Reflections from Circular Bends in Rectangular
Wave Guides—Matrix Theory

By S. O. RICE

A method of computing reflections produced by circular bends in rectangular
wave guides is presented. The procedure employs the theory of matrices. Al-
though the matrix equations are quite simple, a considerable amount of calculation
is necessary before quantitative results may be obtained. Fortunately, the ap-
proximate formulas pertaining to gentle bends hold surprisingly well for rather
sharp bends. These formulas are obtained by a limiting-process from the matrix
equations. The approximate formula for reflection from an H-bend (in which the
magnetic vector lies in the plane of the bend) generalizes an earlier result due to
R. E. Marshak. The corresponding formula for the E-bend appears to be new.

INTRODUCTION

NUMBER of investigators have studied the propagation of electro-
magnetic waves in a bent pipe of rectangular cross-section, the bend
being along an arc of a circle. H. Buchholz', S. Morimoto®, and W. J.
Albersheim® have employed Bessel functions to express the field in the bend.
The form assumed by the field when the radius of curvature of the bend
becomes large has been obtained by K. Riess* and R. E. Marshak’ who use
approximations suited to this case. Marshak also obtains expressions for
various reflection and transmission coefficients. A discussion of the subject
using rather simple but approximate analysis is given on pages 324-330 of
a text book® by S. A. Schelkunoff. The Bessel function approach is also
sketched in the same section.

Here we study the disturbance produced when a wave goes around a
circular bend (of some given angle) in a rectangular wave guide, the guide
being straight on either side of the bend. Especial attention is paid to the
dominant mode reflection coefficients giy and dg corresponding to H-bends
and E-bends, respectively. As equations (4.2-6) and (4.4-4) show, these
reflection coefficients (which are of the nature of voltage rather than power
reflection coefficients) vary inversely as the square of the radius of curva-
ture of the bend when the bend is gentle. The substance of (4.2-6) has
been given by Marshak” for the important case in which only the dominant
mode is propagated and the angle of the bend not too small.

When the bend is so sharp that the formulas mentioned above do not
apply the reflection coefficients may be computed from the rather simple
looking matrix expressions (2.3-3) together with (2.3-4). However, their
appearance is deceptive and, as is shown by the numerical work in Part V,
considerable labor is necessary to obtain an answer.
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The gentle bend formulas were obtained from the matrix equations by the
limiting process described in Part III. It seems likely that the matrix
method, which is similar to the method used in an earlier paper’ on trans-
mission line equations, may bhe applied to other wave guide problems.
With this thought in mind, the development of Parts II and III has been
couched in general terms.

The matrices used in the present theory are of infinite order since the
guide may support an infinite number of modes of propagation. This fact
makes it difficult to justify all the steps in our analysis, and we do not at-
tempt to do so.¥ Despite this lack of rigor, I believe that the procedures
given here lead to the correct results since they yield, for gentle bends,
expressions obtained by Buchholz and  Marshak. Moreover, although
numerical results tabulated in Part V were obtained by using matrices of
only the second and third order, they indicate a rapid convergence as the
matrix order is increased.

PART 1
PROPAGATION OF WAVES IN GUIDE
1.1 Propagation in a Straight Wave Guide

Rather general expressions for the electric and magnetic intensities E and
H in a field are (see pp. 127-128 of Reference®)

E = —im,u:f + i grad div A — curl B
Twe
(1.1-1)
H=curld + —L grad div B — iweB
1w

The field is assumed to vary with the time ¢ as ¢, w is the radian fre-
quency, p the permeability and e the dielectric constant (for free space
u = 1.257 X 107" henries/meter, ¢ = 8.854 X 10™" farads/meter). The
vector potentials 4 and 5 satisfy the wave equations
VA =o'A y VB = O‘EE
v’ = Laplacian operater (1.1-2)
2

2
g = wyue

In dealing with bends, it is convenient to choose 4 and B normal to the
plane of the bend. In our notation, this plane is always taken to be the x,
z plane so that 4 and 5 are parallel to the y axis. The z axis is parallel

* Similar questions arise in the rigorons treatment of an infinite set of linear
equations. A discussion of this subject is given in Chap. IIT of Reference®.
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to the guide axis and, for the straight guide of the section, the guide walls
are sections of the planesx = 0,x = a,y = 0,y = b.

Thus, a general wave traveling in the positive z direction may be de-
scribed by the two functions (which represent the magnitudes of A and B)

> gh. e " sin (wma/a)cos (wny/b)

m,n (1.1_'3)
m=1,2,3---; n=20,1,2,---
B =2, db, "™ cos (wmx/a)sin (wny/b)
e (1.14)
m=20,1,2,---; n=1223---

where the coefficients g, and di. are constants and the plus signs indicate
propagation in the positive z direction.
The propagation constant I',,, is obtained from

Thn = o + (wm/a)* + (wn/b)%, ¢ = 121/,

Mo = wavelength in free space.

(1.1-5)

Equation (1.1-5) arises when the typical term in (1.1-3) is substituted for 4
in the equation

3A+ +3_A " (1.1-6)

dx?

This and a similar equation for B are the forms assumed by (1.1-2) for the
rectangular coordinates of our straight guide.
The electric and magnetic intensities in the guide are given by

1 9*°4 | 0B a4 , 1 9°B
E, = 2 422 H, = — 24 =~ 2
* T dwe dxdy * 3% 3z dwp 9xdy
a 1 9
E, = —iwpd + —1—-—A H, = —iweB + — —B— (1.1-7)
we 9y? iwp Ay
1 9 A ab aA 1 B
7, = H. = — S
E iwe 6"63’ A dx iwp 0z0y

which follow from (1.1-1).
Tt is seen that the wave is completely specified by the g a’s and dh s,
These may be arranged as (infinite) column matrices in any convenient

order. Thus in dealing with (1.1-3) and (1.1-4) we may write
B3 %]
3 @*l
g = |5 g = | (1.1-8)
830 ) 03
gn } :
L g—l‘—2 - L =
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In our work we shall consider only those modes corresponding to a fixed
value of m (or of #) and the order is almost automatically fixed.

The factors which determine the propagation of the typical terms in the
summations (1.1-3) and (1.1-4) for 4 and B are

unl(3) = Ghn €™ Bualz) = dpn e " (1.1-9)

The column matrices obtained by arranging these quantities in the same
order as in (1.1-8) will be denoted by «(z) and 8(z). We may write

alz) = ¢ 7T gt,  B(z) = ¢ T8 g+ (1.1-10)

where exp(—zI',) and exp(—zI's) are square matrices defined by power series
each term of which is a square matrix:

v, sl 2T 21
S TR T R -0

I is the unit matrix and I',, is the diagonal matrix*

I'io 0 0
, _ 10 T'ao 0 . =
Fa = 0 0 T'u ' J (11-12)

in which the order of the diagonal elements is the same as the order of the
elements in the column matrix g+, Similarly I's is a diagonal matrix whose
elements are I'y, I'as, I'11, o3, + - - , the order being fixed by d*. When I' is
replaced by I', in (1.1-11) it is easy to obtain T's, I'i, etc. and sum the
resulting series to obtain

et 0 0
— 0 o .
ile = 0 e T . (1.1-13)

s d

A similar expression exists for exp(—zI's). The expression (1.1-10) for
«(z) is seen to be true when the square matrix (1.1-13) is multiplied, by
matrix multiplication, into the column g+

It turns out that the field in a circular bend (in a rectangular guide) may
be represented by a generalization of the foregoing expressions. In this
generalization, which will be studied in the following sections, the square
matrices I', and I'g no longer have the simple form of diagonal matrices.

* That is, a square matrix in which all of the elements other than those in the principal
diagonal are zero.
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1.2 Propagation in a Circular Bend

In dealing with a circular bend we choose cylindrical coordinates (p, @, ¥)
as shown in Fig. 1. With these coordinates we associate new coordinates,
shown in Figs. 1 and 2, (x, ¥, ) which have approximately the same signifi-
cance as in the straight guide. z is the distance measured along the axis of

Fig. 2

the guide (defined as the locus of the centers of gravity of the transverse
cross-sections of the guide), and x and v are the transverse coordinates.

Let p = p1 = (pa + p3)/2 = p2 + a/2 be the radius of curvature of the
guide axis, and let the origin of the polar coordinates be taken at the center
of curvature. Then z is equal to —pip where the minus sign is necessary to
make (x, y, 2) a right-handed coordinate system. Since the vertical (in
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Tig. 1) walls are to be-specified by x = Oandx = awesetx = p —py + a/2.

Thus, the two sets of coordinates are related by
p=a+p — a/2=x+p-;
¢ = —z2/m
y=>7

where pi, pa and @ are constants.

We again choose A and B in (1.1-1) to be parallel to the y axis.

cylindrical coordinates,

p o1 @4 108 g —lod 1 9B
P 7 we dpdy  p Op T pdg  iwu dpdy
_ L ¥4 e 04, 1 OB
® " iwep dpdy = dp ¢ dp  iwpp dpdy
1 0°4 , 1 &°B
E, = — H, = —iweB + — —=
v fond + o iwe OY* v fweB + wp 9y
where now, from (1.1-2), A satisfies the wave equation
19| 04 19°4 2
“1+= o4
pap[ 3p]+ p? 3¢ +

and likewise for B.

(1.2-1)

In the

(1.2-2)

(1.2-3)

One method of dealing with (1.2-3) which is sometimes used is to assume

A = ¢™ X (sine or cosine function of y) X f(p)

(1.2-4)

where f(p) turns out to be a Bessel function of order p with its argument
proportional to p. However, we shall proceed in a different direction.

The change of coordinates (1.2-1) transforms (1.2-2) into

1 34 | pdB _mdd 1 B
= F = _"_ —_ — H,_- =H —
B = L -iweaxay_i_ p 0z ? p 0z  iwp dxdy
1 84 . 1 9°B
= — — — H, = —iw — 1.2-5
E, twpAd + e 3y v iweB + wn 37 ( )
2 2
. , p 04 aB a4 p o' B
1 = - = — —— — — Hz, = —H = —
E. * 7 iwep 9zdy  dx ¢ 0x | iwpp dz0y
and (1.2-3) into
2 2 .
f'_’i‘ 404 dd 104 L (1.2-6)

ay* ,o2 0z* pox -



REFLECTIONS FROM CIRCULAR BENDS 31

where p; is a constant and p = x + p; — a/2 is to be considered a function of
x. To solve (1.2-6) and the corresponding equation for B we assume

A= Z apu(2) sin (wmx/a) cos (wny/b)

m,n (1 -2_7)
m=1,2,3---; n=20,12---
B = 2 Bualz) cos (wmx/a) sin (wny/b)

(1.2-8)

m=0,1,2,+--; n=1223---

these expressions being suggested by (1.1-3) and (1.1-4). The expressions
(1.2-5) for the electric intensity show that this choice of 4 and B make its
tangential component vanish at the walls of the guide. Thus the boundary
conditions are satisfied.

