Methods of Electromagnetic Field Analysis™

By S. A. SCHELKUNOFF

This paper presents a discussion of ideas involved in various mathematical
methods of electromagnetic field analysis and of the inter-relations between
these ideas. It stresses the points of contact between circuit and field theories
and their mutually complementary character. While the field theory focuses our
attention on the electromagnetic state as a function of position in space, the
generalized circuit theory is preoccupied with the electromagnetic state as a
function of time. The points of contact between the field and circuit theories are
many. Thus, Maxwell’s equations are identical with Kirchhoff’s equations
(really Lagrange-Maxwell equations) of certain three-dimensional networks in
which only the adjacent meshes are coupled. The integral equations for the
electrical current in conductors embedded in dielectric media are also Kirchhoff
equations of certain networks containing infinitely many meshes with a coupling
between every two meshes.

From the point of view of electrical performance the difference between a
physical network of lumped elements and a continuous network, such as a
resonator, is due to a certain difference in the distribution of the zeros and poles
of associated impedance functions in the complex impedance plane, Similarly,
the difference between ordinary transmission lines and wave guides is due to a
difference in the distribution of natural propagation constants.

The paper ends with a general discussion of the discontinuities in wave guides,
idealized boundary conditions for simplification of electromagnetic problems,
and the analytical character of field vectors regarded as functions of the complex
oscillation constant.

IN THE last few years engineering applications of electromagnetic field
theory have been greatly expanded. Iield theory has become essential
for the solution of many practical problems and in planning engineering
experiments. New applications have influenced the theory itself and have
led to new conceptions. The chasm between the circuit theory of low
frequency electrical phenomena and the field theory of high-frequency
phenomena has disappeared. The two theories have met in wave guides
and their merger has become essential. This paper is a discussion of the
essential ideas underlying various mathematical methods of analysis of
electromagnetic oscillations and waves in the light of new applications and of
the merger of the originally distinct circuit and field theories.

Crrcurr THEORY

Circuit theory is a mathematical method and it should not be confused
with circuits. Empty space is neither a circuit nor a network; but as we
shall soon see, for the purposes of analysis the empty space can be treated as
a network. It is perfectly true that until recently circuit theory was con-

* This paper was originally delivered as a lecture at a meeting sponsored by the Basic
Science Group of the American Institute of Electrical Engineers, April 12, 1945.
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cerned almost exclusively with aggregates of “circuit elements” inter-
connected in various ways. It is also true that the most familiar form of
circuit equations is that which is similar to Kirchhoff’s equations for the
steady current flow in networks of conducting rods, published' in April 1845.

This form is applicable only to circuits. However, the application of
these “Kirchhofl equations’ to alternating currents, natural as it may seem
to us now, was not obvious one hundred years ago. The first equation for a
simple circuit consisting of a capacitor, an inductor, and a resistor in series
was published in 1853 by Lord Kelvin.? Interestingly enough his approach
is based on the ideas applicable both to conventional circuits and to high-
frequency resonators. If g is the electric charge on one plate of the ca-
pacitor, the energy stored in the capacitor is ¢*/2C, where the coefficient C
depends on the geometry of the capacitor. The magnetic energy of the
circuit is & Lg?, where ¢ is the time rate of change of the charge, that is, the
current in the circuit, and L is a coefficient depending on the geometry of the
circuit. The rate of energy transformation into heat is K¢*, where R is a
coefficient depending on the geometry of the conductors (and of course on
their resistivity). The law of conservation of energy demands that

2 1¢/20 + 34" = P (1)

When the differentiation is performed and ¢ is cancelled, the usual form of
the equation is obtained. The coeflicients of proportionality, that is, the
inductance L, the capacitance C, and the resistance R sum up and stress the
really important electrical characteristics of the circuit; the details of the
construction of the circuit are suppressed.

It was Maxwell who formulated the general equations for electric net-
works by extending the application of a method developed by Lagrange for
mechanical systems. This Maxwell did in his last two lectures. In the
words of his student, J. H. Fleming:® “Maxwell, by a process of extra-
ordinary ingenuity, extended this reasoning (the method of Lagrange) from
materio-motive forces, masses, velocities and kinetic energies of gross matter
to the electromotive forces, quantities, currents, and electrokinetic energies
of electrical matter, and in so doing obtained a similar equation of great
generality for attacking electrical problems.”

