave is a square wave with pulses of length 2L
recurring at intervals of 7" = 4L, it has the familiar square wave spectrum
including a d-c term, a fundamental term or carrier of frequency ¢ = 1/7,a
3rd harmonic with a negative amplitude 1/3 that of the fundamental, etc.
Figure 10 shows clearly that this spectrum is the sum of single pulses of
width 2L spaced 7' = 4L seconds apart. In the summation, all frequencies
cancel except harmonics of ¢ and, since they all add directly in phase, the
component frequencies in the resultant spectrum have the same relative
amplitudes as they have in one single pulse.

When this pulse train is modulated, the width of each pulse becomes
2(L + AL), where the magnitude of AL depends in some specified way on the
magnitude of thhe modulating function at the instant corresponding to the
center of the pulse. TFor simplicity, the case will be taken where AL is
proportional to the magnitude of the modulating function. For 10095
modulation, AL will be assumed to varyfrom —L to +L. Tigure 3 shows
how the relative amplitude of the components of the frequency spectrum of
a pulse vary for 3 different values of AL , along with the equation that gov-
erns these amplitudes.

If the modulating function has a periodicity v such that ¢ = 102, then
every 10th pulse, recurring at the same instant in each modulating cycle,
will be widened to the same extent and so can be formed into a subsidiary
unmodulated pulse train, as was done on Fig. 5 for the pulse position
modulated wave.

Again vector diagrams like those in Fig. 7 may be formed showing the
contribution of each of these subsidiary pulse trains at various frequencies
such as¢, ¢ + vand ¢ — v.  When the waves are unmodulated, the vector
diagrams for the same frequencies will be the same as those for the pulse
position modulated case, except for the absolute amplitudes of the com-
ponents, as long as ¢ = 10v in each case. When the pulse width system is
modulated, however, the modulation does not rotate the individual vector
components as in the pulse position case since the spacing between pulses is
not changed. What the pulse width modulation does is to change the
length of the individual component vectors exactly as it does in the case of
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the single pulses shown on Fig. 3. This change of magnitude, of course, can
spoil the cancellation of the ten unmodulated components at some frequency
like ¢ + 2 just as effectively as rotating them did in the case of the pulse
position modulated wave, thus producing a spectrum component at that
frequency.

As an example, the case will be taken where the modulating function is a
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sinusoid of frequency ». Then the change in width with modulation is
given by the formula

AL

T = k sin of.

Since ¢ = 10, the successive subsidiary pulse trains will be modulated an

amount(%)m = ksin(Zr%)as m takes on the values from 1 to 10. Thus

the spectra of these subsidiary pulse trains with pulses of length 2(L +



SPECTRUM ANALYSIS OF WAVES 381

AL,) recurring every 1/v seconds will be a Fourier series of harmonics of ».
The amplitude of the nth term of this series will be

_2E . |mn . (2mm
Bn = 10—7”;” sin [7 [1 + k sin (W)]il .

This expression may be found from appendix C, equation (5a). Combining
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the 10 such components at each frequency, as shown on Fig. 7 for the case
of the pulse position modulated wave, the spectrum for this case of Pulse
Width Modulation on Fig. 11 is produced. This spectrum is comparable
to that on Fig. 8 for the pulse position modulated case.

PuLse WIDTH Vs AMPLITUDE MODULATION

That pulse width modulation is a form of amplitude modulation of the
carriers of the unmodulated pulse train is shown mathematically by Equa-
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tion (8) in Appendix C, where the spectrum is developed as a Fourier series

in harmonics of the pulse rate ¢ with the modulation affecting only the

amplitude of the coefficients. :
This mathematical analysis is continued in Appendix D where the fre-
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quency spectrum is determined for AL = k sin 2¢. The spectrum thus
computed is shown in Fig. 12, L

An example of this type of pulse modulator is given by a two position
switch or ideal limiter when the signal to be modulated is applied simul-
taneously to the limiter with an isosceles triangle wave as carrier. The
carrier should have a higher peak amplitude than the signal and a recurrence
rate based on the desired carrier frequency. Figure 12 is arranged to show
the output spectrum for such a limiter in terms of &, when % is the ratio
of the peak amplitudes of the sinusoidal signal and triangular carrier wave
inputs.

A comparison of this spectrum with that on Fig. 11 shows that the
two spectra have almost the same form. ¢ and » have the same amplitude
characteristics in each case. The ¢ 4= 2v and 2¢ & v terms have differences
that are like those found before in comparing the pulse position modulated
wave on I'ig. 8 and the phase modulated carrier on Fig. 9. Asin that case,
when ¢ becomes very much greater than v the differences vanish.

ArpLicaTIiON OF PULsE WIDTH MODULATOR

Practical interest in this case lies in the fact that the signal is present
in the output spectrum with a linear characteristic that makes such a
modulator a linear amplifier. The “on-off”’ or “hunting” servomechanism
is based on a modified form of such an amplifier in which the carrier is sup-
plied by the self oscillation of the system. The term modified form is used
because the self oscillations in general are more nearly sinusoidal than
triangular in form and so do not give a linear change in pulse length over
as wide a range of input amplitudes as does a triangular carrier. No
attempt will be made to analyze such a system here since it has been handled
elsewhere. However the above method is applicable to such problems
regardless of the shape of the carrier or the signal.

OtrHER FormS oF PULSE MODULATION

Another form of pulse modulation of interest is that of pulse length modu-
lation in which either the start or the end of each pulse is fixed, so that the
centers of the pulses vary in position with the length. Thisisa combination
of both the pulse position and the pulse width modulations described above
and can be analyzed by a combination of the methods developed.

These same methods are also applicable to the analysis of frequency and
phase modulated waves after they have been put through a limiter, as they
generally are before detection.