In order to determine e..(z) so that the differential equation for 4 is
satisfied, we substitute (1.2-7) in (1.2-6). The resulting left hand side of
(1.2-6) may be regarded as a function, say f(x, ), of x and y with the o’s
and their derivatives entering as parameters. We must choose the a’s so
as to make this function zero. Relations which must be satisfied by the a’s
may be obtained by expanding f(x, v) in a double Fourier series for which the
typical term is a coefficient times sin (wmx/a) cos (wny/b), and then setting
the coefficient of each term to zero. This form of expansion is suggested by
(1.2-7). However, it should be mentioned that such an expansion is best
suited to a function which vanishes at x = 0 and & = a, a condition not
fulfilled by f(x, v) because of the term p'a4/dx in (1.2-6). This causes no
real trouble because our region of representation runs only from x = 0 to
x = a and hence our series is no worse than the Fourier sine series for the
periodic function (of period 2a) which is —1 for —a < ¥ < 0 and + 1 for
0<a<a.

To carry out the procedure outlined above, we multiply (1.2-6) (after
putting in (1.2-7)) by sin(wpx/a) cos(wfy/b) and integrate x from 0 to a
and y from 0 to b.  Using the expression (1.1-5) for T..and reducing gives

- l‘t‘;lr ﬂ',.f(s) + E [I)iim C!:,i{(:) - Spm C!,.,,[(S)] = 0 (1.2“‘9)

m=1

where p may have any one of the values 1, 2,3, - - - and the double prime on
« denotes the second derivative with respect to 2. The P’s and $’s are
constants given by

P, = (2/a) j; (p1/p°) sin (wpx/a) sin (wmx/a) dx, (1.2-10)

Som = —27ma”” j sin (wpx/a) cos (wmx/a) dx/p (1.2-11)
0
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The evaluation of these integrals is discussed in Appendix I. Thus (1.2-9)
is the p*" equation of a set of differential equations to be solved simul-
taneously for ayf(z), aat(z), --- .

The customary method of solving a set of equations such as (1.2-9) is to
assume that all the o’s vary as ¢ so that for each anf(z) we may write
¢"gme. This leads to a set of simultaneous homogeneous linear equations
for the constants g,¢. In order that these equations may have a solution
the determinant of the coefficients must vanish. Since the only derivative
of ant(z) contained in (1.2-9) is the second, v appears in the determinant
only asy”. Let i , v , ~s , - be the values of 4° which cause the deter-
minant to vanish and let ky;, ks;, - -+ be the values of gi¢, gat, -~ cor-
responding to y* = ~}. The k’s are determined to within an arbitrary
multiplying constant which, for the sake of convenience, is chosen so that
ki = 1. :

Thus one solution of the differential equation (1.2-6) is

A = &7 cos (wly/b) D kmjsin (xmx/a). (1.2-13)
m=1

This particular solution corresponds to the j* one of the modes (traveling in
the positive z direction) for which 4 is proportional to cos (r £y/b).

In much the same way it may be shown that the series (1.2-8) assumed
for B is a solution of equation (1.2-6) (with 4 replaced by B) provided the
coefficients B.a(z) satisfy the set of equations

~ T8t + 2 [QonBut@) — UpnBnt(®)] = 0 (1.2-14)
for p = 0; 1,2,--- and £=1,2,3,---. Here
QO = (€3/a) j;a (p3/p”) cos (wpx/a) cos (wmx/a) dx  (1.2-15)

Upn = Tmeya " foa cos (wpx/a) sin (wmx/a) dx/p (1;2-16)

where ¢ = 1 and ¢, = 2 for p > 0. These integrals are discussed in
Appendix I.

The problem of determining the reflection from a bend in a wave guide
involves considerable manipulation of equations (1.2-9) and (1.2-14). The
introduction of matrix notation in the manner suggested by the work of
Section 1.1 for straight guides simplifies this work. Although au.(z) and
Bua(z) are no longer the simple exponential functions given by (1.1-9), it
turns out that the column matrices a(z) and 8(z) are still given by (for a
wave traveling in the positive z direction) by the matrix expression (1.1-10).
As mentioned earlier, I', and T'g are no longer simple diagonal matrices.
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We now turn to the task of expressing (1.2-9) and (1.2-14) in matrix
form.

1.3 Propagation Constani Matrix for Curved Rectangular Guide

From this point onward in our investigation of propagation in the rec-
tangular guide we shall assume A to be proportional to cos (wfy/b). Thus
instead of the general expression (1.2-7) for 4 we shall deal with the more
restricted form

4 = cos (rly/b) > ant(z) sin (wmx/a) (1.3-1)
m=1
where £ has one of the values 0, 1, 2, 3, - -+ . Since the most general dis-

turbance may be obtained by the superposition of disturbances of the form
(1.3-1) no real generality will be lost.

The introduction of (1.3-1) is suggested by the fact that the set auf(z),
ast(z), - - - may be determined from (1.2-9) (at least to within arbitrary
constants of integration) without considering the other am.(2)’s, n #= .
The introduction of (1.3-1) is also suggested by physical reasons. The
plane of the bend is the z, x plane and there is nothing in the system tending
to change the field distribution in the y direction.

Equation (1.2-13) is a special case of (1.3-1). Furthermore the most
general form of (1.3-1) (corresponding to a wave progressing in the positive
2 direction) may be obtained by multiplying (1.2-13) by an arbitrary con-
stant ¢; and summing on j.

In order to write the set of differential equations (1.2-9) for the au.¢(2)’s in
matrix form we introduce the infinite matrices

g O 0 . ﬂflf(z)
10 e o - _ | ae(z)
Di=to 0o 19 -|” (s) = ast(2)
: S (1.3-2)
Pl]. 1)12 . Sll SIE

P=|Pu Pun -|, S =|Su S

where the elements of I'g are obtained by setting # = £ in equation (1.1-5)
for I's, and the elements of P and ( are given by the integrals (1.2-10) and
(1.2-11). The rules of matrix multiplication then show that (1.2-9) is the
p™" element of the matrix equation
Po''(z) — (T + S)afz) = 0 (1.3-3)
Premultiplying by P! ccnverts this equation into
a’(z) — T4 a(z) = 0 (1.3-4)
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where
i, =P, @ +38) (1.3-5)

It may be verified by direct differentiation of the series (1.1-11) defining
exp (—zT') that a solution of (1.3-4) is

afz) = ¢ T gt (1.3-6)

where, as in (1.1-10) for the straight guide, g+ is a column of constants (of
integration). However, now I',, is to be obtained by taking the square root
of the right hand side of (1.3-5), a process which is not easy since it usually
requires one to obtain the characteristic roots and modal columns of Te
(see equation (1.3-10)).

As far as (1.3-6) being a solution of the differential equation is concerned,
T, may be any matrix whose square is given by (1.3-5). We shall restrict
it as follows: When ¢ = a/p; becomes small, as in the case of a gentle bend,
it is seen from (1.2-10) and (1.2-11) that P approaches the unit matrix and
S approaches zero. Hence, I approaches the diagonal matrix Iy, Tois
chosen so that it approaches Iy, that is, all of the elements in the principal
diagonal are either positive real or positive imaginary. This makes
exp(—zI',) approach the diagonal matrix exp(—zI'y). With this choice
of T', the expression (1.3-6) for a(z) corresponds to a wave traveling in the
positive z direction. '

The various modes of propagation in the bend may he obtained from I}
by expressing, in matrix notation, the steps leading to (1.2-13) (which gives
A for the j°h mode). We assume «(z) to be the column matrix obtained by
multiplying the column matrix g of constants by the scalar quantity €.
Setting this in (1.3-4) gives '

(v — T2)g =0 (1.3-7)

where 7 is the unit matrix. In order that (1.3-7) may have a solution, the
determinant of the coefficient of g must vanish. This leads to the char-
acteristic equation* for vy2:

el — T2 =0 (1.3-8)

The vertical bars denote the determinant of the inclosed matrix. The roots
i, 73, - -+ are therefore the latent (or characteristic) roots of . If we let
k;denote** the column g obtained wheny = v; in (1.3-7) then

* See Section 3.6 of Reference®.

** We choose this notation in order to adhere as closely as possible to that of Refer-
ence’. Incidentally, the column %; is proportional to the jt* column of x where « is
the modal row matrix introduced in Section 5.1.
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(i — T k=0 (1.3-9)

and the elements ky;, k2;, - - - of the modal column k; are the ones appearing
as coefficients in (1.2-13). ‘

Equation (1.3-9) and the methods of matrix analysis lead to
%= kyla k!, Ta=FkRlak" (1.3-10)

where k is the square matrix whose 7 ® column is & jand 14, [y]a are diagonal
matrices having v}, v; as the j"‘ elements in their principal diagonals. The
representation (1.3-10) certainly holds for the rectangular guide since in
this case no repeated roots occur.

In analogy with the expression (1.3-1) for 4 we shall henceforth deal
with B in the form

B = sin (xfy/b) g Bmt(z) cos (rmx/a) (1.3-11)

where £ has one of the values1,2,3, - - - . In much the same way as before it.
may be shown that for a wave traveling along the bend in the positive
direction the Bn¢(z)’s in (1.3-11) are given by

B(z) = TP a* (1.3-12)
where d* is a column of arbitrary constants and
=0 (4 U) (1.3-13)
In (1.3-12) and (1.3-13)

[Tee 0 0 - Bot(z)

S N Ol
- ' (1.3-14)

Qo Qo1 - 0 Un Un

Q=|[0Cw Qu ] U=|0 Uy U

0 Un
where the elements of I'g, ¢ and U are given by equations (1.1-3), (1.2-15)

and (1.2-16), respectively.

1.4 Continuity Conditions at Junction of Straight and Curved Rectangular
Guides

Electromagnetic theory requires that E., E,, H. and H, be continuous in
crossing a plane z = constant which marks the junction of a straight and a
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curved wave guide (of the same cross-section). Comparison of the first
equation in (1.1-7) with the first equation in (1.2-5) shows that E; is con-
tinuous if (1)A4 is continuous and (2) if 8B/9z in the straight portion is equal
(the equality being taken at the junction) to (pi/p) dB/dz in the curved
portion. Examination of the expressions for the remaining field com-
ponents shows that all the continuity conditions are satisfied if, at the
junction,

[4 in straight portion] = [4 in bend]

| , 1.4-1)
[(?é I 13 « :I = [E -aé in bend] (
9z p 9

and likewise for B.

