The Approximate Solution of Linear Differential Equations
By MARION C. GRAY and S. A. SCHELKUNOFF

Linear differential equations with variable coefficients occur in many fields of
applied mathematics: in the theories of acoustics, elastic waves, electromagnetic
waves in stratified media, nonuniform transmission lines, wave guides, antennas,
wave mechanics. The “Wave Perturbation” method described in greater detail
elsewhere! is particularly useful in those ranges of the independent variable in
which the “WKB Approximation” is not sufficiently accurate. The present
paper endeavors to illustrate the remarkable accuracy of this method, particu-
larly when compared with Picard’s method.

I. INTRODUCTION

by a wave perturbation method was described. When the method was
applied to equations whose exact solutions were known we were greatly
impressed by the rapidity of convergence of the successive approximations.
Hence the purpose of this note is to present some illustrations in the hope
that others may be interested and may find the proposed method an im-
provement on those now in use.

In essence the wave perturbation method dates back to Liouville?, but
in his mémoires he was interested in a problem of heat conduction involving
a non-homogeneous differential equation with homogeneous boundary
conditions, whereas we consider a homogeneous equation

N A recent paper! the approximate solution of linear differential equations
pap PI q

y' = Fx)y 1)
with non-homogeneous initial conditions
y(@) =1,y(a) =0 (2a)
or
ya) =0 y(a=1, (2b)

the solution being desired in an interval ¢ £ x = b. Since the solution
for any assigned initial or boundary conditions can be expressed as a linear
combination of the solutions satisfying (2a) and (2b) we have not imposed
any real limitation.

II. THEORY

Comparison of the wave perturbation method with Picard’s method
(which is essentially a linear perturbation method) is particularly instruc-
350
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tive. It will be recalled that in Picard’s formulation the differential equa-
tion (1) is replaced by an integral equation

y(@) = v(@) + (v — a_)y’(a) + fz F(u)y(u)(x — u) du 3)

where y(a) and y'(a) are assigned initial values*. Writing

Lo(@) = (@) + (= — a)y'(a), @
L) = [ PO~ ) du n=1,2,3 -,

the series
¥8) = La®) + La(®) + Ta(®) + -+ (5)

is shown to converge to a solution of the original equation. In practical
applications, unfortunately, it is usually found that the successive approxi-
mations converge rather slowly unless the interval (a, b) is small.

In the wave perturbation method we first rewrite equation (1) in the
form

y' ==y + B+ Fla)ly = =B + f(x)y, (6)
and instead of the integral equation (3) we use
y(x) = y(a) cos B(x — a) + éy’ (a) sin B(x — a)

1 [ (7)
+ 3 f; @)y (u) sin Blx — u) du.

The parameter 3 is arbitrary and might be defined in various ways. We
have found it convenient to use the definition

2 1 f"
= - — d
g i—al F(x) dx, (8)
so that if F(x) is negative 8 is real and our first approximation
1 .
Wo(x) = v(a) cos Blx — a) + By’(a) sin B(x — a) (9)

is sinusoidal. If /¥ is positive 8 is imaginary and we start with an exponen-
tial approximation. If F changes sign in (a, &) the best procedure is to

* This is not quite the usual form of the integral equation but it is substantially
equivalent.
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subdivide the interval and obtain separate approximations, though this is
not necessary if F is predominantly of one sign throughout (a, #). To (9)
we now add the sequence

W) = ; [ 1w, sin g — ) di, (10)

and the series
y(x) = Wolx) + Wi(x) + Walw) + --- (11)

is the desired solution.

The flexibility of the wave perturbation method as compared with Picard’s
linear method lies essentially in the introduction of the variable parameter £.
Since we make 8 depend on the length of the interval (g, b) in which a solu-
tion is desired the approximations may be extended over much longer
intervals than is feasible in Picard’s method. If F(x) is a slowly varying
function throughout (a, b), so that f(x) is small, it will be found that the
first approximation Wy(x) is good, and the second W + W, is generally
adequate.

Another choice for 8 is

(12)

However, the integration in (8) will often be simpler than in (12).
Picard’s method is a special case of the wave perturbation method, with
B = 0. Infact,if F(x) changes sign in (a, b), then in some cases § as defined
by (8) will reduce to zero.
If F(x) is a rapidly varying function, or if the solution is desired over an
infinite interval, it is usually advantageous to transform equation (1) by
first introducing a new independent variable

= f v/ —F(x) dx, (13)
and then removing the first order term in the new equation by an appro-
priate transformation of the dependent variable.