Before discussing the Lagrange-Maxwell method more completely, let us
see if we can construct a network whose electrical properties would be the
same as those of a continuous medium.

! Annalen der Physik.

2 Philosophical Magazine.
3 Philosophical Magazine, 1885,
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NATURAL NETWORK MODELS OF CONTINUOUS MEDIA AND
MAXWELL'S DIFFERENTIAL EQUATIONS

Transmission line theory represents a well known example of the applica-
tion of circuit theory to continuous systems. Two-wire transmission lines
are subdivided into infinitesimal sections by planes perpendicular to the
lines. Each section is replaced by a capacitor whose capacitance is so
chosen that, for a given voltage across the transmission line, the electric
charges on the plates of the capacitor are correspondingly equal to the
charges on the sections of the wires constituting the line. The leads con-
necting the terminals of these capacitors are then assumed to possess an
inductance and a resistance but no capacitance. Thus the electric flux or
displacement is “swept’ into tiny capacitors, and the magnetic flux or
displacement into tiny inductors.

This representation is good only at low frequencies because it depends on
the assumption that the electric displacement is only in one direction,
namely at right angles to the transmission line. In effect, this representa-
tion neglects the capacitance between different parts of the same conductor
and includes only the capacitance between the opposite segments of different
conductors. That is, while we have recognized that the inductance and
capacitance are distributed in the direction parallel to the transmission line,
we have ignored the fact that they are also distributed at right angles to the
line. In the general representation we should subdivide the medium into
infinitesima! blocks and devise a three-dimensional network lattice of
infinitely small meshes, Fig. 1. The displacement current can be swept
equally into tiny capacitors. If the medium is dissipative, the resistors
may be inserted in parallel with the capacitors to take care of the con-
duction currents in the medium. The magnetic flux is swept equally into
tiny coils in the corners of each mesh. However, the resulting network is
not homogeneous. Besides meshes of type A consisting of four capacitors
and four inductors, it contains meshes of type B consisting of inductors only;
and yet we started with a homogeneous medium. Gabriel Kron solved the
difficulty by introducing ideal transformers (with one-to-one turn ratio) with
their windings in series with the coils at the opposite corners of each A-mesh.
These transformers do not affect the electrical performance of the A-meshes
but introduce infinite impedance into B-meshes and thus effectively elimi-
nate them.

As a matter of fact, such transformers should properly be included in the
network representations of two-wire lines. In fact, by implication they are
included as soon as we state that the direct and return currents in the line
are equal and opposite. Without an infinite impedance to currents flowing
in the same direction we cannot have the balance. Pursuing the matter
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further, we should say that all this is in accord with physical facts. The
inductance per unit length of an infinilely long isolated wire is infinite.
The mutual inductance between two parallel wires is also infinite. The two
wires are the ‘“windings’ of an ideal transformer and a finite impedance is
presented only to equal and opposite currents. In the case of wires of finite
length the essentially three-dimensional character of the structure manifests
itself, and other modes of propagation have to be considered.
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Fig. 1—Typical equivalent meshes in a circuit representation of continuous media.

It is evident that the homogeneity of the medium is not a prerequisite for
the existence of its network model. Having the values of L and C at our
disposal, we can choose them to reflect the dependence of the permeability
u and the dielectric constant e on position.

If we divide the medium into small blocks of volume Ax Ay As, the capaci-
tance C; of the typical capacitor in those branches of the network which are
parallel to the x-axis is C; = e Ay As/Ax, where e is the dielectric constant.
The conductance in parallel with this is G, = gAyAz/Ax. The inductance
of the typical coil in the xy-plane is L,, = p AvAy/4As. The voltages across
the capacitors are E.Ax, E,Ay, E.Az, where E., E,, E. are the electric
intensities, that is, the voltages per unit length in the respective directions.
The currents in the coils situated in the xy-plane are equal to H.Az; simi-
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larly the currents in the other coils are H; Av and I7, Ay. It is to be noted
that the capacitors are associated with the corresponding longitudinal com-
ponents of the electric field while the inductors go with the transverse com-
ponents of the magnetic field. Applying Kirchhoff’s laws to the network in
Fig. 1, we should and do obtain Maxwell’s field equations. Similarly, we
can construct network lattices in the patterns of other coordinate systems,
cylindrical and spherical, for example.