Let A in the bend be given by (1.3-1) and let a(z) denote the column
matrix of coefficients shown in (1.3-2). A in the straight portion may be
represented in the same way except that «(z) has a simpler form as explained
in Section 1.1. When these expressions for A4 are inserted in (1.4-1), both
“sides multiplied by (2/a)sin(mpx/a) after cancelling out the cos (r£y/b), and
the results integrated with respect to x from 0 to @ we obtain relations which
may be expressed as the matrix equations

[a(z) in straight portion] = [a(z) in bend]

[d"’(” woow ] = [V dale) ;o bend:l (142

dz dz

where V is the square matrix whose pth row and m™ column (pym =
1,2,3,/---)is

Von = (2p1/a) ‘[ sin (wpa/a) sin (wmx/a) dx/p, (1.4-3)

p being equal to p; + x — a/2.

By using expression (1.3-11) for B in the continuity conditions, it may be
shown in much the same way that the column matrix 8(z) given by (1.3-14)
must satisfy the relations _

[8() in straight portion] = [8(3) in bend]
144
[‘iﬁ%) “ o« ]:[W‘%@mbend] (44

where W is the infinite square matrix

Wo Wn
W=|Ww Wun - (1.4-5)
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whose elemenst are
W om = (eppl/a)f cos (rpx/a) cos (rmx/a) dx/p
0

€@ =1, ep=2 for p>0

(1.4-6)

Both Vp, and W, are discussed in Appendix L.
PART II
THEORY FOR A GENERAL WAVE GUIDE

2.1 Matrix Propagation Constant for a Curved Wave Guide of Arbitrary Cross-
Section

In Section 1.3 it has been shown that for a curved rectangular wave guide
there exists a square matrix I', (or I's) which plays the same role in the
propagation of a wave consisting of many modes as does the propagation
constant in a simple transmission line. There I', was obtained from a
special form of the wave equation which is suited to bends in rectangular
guides. Here we adopt a different approach with the idea of showing that a
matrix propagation constant I' exists under more general conditions,.

The general theory of wave propagation in tubes shows that a wave
traveling in the positive z direction may often be represented as

b=, ci€ pi(x, v) (2.1-1)
=1

where ® is some quantity associated with the field and is analogous to the
functions 4 and B of Part I. In (2.1-1) x and y are transverse coordinates
and z a longitudinal coordinate. 7, is the propagation constant for the 7
mode and ¢;(x, ) the corresponding eigenfunction. For a circular bend in a
rectangular wave guide ¢;(x, ) is a combination of trigonometric and Bessel
functions and v; is proportional to the order of the Bessel functions.

We assume that we may find a set of functions 6,.(x, y), m = 1,2, 3, ...
such that every ¢;(x, ¥) may be represented as

‘ipi(x: y) = Zl kmjem(xy y) (2.1“2)

The usefulness of this procedure depends upon our ability to pick a system
of 6,.(x, ¥)’s which is appreciably simpler than the system of ¢;(x, ¥)’s. In
the work of Part I 6,,(x, v) was taken to be the eigenfunction of the typical
mode of propagation in a straight guide, i.e. the product of a sine and a
cosine.

We assume further in (2.1-2) that the square matrix 2! exists where k,; is
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the element in the m™ row and ;™ column of ; i.e. if a root v; is repeated,
say, s times there are s linearly independent columns (k,’s) corresponding
toy;. Substitution of (2.1-2) in (2.1-1) gives

P = Z 6. (x, ) Z kmjci€
m=1 =1

- (2.1-3)
= ,,.Z;i tim (2) 00 (%, %)
where
m(z) = ,Z: kpjcie (2.1-4)

Since 6,,(x, y) is analogous to the product of the trigonometrical terms in
(1.3-1) or (1.3-11) these equations show that p,(s) plays the same role as
amt(3) or Brt(z). Therefore, in accordance with the discussion given at the
beginning of this section, we wish to show that the column matrix u(z)
(which is similar to «(z) or 8(z)) whose m™ element is pn(z) may be ex-
pressed as
—zT' o+

ue) = °Tf (2.1-5)
In this equation T' is a square matrix to be determined and f* is a column
matrix of constants similar to g+ or d*.

The rules of matrix multiplication and equation (2.1-4) show that

u(z) = ke "ac (2.1-6)

in which [exp (—zy)]s is a diagonal matrix having exp (—3%y;) as the i*
element in its principal diagonal and ¢ is the column matrix formed from the
¢;’s. We introduce the column f* by defining it as x(0) whence

fr=ke, c=Fkft (2.1-7)
Incidentally, from (2.1-3), the value of atz = O is
B, = Z_Zl I3 6z, ) (2.1-8)
where f7 is the m"" element in /™.
From (2.1-6) and (2.1-7)
' u(z) = ke™Ma k' (2.1-9)

In this equation % [exp (—zy)]a ! is a square matrix which may be expressed
as

> (_ﬂf)" e = 3 Gk
= ] =0 n:

—T

(2.1-10)
= ¢€ N
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Here [y] s represents the diagonal matrix havingy; the ™ term in its principal
diagonal and

o (2.1-11)

Therefore we have shown that u(z) is of the form (2.1-5) which is what we
set out to do.

It is rather difficult to compute I' from (2.1-11) using only the above.
definitions of % and v; for one must first obtain the functions ¢;(¥, y). In
dealing with the rectangular guide it is easier to use equations (1.3-5) and
(1.3-13) to determine I'.

2.2 Refleclion al a Single Junction

Let a straight wave guide extending from z = — o« toz = 0 be joined to a
curved guide of the same cross-section which extends fromz = O toz = .
Let an incident wave

= > I m0,(x, ) (2.2-1)

m=1

come in from the left along the straight guide. The /&,’s are given constants,
the 8,’s are the modal propagation constants for straight guides (for rec-
tangular guides they are the I'n,’s given by (1.1-5)), and B (2, ) is the m'™"
eigenfunction for the straight guide (the product of a sine and a cosine for a
rectangular guide). :

What are the reflected and transmitted waves set up by (2.2-1)? The
reflected wave is of the form

Z o €™ 6 (x, 3) (2.2-2)

where the f,.’s are to be determined.
If we assume the representation

= mz=;l MKm (Z)Bm(x; y) (22—3)

to hold for all real values of z then, since ® = ®; + &, for z < 0, equations
(2.2-1) and (2.2-2) show that

pn(2) = I ™ 4 fm € om=1,2,3,...;3<0 (2.2-4)

Introducing the column matrices u(z), &, f/~ and the dlagonal matrices
exp (=£3T'g) where T'q is a diagonal matrix having 4, as the m™ term in its
principal diagonal enables us to write (2.2-4) as

piE) =R+, 2<0 (2.2-5)
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Equation (2.2-5) is more general than the expression (2.1-5) for u(g) in that
it contains waves going in both directions, but is more special in that T'pis a
diagonal matrix.

In the curved guide we take u(z) to be given by (2.1-5) , thus

p@) = 7fY, 2>0 (2.2-6)

where T is a square matrix whose elements are assumed to be known and f+is .
a column matrix whose elements are to be determined along with those of f—.

The conditions that the transverse components of the electric and mag-
netic intensities be continuous at the junction of the two guides are assumed
to lead to the requirements

[u(2) in straight portion] = [u(2) in curved portion]
(2.2-7)

dz :I
where the quantities within the brackets are evaluated at the junction and V
is a square matrix whose elements are constants. When the curvature of the

curved portion becomes small V' approaches the unit matrix. For the
problem at hand (2.2-7) may be written as

[diz u(z) in straight portionJ = I:V 4 u(z) in curved portion

[u(2)]aea = [1(2)]e=to (2.2-8)
d ... _ d
[d—z u(2) L_n =V I:d—z .U(Z):L_H} (2.2-9)
in which the subscripts z = —0, 3 = 4-0 refer to the straight and curved

portions, respectively, of the guide at z =

The requirements (2.2-7) have been established for the rectangular guide
in Section 1.4. Their form is also suggested by the conditions that the
voltage and current be continuous at the junction of two transmission lines.
Thus if we let u(z) play the role of the voltage, the current in the first line is
— 77" du(z)/dz and the current in the second is —Zz ' du(z)/ds where Z; and
Z» denote the distributed series impedances of the two lines. It is seen that
this leads to scalar equations which look like (2.2-7), but now V denotes the
scalar Z:1/Z; instead of a square matrix.

Setting the expressions (2.2-5) and (2.2-6) for u(z) in the conditions
(2.2-8) and (2.2-9) gives two equations which may be solved simultaneously
to obtain f~and f*in terms of 4, T'g, T'and V:

h+f=f*
(2.2-10)
—Toh + Tof~ = —VIf*
fm= T+ VD) (To — VD)k (2.2-11)

= To+ VT)™'2Teh (2.2-12)
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Since f~ and f* specify the reflected and transmitted waves, respectively,
they give the answer which we are seeking.

If the curved guide should extend from z = — = tos = 0 and the straight
guide from z = 0 toz = < the response to an incident wave e ~*T J coming in
along the curved guide would be

p@ = Th+ T, 2<0

2.2-13
ue) =0 ft, 5 >0 (2219
A procedure similar to that used above shows that
== —(To+ V)1 (I'g— V)&
f 0 (To ) (2.2-14)

f+ = (o + VT) 2VTh

where, instead of condition (2.2-9), we have used

v|4 ] -2 W], (22-15)

2.3 Reflection Due to a Bend

Let the guide be straight for — = < z < —cand for¢ <z < =, and let
these two portions be connected by a curved portion in which the longi-
tudinal coordinate z runs from —c¢ to +¢. As in Section 2.2 we take the
matrix propagation constants for the straight and curved portions to be the
square matrices Ty and T', respectively, and assume an incident wave,
specified by the column matrix %, to come infromz = —«.

The column matrix u(z) whose m" " element appears as the coefficient of

f.(x, ¥) in the representation (2.2-3) for @ is now given by

p@) = R+ T fT, 5< —¢
() = (cosh zINp + (sinh g, —e<z<¢ (2.3-1)
u(z) = e fT c <z
In these expressions f~, f*, p, ¢ are column matrices which may be de-
termined as functions of the known matrices T'o, T', V and % by substituting

(2.3-1) in the conditions (2.2-7) which must hold at the junctions 2 = —¢

and z = ¢.
By straightforward algebra similar to that used for the analogous problem
in transmission line theory we obtain

T Tt = [T 4 2(VT tanh T + To)™ T} e R

. ) . (2.3-2)
T~ — Tt = [T + 2(VT coth ¢ + To) ™ T'g] & &
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In these equations the infinite square matrix tanh ¢T' is defined as (sinh ¢I')
(cosh ¢I')™* and coth ¢T' as its reciprocal. - sinh ¢T' and cosh ¢I' may be de-
fined as power series in ¢I' and may be expressed as combinations of exp (cI')
and exp (—T).