IIT. EXAMPLES
For our illustrations we have used mainly the simple equation
y' = —xy (14)

whose exact solution can be expressed in terms of Bessel functions of order
+ 1/3. Since the Bessel functions are oscillatory in nature it might be
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suggested that comparison with Picard’s method is weighted in our favor.
This does not seem to be the case, as will be illustrated in example 4 where
the exact solution is a monotonically increasing function. It has also been
suggested that Picard’s solution might be improved by starting from a better
initial approximation, say W, rather than from the linear approximation
Ly, but we have not found any marked improvement in the succeeding
approximations (see examples 1 and 2). The various points of interest
will be brought out in our examples, with the accompanying figures, which
we shall now briefly describe. In each figure the heavy curve is the ac-
curate solution while the approximations are indicated by self-explanatory
letters.

Example 1, Fig. 1

"

yV'=—ay, 022 =2

¥(0) = 1,5(0) = 0

@3y G

Exact solution: y(x)
(a) Wave perturbation
Wy = cos x
W= —ixcosa+ (1 4+ 2¢ — a?) si
(b) Linear perturbation
Ly=1

a8
L, = -
(c) Linear perturbation using initial sinusoidal approximation =~
Ly = cos x = IV,
Li=x+ xcosx — 2sinx
Example 2, Figs. 2, 3 and 4
"

y

¥(2)

IIA
®

1A
o

—uxy, 2

II

0,y'(2) =1
Exact solution:

y(x) = —.84423x"° T_5(32™%) — 0192012 J5(32™?)
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(a) Wave perturbation, Fig. 2

6 — — 8 + «°

W, = ) ¥ sin 2(x — 2) + 16 cos 2(x — 2).

Figure 2 exhibits rapid pulling of the successive approximate waves to-
ward the exact even though the interval has been chosen deliberately
unfavorable to the straight wave perturbation method [see example (c)
and Fig. 4 for the improved treatment].

(b) Linear perturbation, Fig. 3

Ln-—_-x—?..
Ly = 7 (16 — 163 + 4a% — )

_ 16x  2¢° | at a2® A
Ly, = —+— —9—+§ ’96—’_5&

Using W, instead of L,
L = %—;-I—gsinz(x —2) + % cos2(x — 2).

(c) Preliminary transformation of variables, Fig. 4

Introduce 8 = 32**% y = 67%

and the modified equation is
5 44/2 -
IH [ - TV A - <
v (1+3632)” 3 <0 = 4v/6.
Then, using for simplicity 8 =
v = 272" sin (6 — B0), 00 = 40/2/7

or
Wo = (2x)™* sin 3(x™* — 2¥?)

It will be seen that W, is a very good approximation throughout the
range (2, 6). Adding W, obtained from
5 lfli
362
the accurate curve y is reproduced.

In Fig. 2 the third approximation could not be distinguished from the
accurate curve though numerically the values are not identical. For

purposes of comparison the table of numerical values (Table A) may be
found interesting.

=

[cos(@ + 0p)(Si20 — Si28,) — sin(f + 6,)(Ci 26 — Ci 26,)]
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TaBLE A
. 1 2
T ¥ Wo zn Iw o]

2.0 0. 0. 0. 0. 0.

2.2 19721 .19471 .19720 .19721 19721
2.4 .37694 .35868 . 37668 .37694 .37694
2.6 .520560 46602 51885 .52053 .52056
2.8 .61035 | .49979 .60442 .61020 .61034
3.0 .63236 | 45465 61792 .63180 .63232
3.2 .57922 33773 .55169 571781 .57918
3.4 .45287 16749 .40007 .44995 .45726
3.6 .26584 —.02919 .20603 .26085 .26561
3.8 .04126 —.22126 —.02974 .03408 .04087
4.0 — 18921 — .37840 —.26229 — . 19800 —.18974
4.2 — 38951 — 47580 — .45326 —.39852 —.39011
4.4 — .52506 — 49808 — .56889 —.53240 — 52557
4.6 —.56943 — 44173 — .58697 —.57328 — .56964
4.8 —.51062 —.31563 —.50217 —.51000 —.51044
5.0 —.35548 —.13971 —.32847 —.35076 —.35494
5:2 —.13068 .05827 —.09772 —.12364 — . 13006
5.4 —.12052 .24706 .14547 .12725 .12080
5.6 .34582 .39683 .35200 .34988 .34536
5.8 .49485 48396 | 47807 .49525 49347
6.0 53114 49467 .49467 .52903 .52903

Example 3, Fig. 5
==yt iy 1zes =

Exact solution: y(x) = sin (x — 1) 4+ i cos (x — 1)

(a) Wave perturbation, with the initial conditions satisfied exactly
Wy = cos (x — 1)
Wy =2sin(x—1)— 2cos (x+ 1) (Ci 2x — Ci 2)

— 2sin (x4 1) (Si 2x — Si 2)

(h) Wave perturbation, matching the exact solution at infinity
Wo = sin (x — 1)
Wy = 2sin (x + 1) Ci 2 — 2 cos (x 4+ 1)(Si 2¢ — x/2)

[

This is an example of a solution in an infinite interval, where the per-
turbation term is not small throughout. Tt is interesting to note that the
second form gives good agreement with the accurate solution in most of
the range of integration.
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Example 4, Fig. 6