Among the obvious conclusions to be drawn from this analysis of the
network structure of the medium supporting the electromagnetic field is the
validity of certain general network theorems such as the Reciprocity
Theorem and Thevenin’s Theorem.

ReEpvucEpD NETWORK MODELS AND INTEGRAL EQUATIONS OF
LorexTz TYPE

So far we have been concerned with the electromagnetic field in its en-
tirety. Inorder to visualize the medium as a three-dimensional network we
have selected the most direct courze: We have subdivided the medium into
blocks of displacement current, compressed them into capacitors, and
eliminated displacement currents from the rest of space; similarly, we have
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Fig. 2—Subdivision of a straight antenna for its representation by
a reduced network with # meshes.

swept the magnetic flux into neat little packages. But this is not the only
course open to us. We can suppress the medium just as completely as we
normally do in the analysis of elementary networks. In order to illustrate
this method let us consider a doublet antenna, Fig. 2. We shall divide it
into n sections. The current and charge in any one section exert forces on
the charge in any other section. We can regard each section of the antenna
as a mesh of a network in which every mesh is coupled to every other mesh.
In each mesh the voltage which is necessary to compensate for the electro-
motive force of self-induction of the mesh itself, for the resistance of the
mesh (or rather for the internal impedance of the wire), and for the voltages
induced from all the other meshes, is the impressed voltage. The equations
assume the following form:

Z]]I_l + Z]‘.’]'_’ + 21313 + =t + zlnIn = ]'l,
Iy + Zuls + Iy + -+ 4 Zoly = Va, 2
Zudy + Zolo + Zusls + -+ + Zodu = Vs,
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where the I’s are the currents in the various sections of the antenna and the
V’s are the impressed voltages. The Z’s are the self-impedances and the
mutual impedances, and are calculated from the law of force between two
charged particles. In a transmitting antenna the impressed voltage is zero
everywhere except in a restricted region. In the receiving antenna the
voltage is impressed on all sections; but one section, the “load,” has a very
different self-impedance from the remaining sections.

When # is finite, our equations are approximate. If we make » infinite
and introduce the impressed electric intensity, that is, the impressed voltage
per unit length, we convert equations (2) into a single integral equation.’
More generally we may have to consider the transverse dimensions of the
antenna and divide the entire surface of the antenna into elementary surface
elements, each of which will represent fwwo meshes in our network. We have
to have two meshes for each surface element because the current may in
general change its direction from point to point and in order to specify it
completely we must consider two components of the current. These may
be taken as tangential to some Gaussian coordinate lines drawn on the
surface of the antenna. The exact network equations will appear as a
system of two integral equations involving double integrals.

In this discussion, we have assumed that the medium outside the antenna
is homogeneous. No difficulty is presented by the simultaneous inclusion
of a transmitting and a receiving antenna. The two form just one network
and the voltages impressed on the various meshes of the receiving antenna
represent simply the coupling between these meshes and the meshes of the
transmitting antenna. All the mutual impedances are calculable from the
general equation,

aA
E = —y:;? — grad V, 3)

representing the force per unit charge due to a given moving charge. If we
so desire, we can take equation (3) with the explicit expressions for 4 and V
in terms of electric current and charge as the fundamental equations of
electromagnetic theory and dispense with Maxwell’s differential equations
altogether. This course is feasible but inexpedient. Actual applications of
this equation turn out to be much too complicated in the great majority of
practical problems. It is only when we already know the current and charge
distribution that (3) becomes really useful. Thus in the accepted develop-
ment of electromagnetic theory (3) is subordinated to Maxwell’s equations
and derived from them.
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NORMALIZED NETWORK MODEL AND LAGRANGE-MAXWELL
ErEcTRODYNAMICAL EQUATIONS

Let us now return to the ideas of Lagrange as applied to electromagnetics..
[n dynamics the Lagrange equations are formulated in terms of the kinetic
energy T expressed as a function of velocities, potential energy U expressed
as a function of coordinates, and a dissipation function F expressed as a
function of velocities. In network theory T is the magnetic energy ex-
pressed as a function of currents, U is the electric energy expressed in terms
of charges, and F is the dissipation function in terms of currents. Lagrange-
Maxwell equations are then written in the following form

d| a ) d ; aF
- ———(T—l):l——(T*F — =Va 4
di [GI,, aq.. )+ ol, ’ @
where [, is the typical mesh current, ¢, is its time integral, and V', is the
impressed electromotive force, that is, the electromotive force not accounted
for by the magnetic induction and the charges in the network. The various
functions in the equation are

— 1 . Ym Qn
T = Zn ::HELMM 1o [u, L= BN .