An expression for the column matrix f~ may be obtained by adding the
equations in (2.3-2). Before doing this it is convenient to introduce the
two column matrices x and y defined by

(Vel tanh o' + ¢I'g) x = clo e h

: (233
(VeI coth ¢ + c['o) v = cT'o & (2.3-3)

where the scalar length ¢ has been introduced to make the various terms
dimensionless. Each equation in (2.3-3) represents an infinite set of
simultaneous linear equations to be solved for the elements of x or .

Once x and y are known the reflected wave is given by

f— — ec]‘ﬂ (x + y) _ 2Ty A (2.3_4)
and the transmitted wave by
ffr=e¢"x—y) (2.3-5)
PART III

GENTLE BENDS—GENERAL THEORY

3.1 Limiting Forms Assumed for T' and V

It will be shown in Part IV that for gentle circular bends in rectangular
wave guides the matrix propagation constant I' is such that

=T+ F (3.1-1)

where T is the square of the matrix propagation constant for the straight
guide, Tiisa diagonal matrix having 6,":. (which is one of the I‘f,.,,’s, depend-
ing on the set of modes under consideration, given by (1.1-5)) for the m*
element in its principal diagonal. F is a square matrix of infinite order in
which the elements F;; in the principal diagonal are of order £ and the re-

" maining elements F;;, i # j are of order £. Here £ = a/p; is the ratio of the
‘guide width to the radius of curvature of the bend. As the bend becomes
more and more gentle, £ — 0.

The asymptotic expressions given in Appendix I show that, for gentle
bends in rectangular guides, the square matrix V which appears in - the
junction conditions (2.2-7) approaches a unit matrix as £ — 0.- In par—
ticular Vu = 1+ v;; where v;; is of order £, and V;, the element in the i
row and 7 column, is of order £ when 7 = j.
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Throughout the remainder of Part III we shall assume that T'?, F and V
behave as mentioned above. In addition we assume that there is no de-
generacy, i.e. all of the §,’s are unequal to each other and to zero.

3.2 Propagation in a Gentle Bend

‘Here we assume that the elements of T and F in the expression (3.1-1) .
forT? are known. We wish to find the modal propagation constant v; and
the corresponding eigenfunction ¢;(x, ¥) for the 7™ mode.

After squaring both sides of the collineatory transformation (2.1-11)
connecting I' and the diagonal matrix [y]4 we obtain a relation which may be
written as k[y2]s — Ik = 0. The left hand side is a square matrix having
(viI — T?)k;as its j** column. Here I is the unit matrix and &; is a column
matrix having ki;, ks;, . . . as its elements (k; is the 7" column of k). Thus
we have a system of simultaneous linear equations in which the coefficients
are furnished by the square matrix y3}/ — I'? and in which the unknowns are
kyjy kajy -+ + . Accordingly, v7 is the j™ latent root of I'® and ; is its cor-
responding modal column just as for the rectangular guide in Section 1.3.

In order to apply equations (A2-16) of Appendix IT we set »; = ~; and
# = I so that, from (3.1-1),

uj; = 52,- + Fjj, ui; = Fij, P77 (3.2-1)

Therefore ‘
-y?- = rﬁ' + F;i + .2;' F,-,F,,-/((SZ,- - 53) (3.2-2)
kﬁ = 1, ku)‘ = Faj/(‘ﬁ' - 62); s #= J (32~3)

where we have neglected terms of order ¢’ in (3.2-2) and of order £ in k,;,
s # 7. The prime on the summation indicates that the term s = j is to be
omitted.

When k,j, k2j, ... are known the eigenfunction ¢;(x, y) may be written
as a series in 8,,(x, ¥) by means of equation (2.1-2).

In Section 3.3 we shall need the form assumed by the square matrix T
tanh ¢I" in a gentle bend. This matrix is used in computing the reflection
from such a bend, as might be inferred from equation (2.3-3). The formula
to be used is (A2-18) with u = I'%, A\; = ~% and with the elements of the
square matrix 2 given by (3.2-3). In the diagonal matrix of (A2-18) we set

) = AY? tanh AY® = v; tanh ¢y; = vit;
(3.2-4)
{; = tanh cy;
and for the elements of 2! we use (A2-19) together with the line above it.
When the three matrices on the right of (A2-18) are multiplied out the ele-
ment (T tanh ¢T');; in the 7% row and j* column of T' tanh ¢T" is found to be
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(I‘ tanh Cl‘),’i = (’th,' - ’}';‘ti)kﬁ, i #] (32—5)
(U tanh D) i = viti + 2 (its — Ymbn)Rimkmi (3.2-6)

where in (3.2-5) and (3.2-6) terms of O(£?) (‘“‘order of”) and O(£"), re-

_spectively, have been neglected. This is in line with the fact that the terms
in the principal diagonals of our matrices must be accurate to within O(¢)
while the remaining terms need be accurate only to within terms of O(£).
The summation with respect to s runs from m = 1 to « with
m = 1 omitted.

3.3 Reflection from a Gentle Bend

When the bend is gentle so that ¥ and I' behave according to the descrip-
tion given in Section 3.1, the matrix expressions for the reflection coefficients
given in Section 2.3 may be evaluated. The results stated in Appendix II
for “almost diagonal” matrices furnish the principal tools for this work.

It is assumed that the incident wave coming in along the straight guide
from the left is ®; = exp(—s8,) 0,(x, ¥) and hence contanis only the pt*
mode. Comparing this with the general expression (2.2-1) for ®; shows
that by = 1,k = 0,m 5 p, and all the elements of the column matrix / are
zero except the p** which is unity.

We start by writing the first of equations (2.3-3) as

(T tanh ¢ 4+ V-Tg)x = V1Toe ™k (3.3-1)

Since V approaches a unit matrix as £ — 0, the element (V=1);; in the ith row
and 7t* column of V-1is

(VNig= Vi, 1#]

3-
Vs =1—vis+ 2 Viw Vi .
where Vi = 1 4+ 44,4, = 1,2,3, . . . and the summation with respect to m
runs from 1 to « with the term for m = ¢ omitted (as indicated by the prime
on Z). In omitting this term we are neglecting v%; because it is of order
£ These results follow from equation (A2-2) of Appendix II. As usual,
the elements in the principal diagonal are accurate to within O(¢?) and the
remaining elements to within O(£).
It follows that V=T e ® & = nis a column matrix whose 7** element is

i = —Vipbp ecﬁp: i # 4

(3.3-3)
= (1 — vpp + Z' Vom Vinp) 85 Bcﬁ,,’ i

Il
=
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Likewise, the element in the ¢*" row and jt* column of the square matrix
V1Tgis —Vy;8; when i # jand is

(1= vii 4 22 Vin Vi) s (3.3-4)

when 7 = 7.

By combining the approximate expressions for the elements of T' tanh ¢TI’
(given by (3.2-5) and (3.2-6)) and V! Ty we find that if u;; denotes the 4t!
row and j*" column of T' tanh ¢I' 4+ V=! T'g then

wig = Dij — Vigby, 1747
i = vili + 2" Duikin + &(1 — w + Z’ Cmi) (3.3-5)

m m

= o; — &ty + 2’ (Dm.‘ ki -+ 5;Cm.')

In these equations we have set
o= 8; + vils, Coi = ViV
-Drni = ('Yl'ti - 'Ynltm)kmi = (’Yiti - 'Ymtm)Fm-i/(aci - 6?11)

where v; and k,,; are given by (3.2-2) and (3.2-3).

We are now in a position to identify the matrix equation (3.3-1) for &
with the set of equations (A2-20). The quantity 5; which appears on the
right hand side of the i*" equation in (A2-20) is given by (3.3-3). The
coefficients which appear on the left hand side are the «’s defined by (3.3-5).
Therefore, from (A2-21), when 7 # p,

specép

X = —— ["-T",'p(cr,, - 51)) - Dl‘p]

ail0y

(3.3-6)

(3.3-7)
I.[’:'pap !.u + I'||'p ('5itn' - 6}1111)(53 - 'ﬁ:)_l]

ec& »

T T A+ + )
where we have neglected higher order terms and in so doing have replaced
v; by the simpler §; .

When 7 = p (A2-21) yields

= pplny 22 (om U My — U Uy M)/ (s )] (3.3-8)

In order to combine the second order terms in 1/#%,, with those in the rest
of the expression for x, we assume that ¢, is the major portion of #,, .
Then, approximately,

1ty = ‘7;1[1 + Sptpp/op — Z’(Dmvkpm + 6, Cup) /0l (3.3-9)
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This assumption, which is equivalent to assuming that tanh ¢y, differs
appreciably from —1, does not appear to restrict our results since tanh
¢y p is either purely imaginary or else real and positive.

Substituting the appropriate values in (3.3-8), neglecting higher order
terms, and using the definition (3.3-6) for Cu, leads to

Xp = a'_pl 0p ecﬁp[l - (1 - 5,,/0’;.)%, + E’ ("fp Um)_l{cmp(o'p - 511)(0'm - 5,.,)

+ Dmp(D.nm — Om kpﬂl) + (0'19 - 5P)D11m Vﬂw — O Dnp me}] (3-3"10)

A reduction similar to that used in going from the first to the second line
of (3.3-7) gwes our final expression for %,

_ bpe? 1y € [ 5V
*r 8y + Yalp (1 + ¢ )2 ; Vom Vap b/ (1 + 1)

— 8ply
+ Z O 5,,(1 -|- 1) (8%

i) [ me 6m Fmp/tp (3.3—‘11)

-mm%+mm@+nwﬁ—$ﬂ]

The above expressions for x; and x, have been derived from the first of
equations (2.3-3). The second of equations (2.3-3) determines the column
matrix ¥ in the same way that the first equation determines x except that
coth ¢I' now replaces tanh ¢I'. Therefore, we may obtain expressmus for
‘the elements of y by replacing the #’s (where ¢; = tanh ¢v;) by their recipro-
¢als in the expressions for the corresponding &'s (i.e. in (3.3-7) and (3.3-11).
The values obtained in this way lead to, when 7 = p, '
fi= @+ )

= 57 T sinh o(yi + vo)[— Vindp — Fap/ (8 + 55)]
JT =" — 9

= 5_'1 ec“‘-ﬂp_‘h ) Sl[lh C(Yi - Yp)[Vt'p ap - Fip/(ai - ap)]
where we have used the expressions (2.3-4) and (2.3-5) for f~ and f"'
When ¢ = p,

15 = "z, + yp) — € = — P[4, (sinh 207,)/2 + 42)  (3.3-13)

(3.3-12)

where
. V mFm + Vm F m
Al = 21,:;')p + (’Yi — 62?)61,2 - Z’ [V'pm Vm?z + z BP — '5 —* :l

m

) (cosh 2¢y, — e7%m)

p 25, 5;.(5,2,.. _ 52,) [me Flnp 5.21. + V:np Fpm 62,, + Fpm Fm,,l

As =
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The expression for /5 may be obtained in the same way but it is slightly
more complicated.