9 See L. A. Macall, “The Fundamental Theory of Servomechanisms” D. Van Nostrand
Company, 1945,
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APPENDIX A
Fourier TrANSFORMS ForR SINGLE PULSE

The amplitude g(f) of the component of frequency f in the spectrum of the
Complex Magnitude-time function e(f) is given by the d-c component of the
Modulation products of e(f) and cos 2xft, found by averaging the product
over the period of the complex wave.

Thus, for non-periodic waves, where the period is from — = to 4=, the
amplitude of the spectrum at f is

g(f) = _[: e(f) cos 2nft di. ‘ (1)

For the single pulse, where e(f) = Efor —L < ¢ < L and e(f) = 0 for all
other values of ¢, equation (1) reduces to

g(f) = f_ : E cos 2xft dt. )

Integrating,

L

g(f) = 3 fsm 2mft

—L

or

¢ 2% sin 2a/L. 3)
Equation (3) is the expression for g(f) plotted on Fig. 1. _
Similarly, in the case of the single pulse, each increment in frequency df

contributes a factor proportional to g(f) cos 2mft df to the composition of
e(t), so that

e(t) = f : o(f) cos 2nft df. @

Substituting in (4) the expression for g(f) given by equation (3), this becomes

e(l) = E ["sin 2nfL cos 2mft df. (5)
T = f
APPENDIX B

FreEQuENcY SpEcTRUM OF PHASE MODULATED WAVE

The Phase Modulated Wave in this case is given by
cos (ct — k sin o) = cos (ct) cos (k sin of) + sin (ct) sin (k sin o)
Now cos (ct) cos (ksin ¢f) = Jo (k) cos (ct)
+ Jo(k)cos (c —20) 1
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+ Jo(R)cos (c+ 20)t 4 ---
and sin (cf) sin (ksin¢t) = Jy (k) cos (c — v) ¢

— Ji(k)cos (¢ + v) ¢

+ J3 (k) cos (c — 3v) ¢

— J3 (k) cos (¢ + 3v)t + ---
.. cos (¢t — ksin of) = Jo (k) cos (ct)

+ Jy (k) cos (¢ — v) ¢

— Ji(k)cos (c+v) ¢

+ J» (k) cos (¢ — 29) ¢

+ Ja (k) cos (¢ + 2v) ¢

+ J3 (k) cos (c — 3v) ¢

— Js(k)cos(c+30)t+ -

APPENDIX C

In this Appendix the spectrum of a train of rectangular pulses of length
2(L 4 AL) recurring every T seconds, will be found from the spectrum of a
single pulse of this train.

For the single pulse at any frequency f,

E .
g(f) = 7Tfsm 2af(L + AL). (1)
For a series of such pulses recurring with a spacing T = 1/¢, then the sum of
spectra of the individual pulses form a Fourier series of harmonics of ¢. Thus

e(t) = Ay + 2 A, cos 2muct, 2)
n=1
where 4, is the sum of an infinite number (one from each pulse) of infinitesi-
mal terms g(nc) and g(—nc), shown in (1). Thus

A, 225 E o 2ene(L + AL) 3)
THE

Now to put an absolute value to the amplitudes g(f) shown in equation (1),
it is necessary to average them over the recurrence period of the single pulse,
making them infinitesimals. However, in the train of pulses recurring
every T = 1/c seconds, the amplitude of 4, can be determined by averaging
the terms in (1) over an interval 7. Then

2E .
An — e S 2mnc(L + AL). 4)

When T = 4L = 1/¢, (4) reduce to

_2E . nrm AL
A"Hmsmz(l_i-f) (5)
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For the example taken in the text, when the pulse train was subdivided
into 10 subsiding pulse trains, the period 7' = 1/v = 10/¢ = 40L. Thusin
this case, the Fourier coefficients of the harmonics of v are

2E, . mn
Bn—mm 2(1—{— ) (5a)

The expression for A, in equation (5) can be put in simpler form by using
the formula for the sin of the sum of two angles. In this way, we get

_2E| . (mn wn A mn\ . (mn AL
An—w[sm(T)co (2 L)—I— os(z)sm(ﬁzﬂf):l. (6)

) T .
Now, for i odd, sin 5 alternately assumes the value 4=1and cos 5 vanishes,

it n
and for u even, cos (7; )altemately assumes the value 41 and sin %

vanishes. The A, term, being the d-c average of the pulse train, is given by

E/2(L T+ AL) _ (1 n ) o

If the pulse train is transformed by shifting the zero so that it alternates
between == FE/2 instead of O and E, the first term in equation (7) va.mshes
and (2) becomes, from (6) & (7),

ety = Ao + A1 cos 2met ]
+ A cos 2w 2ct + -

Where
E (AL
4o = 3 ( I )
2K T AL
A, = - cos (E T)
(8)
A = 2—Esin (éé
2 2 T L
Az = 2—E cos sl(éé) ‘
T3 T 2\L/) |
etc.
APPENDIX D

The purpose of this section is to compute the spectrum of the carrier given

by equation (8) in Appendix C as their amplitudes vary with %L = k sin ot
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For the d-c term,
E .
Ay == — = = ksin ot
2
For the fundamental or ¢ term,

2FE .
Ay cos 2wet = == cos (gk sin vt) cos 2wl
T

=

Using the Bessel’s expansion of cos (2 sin 6), we get,

Jo(k) cos 2m¢

+J2(k) cos 2w(c — 2v)¢
+J2(k) cos 2w(c + 2v)¢
|4+ etc.

In a similar fashion, the other terms can also be computed, giving the
spectrum shown on Fig. 12, where Jy(k) becomes the amplitude of ¢, J2(k)
the amplitude of either ¢ + 2vor ¢ — 2u, etc.

Ay cos 2wt = £
2