2Cn’ (5)
AF = Em Bﬂ ’zl’Rm T I;u In y

where L, is the mutual inductance between two typical meshes (the seli-
inductance if m = n), C,., is the mutual capacitance and R,,, is the mutual
resistance. The mesh currents are introduced in order to insure that the
total current either entering or leaving a typical junction of the network
elements is zero. If we perform the differentiations indicated in equation
(4), we shall obtain the network equations in their usual form.

Let us now suppose that /' = 0 and 1", = 0. In higher algebra it is
shown that by a linear transformation two quadratic functions, 7" and U for
example, can be reduced to normal forms in which there are no mutual
terms

T ==x3L0, U =zs.g2c,. ©)
In this case equations (4) will assume the following simple form
iy | g
Lu T - = .
dl + C, ()

It is as if we had a certain number of isolated single-mesh circuits. Equa-
tions (7) represent the normal modes of oscillation of the network.
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Take the simple case of two identical coupled circuits, Fig. 3. The
network equations are

i'n | I &I dzll a! Io
L—4+=-M = =
e oz =0, + S+ L 0. (8
It is evident by inspection that there are two possible modes of oscillation.
In one mode I; = I, and in the other I; = —7.. The natural frequency of

the first mode is w; = 1/4/(L — M)C and that of the second mode «; =
1/A/(L + M)C. The magnetic energy function is

T = LI} — MLIL + %LIE

Thus the sum and the difference of the currents in the two meshes. oscillate
independently.

= 7)) g B ) A L 7 (EB. A

=12 I1=-Iz
TFig. 3—Two possible modes of oscillation in a symmetric two-mesh circuit.
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More generally a network with # meshes possesses 7 independent modes of
oscillation. In each mode the ratios of the mesh currents 1y, fs, - -+ Iy are
prescribed by the network parameters and the connections of the network
elements, but the relative strength of the oscillation remains arbitrary.
When we pass to networks with distributed parameters such as sections of
transmission lines and cavity resonators, we find merely that the number of
independent modes of oscillation is infinite. Tn the case of a nondissipative
uniform transmission line with both ends shorted, the natural frequencies of
the various oscillation modes are proportional to the sequence of integers:

1,2, 3, ....The current distribution for the #-th mode is given by sin (nrx/f),
where £ is the length of the section; but the actual amplitude remains arbi-
trary. For the gravest mode (1 = 1) the middle part of the line section
behaves as a capacitor and the ends as inductors. For the higher modes the
line is subdivided into sections, some of which act primarily as capacitors
and others as inductors.

In the case of cavity resonators of some simple shapes, such as paral-
lelopipedal, cylindrical and spherical, the determination of the oscillation
modes is a fairly simple problem. The dynamical equations of the resonator
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(Maxwell’s field equations) are partial differential equations. Their solu-
tions would normally involve arbitrary functions; but since the tangential
electric intensity vanishes at the conducting boundary of the resonator, the
solutions assume a much less arbitrary form involving only an infinite set of
arbitrary constants. Particular solutions are sought in the form of products
of three functions, each depending on only one coordinate. For paral-
lelopipedal cavity resonators the various components of electric and mag-
netic intensity are assumed in the form X (x) ¥(y) Z(z). By substituting in
Maxwell’s ecuations it is found—very fortunately indeed—that X, ¥, Z
may bhe obtained as solutions of ordinary differential equations. The
boundary conditions at the boundaries of the box x = 0,a; y = 0,b;2 = o,c
are easy to satisfy because we have to work with only one of these three
functions at a time.

In general, however, the problem of calculating oscillation modes is by no
means simple; but once these modes have been determined, the problem of
forced oscillations as well as free oscillations is practically solved. For
instance, a small loop inside a resonator is coupled to the various modes and
the coupling coefficients can be determined by evaluating the flux linkages.