It = ez, — y,) = [ — Ay + A, (sinh 207,)/2 + A5 (3.3-14)
where
As = (1 — ")y, — 8,)Y/(453)

—9¢ V mFm - Vm F m 2F mFm
A, = Z: ¢ 2 'rml:_me Vmp + il 6211 — 52 PP (_62 p_ 523;2]
m m b m P

_ (e~c*mcosh 2¢y, — 1)
A _ !
= 2 26,1 6,(6m — 63)
(8n + &7 )meFmp-l

'[V;mempa Vmprma +
a2 — o

There are several points we should mention about these formulas for f; and
ft: The summations with respect to m run from 1 to « with the term
m = p omitted. v; and §; are the propagation constants of the jth mode
in the bend and in the straight portion, respectively. The difference
+* — &% may be expressed in terms of the F’s by equation (3.2-2). In the
course of obtaining (3.3-13) and (3.3-14) relatmns of the followmg sort
were used.

tp(1 + tp)_2 = e—chy(Sinh 2¢72)/2
(tn + )1+ 1) + 1) " = € " (cosh 2cy, — € *"™)

The term A arises when we subtract (1 — £5) (1 4 ¢,) " from
85/ (p + Vobs) — St/ Yy + 84iy)

Since v, — 8, is O(£?) for a circular bend in a rectangular guide (y,— 6 Bk
is O(£") and hence A3 is negligible in the cases we shall consider.

The reflected wave set up by an incident wave of unit amplitude and con-
taining only the p*" mode (i.e. the incident wave described at the beginning
of this section) is given by the column matrix f/~ whose elements may be
obtained from (3.3-12) and (3.3-13). Likewise, the transmitted wave is
given by f*.

PART IV

GENTLE CIRCULAR BENDS IN RECTANGULAR WAVE
GUIDES

4.1 Propagation of Dominant Mode in a Gentle Bend—H in Plane of Bend

When the magnetic intensity H lies in the plane of the bend, H, = 0,
and equations (1.2-5) show that B = 0. . Thus we have to deal only with
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A. In order to study the dominant mode we set £ = 0 in the cos (w {y/b)
(A depends on y through this factor) in the formulas of Section 1.3 which
involve A and assume the dimensions of the guide to be such that & < a.

We wish to determine 3, the first latent root of I'y defined by (1.3-3),
from the approximate formula (3.2-2). Inour case the elements 3y, of diag-
onal matrix T’y are obtained by putting #(= £) to zero in (1.1-5):

o2 =Too = o + (wm/a)’, m=1,2,3,-- (4.1-1)
so that (3.2-2) becomes '

'Yi = Pia + Fu — 22 Fim Foa 3271'_2('"12 - 1)—1 (4-1"2)
The first task is to find the elements of the matrix F where, from (3.1-1)
and (1.3-5),

F=T:—-Ti=(P'—= DIy + P'S (4.1-3)

In the case under consideration P = I 4+ R where R is a square matrix
whose elements are very small. In fact, the asymptotic expressions lead-
ing to (A1-18) show that R;; and Si; are O(£), with £ = a/p;, while R;;
and §;;are O(¢) if i + 7 is odd and O(#?) if i + jis even. When the approxi-
mate value of P! obtained from (A2-2) is set in (4.1-3) and the matrix
multiplications carried out it is found that

Fij= — RiTh + Si; + 0(8)

w ) ® 4.1-4)
Fyi= (—Rﬁ + z‘; Rt’mRmi) I% + Sa — Zl Rin Smi + O(£) (

The “order of”’ symbol O( ) will be omitted in the following equations, it
being understood that the terms in the principal diagonal are correct to
within O(£%) and the others to within O(£).

The values of the F’s which enter (4.1-2) may be computed from the
asymptotic expressions (A1-18) for the R’s and S’s. They turn out to be

Fin = —48m[dTh 7 ‘(m" — 1)7° + 367 (m" — 1)7]
F = —4EmaTh 7 — )7+ a7’ — 1) (4.1-5)
Fy = £l — 6% + 6a7%|/12

In the expressions for Fy,, and F,,; m is supposed to have the values 2, 4, 6,
For odd values of m Fy,, and F,; are O(#2). When 7 = 1 in the ex-
pression (4.1-4) for Fyy, the two series therein reduce to S; and S, where
Sp = 2, mi(m’—1)" (4.1-6)

m=2,4,6--.
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By éxpanding the typical terms in partial fractions and using the fact that
the sums of (see, for example, page 238 of Reference'?)

Uy=14+374+5%4 ...

(4.1-7)
= (=)""73(2" — DBa"/q!
for g = 2, 4, 6, are /8, x*/96, = /960, it may be shown that
Sy = 7/64, S, = «n'/768 — x°/128,
(4.1-8)

S; = (157" — =)/3072.

In (4.1-7) B, denotes the ¢"" Bernoulli number. The values of S, may also
be computed in succession from the two relations*

D ptl
2i—1 2{—2
Uﬂp = Z 2 C.u+i—1.2i—1 Spi = Z 2 Coti-1,2i—2 Sp.h-
i=1 i=1

where Cp,. is a binomial coefficient. Still another method is to make
use of the generating function

S PSS =1+ >, m—1-0"=3%— irxcotmx
p=0 m=2,4,6-
where 432 = 1 + ¢. Note that by this definition .S} is % in contrast to the
non-convergent series obtained by putting p = 1 in (4.1-6).
Substituting the values for the F’s given by (4.1-5) in the expression
(4.1-2) for ~1 and using the sums (4.1-8) of the series which occur gives

2
ﬁ=m—%uwﬁm_wﬂﬂmwmeM(um
When the dominant mode is propagated without attenuation both 'yf and
Tjo are negative.
The general form of (4.1-9) has been obtained by both Buchholz' and
Marshak® by different methods. In our notation their result is

2

4
Ymn = Ton = 55 [1 + @ Tha(l — 67 "m ) + (aFm") (5 - TrEmE/S)]

4a? Tm

(4.1-10)

where v, is the propagation constant for the m, nth mode when the mag-
netic vector is in the plane of the bend.

*1 am indebted to John Riordan for these relations.
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4.2 Reflection Due to Dominant Mode Incident upon Gentle Bend—H in
Plane of Bend

Let the system be the one described in the first paragraph of Section 2.3
and let the incident wave contain only the dominant mode. Then the
matrix propagation constant is the I', of Section 4.1 and the column matrix
k specifying the incident wave has unity for its top element and zero for its
remaining elements, i.e., # = 1 in the formulas of Section 3.3.

We shall be interested only in the reflection coefficient, f1 of the dominant
mode. Here we shall denote it by g1, in line with the notation of equa-
tion (1.1-3), in order to distinguish it from the corresponding coefficient
(which will be denoted by dp1) when E lies in the plane of the bend. .

Setting # = 1 in the expression (3.3-13) for the reflection coefficient and
using equation (4.1-1) for & gives -

f1 = g = —“ T[4 (sinh 2071) /2 + 4d]  (4.2-1)
where v1 has just been obtained in (4.1-9) and
Ay = 2y + (v1 — T)T

_ i[vl -V 1 + Vlmle + leFlm:I

b m2a(mt — 1)

—2¢c (4'2_2)
4 = E cosh 2¢cyp — e '™
2 me=? 211,”0 P1oﬂza_2(m2 - 1)
" [VIm. le Pvznﬁ + Vmi Flm I‘EO + Flm le]
From (A1-18) and V1, = 1 4 vy it follows that
m = £(1 — 6772)/12
(4.2-3)
Vin = Va1 = 8 2%m(m? — 1)72
where m = 2, 4, 6, --- . For odd values of m, Vy, and V,; are O(¢2)*

Substituting these values together with those for the F’'s given by (4.1-5)°
using the sums (4.1-8) and the expression (4.1-9) for y; — T}, finally leads
to (after considerable cancellation)

A= — T4  (4.2-0)
Likewise, for even values of m,
VimFmiToo + VaiF1nTo + FrnFon = 16E2m%a*(m? — 1)~ (4.2-5)

All of the terms in the expression (4.2-1) for gip are now known (the values
of ¥» may be obtained by setting » = 0 in (4.1-10)). - We shall make the
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further approximation of putting Ty for v . Since Tho — ¥n is O(£2) no
serious error is introduced and we have '

- Efsﬂh 2¢Typ -‘.EE (cosh 2¢Tyg — e2¢Tmo) ’
810 = Sl‘gu az - 7I'2 m=2§“l 1110 I‘n.U a? m (4.2_6)
in which

al'mo = ['Frz('m-‘2 - 1) -+ azl‘fg]i, E = a/Pl . (42_7)

+“For frequencies such that only the dominant mode is propagated the
ratio of the power in the reflected wave to the power in the incident wave is
| g0 > Marshak has given an expression for this ratio which is the same
as that obtained from (4.2-6) when the negligible (for his case) terms e >*'™°
are omitted.

The corresponding expression for the transmission coefficient derived
from (3.3-14) for f7 is not as simple as (4.2-6).

4.3 Propagation of Dominant Mode in a Gentle Bend—E in Plane of Bend

When the electric intensity E lies in the plane of the bend, E, = 0, and
equations (1.2-5) show, that A = 0. Here we deal with B in much the
same way as we dealt with 4 in Section 4.1. The ‘dominant mode is ob-
tained by setting £ = 1 in the sin(r {y/b) in the formulas pertaining to B
in Section 1.3. It is assumed that & > a.