‘ Yy =4 xy, 0=sx=2
y(0) = 1,5(0) = 0

Exact solution:
y(x) = T332 115 (3a™).
(a) Wave perturbation

Wy = cosh x

Wy = _gcoshx+ i(a* — 2x+ 1) sinh x

(b) Linear perturbation
Lo =

a8y, =

L1=

This is an example in which the exact solution is non-oscillatory yet even
in the short interval (0, 2) W, + Wi is a better approximation than Lg +
L.
Example 5, Table I

y”+£y’+y=0, 0<zx= =

Solution required to match the accurate solution
y(x) = Jo(x) — i No(x)

at infinity:

- 1417 _;

“/o = — ¢

Vrx
— 1+, . A
W, = = ¢ | Ci2x — | Si2x — ).
N 2
TasLe 1

z Jo—iNo We Wo + 11 Wa+ Wi+ Ws
10 — 24590 —i 0557 | —.2468 —i .0526 | —.2460 —i .0557
9 —.0903 —i .2499 | — .0938 —i .2489 | —.0903 —i .2500
8 L1717 —1 2235 .1683 —i .2264 717 —i L2235
7 3001 44 .0259 .3009 4 .0207 .3001 +i .0260
6 .1506 41 .%882 .1;63 +i .ZSgg };(7)’; —+i .3383
5 —.1776 4 .3085 | —.1704 44 .31 - +i .3086
4 —.3975 44 .0%69 - .3?79 +i .0291 | —.3973 +4 .0%?9
3 — 2601 —i .3769 | —.2765 —i .3684 | —.2601 —i .3772
2 .2239 —i .5104 .1967 —i .5288 .2246 —i .5109
1 7652 —i .0883 L7796 —i 1699 .7683 —i .0860 .7651 —i .0882
0.8 .8463 41 .0868 8920 —¢ .0130 .8499 4+ .0916 .8461 +i .0868
0.6 .9120 +i .3086 1.0124 +i .1899 J0152 4+ 3183 L9116 44 .3084
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For values of « less than 1 W, was evaluated numerically.
Example 6, Table TI

1 1
y”+,—cy’=(;2—1)y, 1<%

IIA

3.

1) =1, y'(1) = 0.

The solution of this equation using Picard’s method and the integraph
has been described by Thornton C. Fry.? We compare his results with those
obtained by the wave perturbation method. The equation is first reduced
to normal form by the substitution y = a7 u, so that

3
u' = (—1 -+ 4—x2)u

and we have 8 = 14/3. Then

AP Wy = cosB(x — 1) + ZlﬁSin Blx — 1)

W, = r&)‘ ) (52 — 1) [cos Blu — 1)

+ 21—65i‘n Bl — 1)] sin B(x — u) du.

While W, may be evaluated in terms of (7 and Si functions the values
tabulated below were obtained by numerical integration. The values of
the accurate solution

y = 1.4034 Jy(x) — 0.3251 Ny(x),

and of the third and eighth Picard approximations, are copied from Fry’s
paper. .

TasLe IT
x ’ ¥ ‘ ¥a ‘ ¥s l Wo J Wo+ Wy
1.0 1000 | 1000 1000 | 1.000 1.000
1.2 | 998 998 | 998 | .990 l .998
1.4 985 984 | 986 .961 985
1.6 | 956 ‘ .951 | 955 | .913 | .956
1.8 908 | .894 .910 848 | .908
2.0 i 842 800 844 760 | 842
2.2 | 759 | 604 760 ’ 677 | 758
2.4 659 548 | 661 ! 575 .659
2.6 ‘ 547|370 549|466 547
2.8 25 | 156 T 352 | 4
3.0 | 207 | - .096 .300 | 236 ‘ .300



364

1. &

2. 7.

BELL SYSTEM TECHNICAL JOURNAL

REFERENCES

A. Schelkunoff, Solution of linear and slightly nonlinear equations, Quart. App. Math.»
vol. 3, p. 348, Jan., 1946.

Liouville, Mémoires sur le développement des fonctions ou parties de fonctions en
séries dont les divers termes sont assujétis A satisfaire 4 une méme équation différen-
tielle du second ordre, contenant un paramétre variable, J 1. de Math: Puresel Appl.,
v. I, p. 253-265, 1836, v. 2, p. 16-35 and p. 418-436, 1837. A brief discussion of
the method will be found in “Numerical studies in differential equations” by H.
Levy and E, A. Baggott, London, 1934; but these authors apply it to the numerical
solution of non-linear equations and do not seem to have appreciated that its real

potentialities lie in the field of linear equations, where they use only the better known
methods.

3. Thornton C. Fry, The use of the integraph in the practical solution of differential

equations by Picard’s method of successive approximations, Proc. Inl. Math. Con-
gress of Toronlo, pp. 405-428, 1924,