Every physical circuit possesses an infinite number of degrees of freedom
and circuits with a finite number of degrees of freedom are abstractions.
If we take special measures to concentrate magnetic energy as much as
possible in a few regions of the medium and electric energy in a few other
regions, we shall have a physical network in which a finite number of oscilla-
tion modes will be well separated on the frequency scale from all the rest.
If we are concerned only with the frequencies comparable to the natural
frequencies of this cluster of modes, we can ignore all the higher modes and
for our purposes we may regard the network as a finite network. At these
frequencies the infinitely small meshes into which we could subdivide the
individual “inductors” (regions of magnetic energy concentration) and
“capacitors” (regions of electric energy concentration) will oscillate in
unison in groups. ‘

Briefly we can summarize the above methods of analysis as follows:
The medium supporting the electromagnetic field may be regarded as a
three-dimensional network of infinitely small meshes in which every mesh is
coupled only to the adjacent mesh. Circuit equations applied to this
network lead to Maxwell’s differential equations. In contrast with this
“patural network model of the medium” we can construct a reduced nelwork
model in which only the conductors of the medium are subdivided into
meshes. The medium surrounding the conductors is concealed in the
mutual impedances of the constituent meshes. Every mesh is coupled to

-every other mesh and the mutual impedance (or the coupling factor) is
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determined from the law of force exerted by a moving charge on a sta-
tionary charge. This approach leads to one or two integral equations which
can be approximated by a system of linear algebraic equations. While the
latter may seem much simpler than the differential equations obtained
from the natural network model, in reality their solution would often consti-
tute a much more difficult analytical problem. The natural network model
in which each mesh is coupled only to the adjacent meshes is in harmony
with the idea of continuous propagation of electromagnetic disturbances;
while the reduced network model conforms to the action at a distance
philosophy. The difference is merely in the language and ideas and not in
substance.

/

. -—

Fig. 4—Two possible modes of propagation in a symmetrically shielded parallel pair.*

Finally, the third method is based on the idea that at certain frequencies,
called the natural frequencies, various parts of a closed system oscillate in
phase or 180° out of phase, that the most general natural oscillation is the
sum of such oscillations, and that the most general forced oscillation can be
expressed in terms of fields aszociated with the natural modes of oscillation.
We may call this the normalized nelfwork model of (he eleciromagneiic field.
Thus far we have described it with reference to closed systems or cavity
resonators. In effect we have assumed that the amounts of magnetic and
electric energy are finite or else we could not talk about 7" and U functions.
The method can be extended to open systems of wave guides.

Mobpes OoF TRANSMISSION

Let us begin with a coaxial transmission line. Everyone is familiar with
the particular mode of transmission in which equal and opposite currents
flow in the two conductors. The circuit is completed through the dielectric
where the displacement current flows from one conductor to the other.
Next, consider a shielded parallel pair. If the structure is symmetric, we
shall recognize at once two modes of transmission, Fig. 4. In one mode, the
balanced mode, the currents in the wires are equal and opposite; there are

* In the upper part of this figure one of the directional arrows should be reversed.
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also equal and opposite currents in the shield which, however, are not equal
to the corresponding currents in the wires. In the other mode, the currents
in the wires are equal and similarly directed, the return path being through
the shield; this mode is similar to the coaxial mode since the wires act in
parallel, effectively as one conductor. In the case of n wires there are »
distinct modes of transmission. Each mode is characterized by the ratio
of currents in the wires and by the field pattern that goes with it.

In all these modes the longitudinal current paths are conductive; but
there is no reason whatsoever why the circuit closure should not take place
through the dielectric. Even in those modes of transmission in which all
longitudinal current paths are conductive, we have to depend on the dielectric
for completion of the circuit; this should prepare us for the idea that con-
ductors are not essential for wave transmission. If we include the dielectric,
the number of possible longitudinal tubes of flow becomes infinite and so
does the number of possible transmission modes; but as the cross-section
of each individual tube decreases the longitudinal capacitance also de-
creases, and these modes will participate in the transfer of power over
substantial distances only at correspondingly higher frequencies. It is
not merely that at low frequencies the longitudinal impedance becomes
very high; it is capacitive and causes high attenuation. The effect is
analogous to the attenuation in high-pass filters below the cutoff.