Examination of the matrices (1.3-14) indicates that, for the sake of con-
venience, we should call the top row of our matrices the 0" row and the left-
most column the 0* column. In line with this we call v, the propagation
constant of the dominant mode in the bend. The elements é;, of the diagonal
matrix I'; are obtained by putting n(= £) = 1 in (1.1-5):

m = Tn1 = o + (mm/a)’ + 7°/6",  m=0,1,2,--- (43-1)
When we make the appropriate shift in the subscripts, equation (3.2-2)
yields

‘Y(&;‘ = I‘Izll + 1"00 + E Fﬂm Fm() (]'-2 T'I'_2 711_2 (4.3—'2)

m=1
in which the elements of the matrix F are to be determined from (1.3-13):
F=Ts=Ty=(Q" — Dy + QU (4.3-3)
As in (4.14) we have, withQ = I + T,
Fij= —TyTh+ Uy
(4.3-4)

m=0 m=0

Fﬁ = (7Tit' + Z Tl'm T!r.i) FEI + L"ﬁ - Z Tinn lrm:‘-
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By using the asymptotic expressions (A1-19) for the 7s and U’s and sum--
ming the series with the value of (4.1-7) for ¢ =4 given in Section 4.1 we
obtain ’

Fom = —2E2T0m "m > + a™7]
Fo = —88T0m 'm " (4.3-5)
Fo = 52P§1/12'

In these expressions m is supposed to have the values 1, 3, 5, +-- . When
m is even Fo, and F,o are O(£%).

Substituting (4.3-5) in (4.3-2) and summing the series with the helo!
of the values of (4.1-7) given in Section 4.1 gives

nb = T% — ETa(5 + 2a°T51)/60 (4.3-6)

A result equivalent to (4.3-6) has been given by Buchholz who also gives
the approximation to the propagation constant when m >0 (and the elec-
tric vector in the plane of the bend). In our notation his approximation
is

Ez al‘,,.,,
%’.’m=r?“+H 3 (10 + =m’)

+1 (“:'"") @1 + = m)]

In writing (4.3-7) we have corrected a misprint in Buchholz’s expression.
In order to agree with Buchholz’s equation (5.30a) the leading term within
the square brackets would have to be changed from 3 to —3. This change
was indicated by the results obtained when our equation (3.2-2) was used
to obtain special cases of (4.3-7). Probably the best way of obtaining
(4.3-7) is furnished by Marshak’s method (WKB approximation, out to
second order terms, applied to Bessel’s differential equation). If one wishes
to verify (4.3-7) by using Marshak’s report® as a guide, he should correct
the misprint in Marshak’s equation (12a).

(4.3-N

4.4 Reflection Due to Dominant Mode Incident upon Genile Bend—E in Plane
of Bend

The problem here is the same as that treated in Section 4.2 except that
now the electric vector lies in the plane of the bend. In line with equation
(1.1-4), the reflection coefficient /7 for the dominant mode will be denoted
by do1. As in Section 4.3 the subscripts indicating the position of matrix
elements will be adjusted so as to start with O instead of 1. The square
matrix W given by (1.4-5), and associated with the junction conditions for
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B in the same manner as V is associated with 4, now replaces V. Thus
our expression (3.3-13) for the reflection coefficient becomes

foi = di = — [Ax(sinh 2e'0))/2 + As] (4.4-1)

where we have neglected the difference in T'p; and v and where

o0

Ay = 2w + ('Yg — )Tt — 2,

m=1

Wom Fuo + Wio Fom:l
Tatm? (4.4-2)

: [H-'um Wi +

—2¢ Ty

_ i cosh 261—‘“1 — &

m=1 ZI‘ml T'n T2a "2 m?

| Wom Foo Tt~ Wao Fom Toy + Fom Fina)

From W = 1 4 woo and the asymptotic expressions (A1-19) it follows
that, form =1, 3,5, ---
woo = £/12
" o L (4.4-3)
Wom = 2Em 1 7, Who = 46m

For even values of m, W,, and W, are O(£?). Substitution of these values
together with those for the F’s given by (4.3-5), using the sums (4.1-7)
and expression (4.3-6) for ve — T4y leads to

Ay = £/12
WonFmilm1 & WonoFonl't1 + FonFoo = — 88Toa " r "m >

for m odd.
Thus the reflection coefficient for the dominant mode when E lies in the
plane of a gentle bend of length 2¢ is approximately

Egsinh 261—‘91 + 524P01 i cosh 26P01 —_ EﬁECFMI

24 774 m=1,3,b-"- m4 le

where 'y is given by (4.3-1) and b > a.

(4.4-4)

d;1=_

PART V

NUMERICAL CALCULATIONS

5.1 Bend in Plane of Magnetic Vector

Let a/b = 2.25 and Ao/a = 1.400 where \q is the free-space wavelength
of the dominant wave striking the bend. The propagation constant
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I'1o of the dominant wave is obtained by setting m = 1, » = 0 in (1.1-5).
The I's corresponding to the higher modes may be obtained from the
same formula:

2
a’Th = — (%"—‘?) 4+ 7= —10.272 aTy = i 3.205
0
a'Th = a'TTe + 3= = 19.336 al'sq = 4.397 (5.1-1)
a'T3g = a'Tho + 87° = 68.684 alyp = 8.288

We shall consider a 90° bend. The approximation (4.2-6) appropriate
to gentle bends becomes

g = i’ [— 0122 sin (5.03/£) + .0087 cos (5.03/8)]  (5.1-2)

where the exponential terms have been omitted since they are generally
negligible. In (5.1-2), £ = a/p1 and the arguments of the sine and cosine
terms arise from 2cI'yp = waly/(2£). From (4.1-9) the approximate
change in the propagation constant produced by the curvature is obtainable
from

vi — o = .2948/a’ (5.1-3)

where 7, is the propagation constant of the dominant mode in the bend.

The determination of giy by matrix methods will be illustrated for a 90°
bend in which pi/a = 0.6. This makes ¢/a = pir/{da) = 4712, Ty =
1.510 and the appropriate equations in (2.3-3) and (2.3-4) become, upon
setting /1 = g and = gh,

g = ™ — ) = (061 + i.998)(x; — )
M0 ) — €70 = (061 +i998)(zm + ) (5.14)
+ .993 — i.121

g1

Here #1 , y1 are the top elements in the column matrices , y. * The problem
is to compute x and y from the matrix equations (2.3-3) with I' replaced
by T, T'o defined by (1.3-2) with £ = 0, and % a column matrix whose
elements are zero except the top one which is unity. Since the order of the
matrices is infinite, an exact solution calls for an infinite amount of work.
A compromise must be made between the accuracy desired and amount of
work one is willing to do. The following numerical work uses third order
matrices. )

The first step is to compute the square matrix, obtained from (1.3-5),

T = P Ud'1% + a°S) (5.1-5)
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The elements of the diagonal matrix a®I'y are given by (5.1-1) and those of
P and S by the equations and tables of Appendix I.

[1.4429 8812 .6821 |* —12.292 3.3447 1.6087
aT = 8812 2.1250 1.3745 —6.3039 16.369 6.9738
\_ .6821 1.3745 2.4879 —3.5034 —11.3031 65.213 (5.1-6)
—9.086 —1.785 —5.178
= 157 17.218 —19.362
L .996 —13.566 38.329

The next step is to use (5.1-6) to evaluate the coefficients of x and y in
(2.3-3). The square matrices I'ac tanh I'ac and T'ac coth T'ac cause most of
the computational difficulties. We shall deal with these matrices by using
Sylvester’s theorem (an account of this theorem is given in Section 3.9 of
Reference®). This requires the determination of the latent roots and modal
rows of a’T'%. However, it is interesting to note that the matrices in ques-
tion may also be computed from ¢'I'% (which is easily obtained from a'T'%)
by processes which employ only matrix multiplication, addition, and in-
version.

Thus, setting A* for &T%,
2 4
A7sinh 4 = 1 +%+i§—!+ .
4* 4
cosh 4 = I+§-!-+ZT+ .

A coth A = (cosh A)(A~* sinh A)!

A tanh A = A% A coth A)7.

Although the series always converge, they do so too slowly to be of use in
our computations. The same is true of the series

Atanh 4 = 2 84°[(2m — 1)°2°T + 447"
m=1

For the matrices we shall encounter it appears best to use Sylvester’s
theorem even though this requires the determination of the latent roots and
modal rows of a'T's. The square matrix formed from the modal rows*
will be denoted by «.

* As has already been mentioned in the footnote associated with equation (1.3-9), we
shall use the notation and theory set forth in Sections 3.5 and 3.6 of Reference?.
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We shall use the relations™®
I'ec tanh Toc = x [yc tanh yela «
(5.1-7)

I'ac cosh T'uc = k! [yc coth vela k

where the subscript d on the brackets stands for “diagonal” matrix, the
i™ element in the principal diagonal of [yc tanh yc] being v ¢ tanh y:c where

vic = \*/a (5.1-8)

and \; is the ith latent root of a’I'z . In our applications v, is either posi-
tive real or positive imaginary.

From (5.1-6) the \/’s are the roots of

A + 9.086 1.785 5.178
—.157 A —17.218 19.362 (5.1-9)
—.996 13.566 A — 38.329

= N — 46.461 22 — 101.96) + 34645 = 0
and have the values
A = —8.886, A = 8.284, A; = 47.06 (5.1-10)

The elements ka; , x3; of the modal row [1, ka1, k31] corresponding to Ay
may be obtained by solving the two equations derived from the last two
elements of

[1, ko1, ks)Md — @'T%) = 0 (5.1-11)

namely,
1.785 + (A1 — 17.218) ka1 + 13.566 k31 = 0

5.178 4 19.362 ko1 + Ay — 38.329) k51 = 0
When the value of ; from (5.1-10) is used these equations yield
ko1 = .1593, kg1 = .1750
Likewise, the first and third elements of
[k12, 1, kasl(\al — @'T%) = 0
and the first and second elements of
k13, ka3, 1](Asl — @'T%) = 0

* This is the modal row matrix analogue of equation (11) in Section 3.6 of the Refer-
ence?. The modal rows of I'; are equal to the modal rows of a?T%,.
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give R

K12 = 0-1-()5 K3a = .6524
K1z = 0165 K23 = _4555
Thus, the numbers entering (5.1-7) are

yic = 4712 (—8.886)" = i 1404,  yac = 4712 (8.280)"" = 1.356

1€ tanh y1¢c = —8.382 vo¢ tanh vysc = 1.187

v1¢ coth' yic = 2354 va¢ coth yse = 1.549

yac = 4712 (47.06)"* = 3.233 [ 1 1593 .1750
3¢ tanh y3c = 3.228 0465 1 6524
vac coth ysc = 3.243 .0165 — 4555 1

For the purpose of calculation it is convenient to transform (2.3-3) by
inserting (5.1-7) and premultiplying by xV—'.  We obtain

(lyc tanh yclax + &V 'Toe) & = &V el Top,

. . (5.1-12)
([ye coth yelax + kV Toc) v = &V Lo
in which
M1 1593 17507 [1.1204 3911 .1629
K1 = 0465 1 6524 3911 1.2833  .4946
0165 — 4555 1 | L 1629 4946 1.3460
9492 —.1992 0883 ] Tiwc = 1 1.510
= | —.2608 7686  .2339 |, Tooc = 2.072
1427 —.7900 1.0160 | Tac = 3.905

where the elements of V are obtained from the formulas and tables of Ap-
pendix I.
The i equation of the set obtained by writing out the first of equations

(5.1-12) is

3

Z [kjevc tanh yic + (kV71) i1 ol = (V1 uCmefr"1 (5.1-13)

= e saedT
where (V') :; denotes the element in the i™ row and j** column of k¥,
k;: is the element in the i™" row and 7' " column (note the reversal of the
usual convention regarding the order of subscripts) of , ;i = 1, and /
has disappeared because it is a column matrix whose top element is unity
while the remaining elements are zero. It will be noted that the only
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imaginary terms in (5.1-13) occur ip the coefficients of «x and arise from the
imaginary quantity T'joc. By making the substitution

r
’Hi;CFch 10
X =

- 1 4 uclM'o
the set (5.1-13) may be reduced to

(5.1-14)

3
(k1eyic tanh v; c)us + Z, [kssvic tanh vic + (kV )i Tioclu; = (kV"Y)a
f=
(5.1-15)

in which the coefficients are all real. It should be noticed, however, that
nothing is gained by making the substitution (5.1-14) when the frequency
is so high that other modes in addition to the dominant are propagated.

The equation for y corresponding to (5.1-15) may be obtained by re-
placing tanh by coth and # by v where now

cl1g
_ T),'CI‘]O €

yj o 1 + ™ Crm

Incidentally, if we set § = 1 in (5.1-14) and (5.1-16) and substitute in
the expressions (5.1-4) for gﬁ we may show that, since #; and v, are real,

lgho "+ |gul =1 (5.1-17)

Equation (5.1-17) may be obtained at once from the fact that the energy
of the waves leaving the bend must equal the energy of the incident wave.
It may also be shown that gy vanishes when w3 = 1.

When the above numbers are set in the three equations obtained from
(5.1-15) we get

(5.1-16)

8382wy —1.748 up —1.122 13 = 9492
055 2ty +2.780 15 +1.688 15 = —.2608
053 2y —3.105 2z +7.191 g = 1427
from which
= — 0040, 2 = .1400 + 7.0113

The equations for v; obtained by substituting coth for tanh are

2354 v — 3732 95+ 3861 93 = .9492

0717 vy + 3.1417 v + 1,924 93 = — 2608

0534 9, — 3.1143 9o + 7.211 93 = 1427
from which

71 = 3.930, y1 = —.1045 4 1.9803
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When these values are set in (5.1-4) we finally obtain

gh = .9822 4 1.1858
g10 = 0048 — 7.0255

The following table lists values of gio obtained by the methods of this
section*. Here the bend is in the plane of H, a/b = 2.25, A¢/a = 1.400,
where Ag is the free space wavelength of the incident wave. p; is the
radius of curvature of the axis of the guide. The smallest possible value of
pi/a is 0.5. The term “approx.” refers to equations (5.1-2) while “1st
order”, “2nd order”, etc. refers to the order of the matrices used in the
computations. The amplitude of the reflected wave is g0 and the ampli-
tude of the wave sent forward is gio when the incident wave is of unit ampli-
tude.

gio
pi/a Approx. 1st order 2nd order 3rd order
.6 964 +1i.267 980 +41.197 982 +1.186
T 974 +14.224 994 44105 994 44111
8 984 +1.178 997 +4.082 997 +4-1.082
9 988 +14.153 997 +41.074 997 41073
1.0 991 +4.135 998 +1.066 998 41.066
1.2 994 4-4.110 998 +414.056 998 4-4.056
1.5 996 +i.084 999 +1.043 999 +14.044
g1
6 —1.0280 0020 —1.0074 0056 —1.0280 .0048 —1.0255
g —1.0068 —.0005 +1.0023 .0013 —1.0131 .0007 —1.0066
8 +4.0062 —.0013 +4.0074 —.0003 +4.0039 —.0004 +4-4.0051
9 +4.0128 —.0014 +4.0087 —.0009 41:.0123 —.0009 +1.0123
1.0 44.0143 —.0010 +4.0075 —.0010 +41:.0148 —.0010 +4.0147
1.2 +i.0079 —.0002 +4.0018 —.0005 +i.0086 —.0005 +1.0085
1.5 —1.0040 +.0003 —17.0034 +.0002 —:.0041 +.0002 —1.0042

It appears that the values obtained from the first order matrices are quite
far from the true values. On the other hand there is considerable agreement
between the approximation and the second and third order values, especially
at the larger values of pi/a.

5.2 Bend in Plane of Eleciric Vector

" The calculations for this case are quite similar to those presented in Sec-
tion 5.1. If we are to deal with the same waveguide it is necessary to

* The computations were Ferformed by Miss M. Darville. I am also indebted to her
for the values given in the tables in Section 5.2 and Appendix I.
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interchange the dimensions @ and b so that now &/a = 2.25 and, for the

same frequency, Ao/0 = 1.400.
For a 90° bend the approximation (4.4-4) for the reflection coefficient

dy, for gentle bends, i.e. for £ = a/py small, becomes
' doy = it2— 0417 sin (2.23/) + 0209 cos (2.23/£)]

where the negligible exponential terms have been neglected just as in the

analogue (5.1-2) for gy .
The following table, which is similar to the table at the end of Section

5.1, gives the results of computations for bends in the plane of the electric
vector. .

dto
pi/a Approx. 1st order 2nd order
.6 823 +4-1.547 975 +4-4.223
i 887 +-i.447 .994  +41.051
.8 921 +1.380 .996 +i.042
.9 .041 4-4.332 .997 +1.035
1.0 .954 44.295 .998 +41.031
1.2 .970 +1i.242 .999 +-1.023
1.5 .982 +14.190 1.000 +4.017
do
.6 —1.0996 — .0855 414.1284 —.0020 41.0086
i —1.0848 —.0520 +1.1031 +.0050 —1.0975
.8 —1,0706 —.0330 44.0800 +.0033 —i.0792
.9 —1.0575 —.0214 +1.0605 +.0022 —1.0635
1.0 —1.0457 —.0137 41.0443 .0021 —14.0507
1.2 —1.0258 —.0051 +14.0204 +.0007 —1.0282
1.5 —1.0051 +.0001 —1.0004 .0001 —1.0062

The agreement between the approximation for dip and its second order
matrix value is fairly good from pi/a = .7 onward.

APPENDIX I
CALCULATION OF P, ETC. FOR CIRCULAR BEND

It is convenient to write Py, and Qpm as given by ( 1 2-10) and (1.2-15)
in the form SRR

Pyn = 85+ Ry, prm =1,2,3,
kazarﬁ—i_Tpm, P,m O 1 2

where 82 is unity if p = m and is zero otherwise and.

 (A1-1)
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Rom = (2/0) f (pip * — 1) sin (zpx/a) sin (wmx/a) dx
1]
. (A1-2)
Tom = (ep/a) f (pip > — 1) cos (wpx/a) cos (wmx/a) dx
0
inwhiche,=1,e,=2,p=1,2,---
In (A1-2), (1.2-11), (1.2-16), (1.4-3), (1.4-6) we make the substitutions
p—m=r, w=pmr/a— w/2 = pw/a
P+ m=s, v=pw/a+ /2 = pm/a (A1-3)
y = mx/a, w = pur/a, p=x4+p—a/2=aly+ u)/w

Introduction of the integrals

I, & (1/7) j;r [y + u)™ — 1] cos sy dy

Il

(1/a) j: (pip~? — 1) cos (wsx/a) dx

.. . (A1-4)
Js = 1r.£ %‘% dy = Wfo sin (wsx/a) dx/p,
- _p [T cossy ,
K = a j; Y+ u d
enables us to write
-Rpm = Ir - In y Spm = _”Ia—g(‘]' + J,-)
Tpm = Ep(‘rr + Iﬂ)/zg U—pm = mEp{I_E(Ja - J,)/Z (AI—S)
me. =K, — Ka, .”'pm = Ep(Kr + K,)/Z
where I, and K, are even functions of s and J, is an odd function of s.
e=1lande, =2,p=1,2,3,---. Sincew and « depend only upon the

ratio p1/a, the values of I, , K, and J, depend only upon pi/a and the
integer 5. These quantities are tabulated at the end of this appendix.
Setting ¥ + = equal to ¢ gives

J, = wf sin s(t — w) di/t

u

= 7[Si(sv) — Si(su)] cos su — w[Ci(s) — Ci(su)] sin su (A1-6)

where 57 and Ci denote the integral sine and cosine functions. “Integrating
by parts enables us to express 7, in terms of J, . Thus

f (y+ w)y2cossydy =u?— vt cossr —m s/, (Al-])
o
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and
I, = v wu? — (=)'v! — nls]] (A1-8)
except when s = 0 in which case
Ip = 7w — v — 1 = w?/(ur) — 1
=/ (4u) = [(2p1/a)* — 1]

When pi/a is large, u and v are large, and the asymptotic expansion of
(A1-6) gives

(A1-9)

II

T, o~ s u b — (=) — 25w — (=)0 + -0 (A1-10)
When (A1-10) is placed in (A1-8)
' I~ 7 20 M — (=)' — .- (A1-11)

Formulas for K, may be obtained in much the same wa}’.
K, = (p1/a) fv cos s(t —u) di/t
u (A1-12)
= (py/a){[Ci(sv) — Ci(sw)] cos su + [Si(sv) — Si(su)]sin su]
and when s = 0
Ky = (pi/a) log (1 + w/u) (A1-13)
The asymptotic expression is
4T Ky ~ st — (=) = 3Tt — (=) A+
Tt is convenient to write the asymptotic expressions in terms of the new
variable

£E=a/p (A1-14)
When s is even and greater than zero
Jo~ 8fs, I, ~68r %72 K, ~2 % (Al-15)
and when s is odd ‘
Jo~28fs, T.~dtr%? K, ~2r %2  (A1-16)
When s = 0 -
Io~ /4, Ko~1+ /12 (A1-17)

We shall need the following asymptotic expressions which may be obtained
from the above work

? 6 _ . 1 1
Rn "‘-‘i—(l - —), Su~ —a 252/2, Tu=1+4 fz (1—2— "2?2)

2
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R 1m

S im
Vlm

= Rp1 ~ 16Ema—2(m? — 1)

~ T O0ml

Sim ~4da2tm(m? — 1)7!