The mathematical analysis which lends quantitative substance to these
ideas is similar to that involved in the cavity resonator problem. Once all
the modes of transmission have been found, the next problem is that of
the excitation of these modes by a given source, that is, of coupling of the
source to various modes.

To summarize: A physical transmission line or a wave guide has always
an infinite number of transmission modes either independent or substan-
tially independent of each other. It is as if we had a system of single-mode
transmission lines without couplers. For each transmission mode the
structure behaves as a high-pass filter. If » is the number of conductors,
there are # — 1 transmission modes with the cutoff frequency equal to
zero. Since the lowest non-zero cutoff frequency corresponds to a wave-
length comparable to the transverse dimensions of the guide, it is clear that
in systems with two or more conductors we have a certain finite number of
transmission modes which are well separated on the frequency scale from
all the rest. TFor this reason we may ignore all the higher modes when we
are concerned with transmission of low freauencies only, by “low” meaning
the frequencies well below the frequency equal to the velocity of light
divided by the largest transverse dimension of the transmission line.

Analysis of waves in free space proceeds along similar lines. An electric
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“dipole” is the source of the simplest spherical electromagnetic wave. We
may picture this dipole as a pair of small spheres connected by a thin rod.
Under the influence of an impressed force the charge is made to surge back
and forth between the spheres. We cannot have a simple source like a
uniformly expanding and contracting sphere as in the case of sound waves.
The electric charge is conserved, and the only way we can alter the charge
in one place is to transfer it to some other place. A more symmetrical
dipole would be a single sphere on the surface of which the charge is made
to move back and forth between two hemispheres. Let us call these
hemispheres respectively the “northern” and the “southern”. When the
positive charge accumulates on the northern hemisphere, the radial dis-
placement current flows outwards from it. At the same time an equal
radial displacement current flows toward the southern hemisphere. The
situation is analogous to the balanced mode of transmission along parallel
wires, with the two half spaces acting as ‘‘the wires”. The distance along
the line is the distance from the dipole. The radial transmission line is
capacitively loaded but the series capacitance increases as the square of
the radius and therefore the capacitive series admittance decreases as the
reciprocal of the square of the radius. Hence, at some distance from the
dipole, the wave propagation will be quite unimpeded just as in ordinary
transmission lines free from loading. Near the dipole the series capacitance
is high, and the power carried by the wave in comparison with the energy
stored is small. ‘

In the next spherical mode of transmission the polar regions of the spher-
ical generator are similarly charged while the opposite charge is concen-
trated in the equatorial zone. The zonal character of the radial current
distribution persists at all distances from the generator. As might be
expected the reactive field in the vicinity of a small “tripole” generator is
even stronger than in the case of the dipole source.

The sequence of zonal modes of transmission can be continued indefinitely.
Next we could imagine tubular modes in which the space surrounding the
generator is subdivided into conical tubes with the radial current in adjacent
tubes flowing in opposite directions. This picture is essentially physical;
but it corresponds very closely to the mathematical expansion of the general
solution of Maxwell’s equations in spherical harmonics.

Fi:LD REPRESENTATION IN TERMS OF [FIELDS OF SPECIAL TypPrs

From the mathematical point of view the method which we have just
been considering is based on the idea of representation of the general field
in terms of particular fields having certain relatively simple properties.
The method is analogous to that employed in circuit theory when the
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response to the general electromotive force is expressed in terms of responses
to the unit step function, or the unit impulse function, or the steady state
responses at various frequencies.

There are numerous variations of the same general idea, some of which
are more suitable to one class of problems and others to another class.
If the distribution of electric charge and current is known, then in many
cases (but not in all) it is best to subdivide it into small volume elements.
Except for a possible static electric charge distribution, the elements will
be dipoles. The entire field can thus be regarded as the resultant of spherical
waves generated by dipoles of given moment and position. To simplify
the integration involved in this method certain auxiliary functions, called
the retarded potentials, are introduced. One should not try to ascribe
to these auxiliary mathematical functions any physical significance and one
should always remember that on certain occasions potential functions,
other than the retarded potentials, turn out to be more useful. We should
also keep in mind that, in order to apply this method, we have to know the
complete distribution of electric conduction currents and as a general rule
we do not have this information. Consider, for instance, the problem of
electromagnetic shielding. The current in the coil is given; but that in
the shield has to be determined. There are methods for calculating the
induced current; but these methods give at the same time the shielding
effectiveness, and that without employing retarded potentials. It is in
approximate studies of radiation patterns of antennas and antenna arrays
that the retarded potential method is displayed to the best advantage.