= Vi1 ~ 8Emmr—2(m? — 1)72 ~ Ry,/2

T ~ £/4,

Tro ~ 8Em™2r72,
Tom ~ 4Em™2772

Wom ~ 28m™2172,

Iy

o0

Also, iff nowm = 1,3,5, -+,
We = 1 4 £/12

Up = 0,
Umu =0
Upm ~ 2(1_2E

Wo ~ 4m™ 272

Values of 1, , J, and K,

I

(=]

I

w0

I

o0

I

-]

2.2723 2.31879 1.82979 1.43755 1.14772
1.04166 1.28232

SO0 o000 OOO00

.64103
.44643
.33333
.26041
.21008
.17361
.14620
.12500
.06667
04167

Ty

[ e s T e S T G I NG Y A

.88256
.68200
.56052
47844
.41905
.37361
.33780
.30876
.21803
.16980

.99800 2.
21624 1.
72356
.37231
.10615
.89624
72581
.58448
.46507
13628

.0122

8062

.76232
. 44628
30111
.22008
.16916
.13486
.11059
.09259
07872
.04133
.02564

Ja

01979 2.
.58176
21541
99327
84343
.73508
.65279
.58812
.53573
.49238
.35299
.27660

3054 1

.73339 1
.70698
.55663
.45091
37335
.31450
.26878
.23251
12817
.08128

.53315
.29206
.18992
.13637
.10459
.08413
.06961
.05926
.05147
.03080
.02217

Js

.37692
.18995
11546
.07818
.05772
.04344
.03500
.03168
.02315
.01135
.00675

Ju

31576 1.48355

.84936
.56683
.41079
.31379
.24849
.20254
.16843
14216
.12243
.06596
.04140

Is

94432
.28832
.14101
.08517
.05814
.04298
.03361
.02732
.02293
.01969

Js

1.66348
1.04899
77644
.62183
.52170
.45123
.39869
.35788
32515
.29825

343

(A1-18)

(A1-19)

Is

. 78458
.22090
.09986
.05908
.03865
.02759
.02056
.01633
01297
.01068

Js

1.15716
.61931
.40134
.28546
.21578
.16981
.13768
11413
.09636
.08254
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Ko K K; K; Ky Ks Ks
(==} o0 o0 L=} =] -] 0
.43874 .61659 .31832 .22547 .15539 .12199 .09275
.25423 42303 .17355 .11508 .06971 .05353 .03704
.17306 .33141 .11439 .07463 .04093 .03195 .02038
.12748 .27575 .08261 .05431 .02737 .02214 .01325
.09861 .23761 .06305 .04244 .01976 .01675 .00938
.07891 .20953 .04994 .03471 .01509 .01341 .00705
.06476 .18785 .04075 .02935 .01192 .01126 .00548
.05421 .17050 .03391 .02539 .00977 .00956 .00443
.04610 .15626 .02871 .02243 .00807 .00838 .00365
.03972 .14434 .02467 .02013 .00682 .00745 .00315
.02165 .10508 .01332 .01330 .00358
.01366 .08295 .00838 .01010 .00217

.2
L
s

O L Ll SO 0T
el e e e = N T = =

B B =t b et b ek i

APPENDIX II

Funcrions oF ALmosT D1acoNAL MATRICES

Let E be a matrix whose elements are small in comparison with unity.
It is then often possible to approximate a matrix defined as some function of
the matrix 7 + E, where 7 is the unit matrix, by the expansion

S4B =g+ 270+ 20+ (A2

Thus, for example, when we take f(z) to be 2~ we obtain
I+E'=I—E+E—---. (A2-2)

Here we shall give similar formal results for f(D -+ E) where now D is a
diagonal matrix
d 0 - 0
0 d - O

LO 0 0 dn
whose diagonal elements are unequal and the elements E;; and E;; are small
in comparison with the absolute value of |d; — d;|. We shall restrict
ourselves to a first approximation of the non-diagonal terms of f(D + E)
and to a second approximation of the diagonal terms. The results are closely
related to the ones obtained from the perturbation theory used in wave

mechanics. )
We assume that f(D + E) may be defined by the series

fD+E) = ad + ax(D+ E) + as(D + B + -+ (A2-4)

D= (A2-3)
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wher¢ @ is a scalar and
(D+ E?*=(D+ EYD+ E)=D*4+ DE+ ED+ E?

and so on. The sum of the terms independent of E is f(D). The terms
of order E are

EmmD+ E

DE + EDin (D + E)*

DE + DED + ED? in (D + E)®
s D'ED™ in (D + E)"

(A2-5)

where the summation extends over the non-negative integer values of ¢
and m for which £+ m = n — 1. The element in the ith row and jth column
of D'ED™ is :E;;d7 and hence the corresponding element in the summa-
tion in (A2-5) is
(di — dj)/(di — dp), i#j]
Egzdtap=1{ " 0 7 (A2-6)
nd; 1= 7.
Thus the terms of order E in the ith row and jth column of f(D + E) are,
from (A2-6) and (A2—4)
d; d; s
CETCRY
- (A2-7)
Euf'dy), 1i=3
where the prime on f denotes its first derivative.
The terms of order E* in (D + E)" are
tz D*ED'ED™ = [Z (@ Eiflald? Eejd})a (A2-8)
kdm kt.m

where the summations extend over all the non-negative integer values of
k, ¢, m for which & + £ 4+ m = n — 2. On the right [d5E:j]u denotes a
square matrix whose element in the ith row and jth column is dt B
Likewise the second factor in brackets is a matrix having d El ;7 in the ith
row and jth column. The element in the ith row and jth column of (A2-8)
is, from the rule for the product of two matrices,

> Z (5B @ Egd) = 3 EuEy Z ddtan

kdm =1 s=1 klom

If i, 5, and 7 are unequal the sum in &, £, m is

1 |:d.-"-d1‘_d}‘—d,“
di —dildi—d. d; —d,
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and in case of equality the sum may be found by a limiting process. Since
we are interested in this order of approximation only for the diagonal terms
we set 1 = 7 and obtain for the sum

nd?” 4l —d;
d; — d, (d; — d,)?’
n(n — 1)
21
Thus the contribution to the ith diagonal element of f(D + E) from terms
of type (A2-8) is
E?i I = r f,(dt) f(dl) Py f(dl)
Ff (dy) + ; E.'sEﬁl:di —a @ = dy)? (A2-9)

where the prime on Z indicates that the term s = 7 is to be omitted.
Thus, to summarize, we may say that the first approximation to the non-
diagonal term in the ith row and jth column (i # j) of f(D + E) is

1 # s

—2 .
ai, i = 5.

fd) = fld) _

E;; B (A2-10)

and the second approximation to the diagonal term in the ith row and ith
column of f(D + E) is

' Eft ’”

fd) +Ey f'(d) + ETf (ds)

W (A2-11)

+ 2. BuEu

8=1

[ [(ds)  _ f(di) — f(d.,)]
d; — d, (di — d,)?

where the primes on f denote derivatives and the prime on Z indicates that
the term s = 7 is to be omitted.

Two results obtained from (A2-10) and (A2-11) are of interest. For
the first result we set f(z) = z~! and get the following approximations to the
elements of (D + E)~!:

— Eiy(didy)™, i#j

N (A2-12)
it — d7° [E;; -2 E,-.E,,d:‘], i=j.

s=1

For the second result we set f(z) = z”* and obtain the following approxi-
mations to the elements of (D + E)"*:

Ey@d®+df")", i#j
s , L S (A2-13)
& + 3" [E,-,- - 2 B Ea(di® + d:”)‘ﬁ] ,  i=]

In (A2-12) and (A2-13) the summations include the term s = 1.



REFLECTIONS FROM CIRCULAR BENDS 347

We shall now state several results related to the above formulas. Let u
denote the matrix D + E so that the typical element u;; = E;;, i # j,
and #;; = d; + E;;. Then the latent roots A1, Az, - - - Ay of % are the roots
of the equation obtained by setting the determinant of A\ — u to zero:

A — un — s
INl—u|=| —ttss N — ttaa -|=0. (A2-14)

i

The modal column k; corresponding to the jth root A; satisfies the matrix
equation
(NI — wk; = 0. (A2-15)
Since the non-diagonal elements of » are small, we see from (A2-14) that
we may label the roots so as to make \; nearly equal to #;; , and this together
with (A2-15) shows that all the elements of k;are nearly zero except the jth
which we may choose to be unity. When these approximate values are
taken as a first approximation in the process of solving (A2-15) by successive
approximations, the second approximation is found to be

N N
+ Ups U !
No= 2 e =y 2 ik
a=1

ioi Ujj — g

2% (A2-16)

kN,'
where the 1 in the column for k; occurs as the jth element. This expression
for Aj occurs in the perturbation method often used in wave mechanics.
For the modal row «; corresponding to A; we have in much the same way

kAT — u) =0
ki = [Kijy Kejy oo Kjjy oo Kwd] (A2-17)
Ui Kij
Kej = ————

MUj; — Uss
where the last expression is an approximation and where k;; may be chosen

at our convenience.
The results (A2-10) and (A2-11) may also be obtained from (A2-2),
(A2-16) and the relation*

f) 0 - 0
fay =k ° 7 (_)‘2} 0 e (A2-18)
0 0 FAw)

* This is equation (12) in Section 3.6 of Reference®. Although proved only for poly-
nomials it may be verified to be true for the applications which we shall make.
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where & is the square matrix [k , k. , - - - kv] composed of the modal columns
k; , and the latent roots are assumed to be distinct. The element in the ith
row and j column of 7! is, to our order of approximation, equal to —&:;
when 7 # j and to

N
1+ 22 bk (A2-19)
s=1

when i = j. Here, as usual, the prime on Z indicates that the term s = j
is to be omitted.

Another result which is sometimes useful is the approximate solution of
unXy + wpxe + o0 gty ot Mindy =M

taiXy + Ua¥y + <o ek, oo+ uavan = . (A2-20)

where | n; | €| np|,7 % p,and the 2’s are of the type assumed in (A2-14):

L] Uip Mp .
o =2 — 2L N (A2-21)
Ujs Ujj Upp
n S u
’
Xp = -2 + Z mz (np thep — Natipp).

Upp s=1 Ugs Upp

The prime on Z indicates that the term s = p (which happens to be zero
here) is to be omitted. A somewhat more general result which states that
the ith element in the column matrix (D + E) g is

N
mdit + 2 Eudi® &7 (B — diny) (A2-22)

a=1

may be derived from (A2-12). Here the elements of the column matrix
need not be restricted by | n; | K| 7, [,7 # 2.
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