The retarded potentials are based on representation of fields in terms of
spherical coordinates; that is, in terms of fields associated with hypothetical
point sources at the origin of the coordinate system. General fields can
also be expressed in terms of cylindrical coordinates and, consequently, in
terms of fields associated with hypothetical line sources situated along the
axis of the coordinate system. Likewise, fields can be expressed in cartesian
coordinates; that is, in terms of “plane waves’. All such representations
have useful applications. The current in the coil is given.

DISCONTINUITIES

In the analysis of the various transmission modes for a given wave guide
it is assumed at first that the boundaries of the wave guide are analytic
functions of the coordinates. Any discontinuity or irregularity has to be
treated separately, simply because there is nothing in the analytic part
of the wave guide to suggest that a discontinuity might occur, or to prescribe
the properties of this discontinuity. Discontinuities may be accidental,
unavoidable or intentional. A kink in a wire is an example of an accidental
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discontinuity. Open air wire lines have to be supported on poles which,
together with the insulators, constitute unavoidable discontinuities. The
beginning and the end of a line are always present. Usually these latter
discontinuities are simply unavoidable; but, in radio, at least one dis-
continuity, the antenna, is made to serve a useful purpose. It is clear
that the generator and the load connected by a two-wire line, Fig. 5, are
dipoles which will generate spherical waves as well as the wave guided by
the transmission line. At low frequencies the length of the dipoles is so
small compared with the wavelength that the field does not reach out into
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Fig. 5—Formation of spherical waves at the ends of a long pair of parallel wires.
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Fig. 6—An antenna.

the region where the radial capacitance becomes negligible and where the
spherical wave starts carrying off all the energy that gets there. Spherical
waves generated at the beginning and the end of the transmission line are
practically stationary waves and constitute merely local reactive reservoirs
of energy. The energy is withdrawn from the generator or the transmission
line during one half of the cycle only to be returned during the other half.
At low frequencies the energy thus exchanged back and forth is so small
that normally we don’t even think aboutit. Theantenna, Fig. 6, is designed
to be a more efficient transformer of the plane wave guided by the parallel
pair into the spherical wave which will carry off power to distant points.
Quite frequently discontinuities are introduced intentionally in order to
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discriminate against some frequencies. A capacitor in parallel with the
wave guide or an inductor in series with it will favor transmission of low
frequencies at the expense of high frequencies. These discontinuities are
deliberately designed to be sufficiently large to produce noticeable effect.
A frequency filter is a more elaborate structure made up of capacitors and
inductors designed to achieve desired frequency discrimination.
Discontinuities in high-frequency wave guides are also either accidental,
unavoidable or intentional. The principal difference is in the order of
magnitude—any irregularity of apparently small physical dimensions may
represent a large virtual reservoir of energy. Among the simplest types
of intentional discontinuities in wave guides are “irises”, Fig. 7. Local
fields are created in the vicinity of the irises. Under the influence of a
wave traveling along the guide, electric charge and current are induced in
the metal partition. On either side of the partition the complete field is
the result of the superposition of fields representing various transmission
modes. The cutoff frequencies of these modes may be arranged in an
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Fig. 7—Inductive, capacitive, and resonant irises.

increasing sequence. If the operating frequency is between the lowest
cutoff frequency and the next higher, the propagation constants of all
modes except the dominant are real and the corresponding fields will not
extend very far from the iris. During one-half cycle the local field with-
draws energy from the dominant wave—this being the only source of energy
—and during the remaining half this energy is returned. The local field
acts as a virfual source of power—*‘virtual” since it operates on borrowed
power. On account of symmetry the dominant waves generated by this
virtual source and traveling in opposite directions will be of equal intensities.
The scallered wave traveling toward the source of the incident wave is
called the wave reflected from the iris; on the other side the scattered and
incident waves merge into the fransmilfed wave. The storage of energy
in the local field depends on the frequency—hence, the frequency selec-
tivity.

In the case shown in Fig. (7a) the flow of current in the partition is un-
impeded and there is no tendency for any local concentration of charge in
the partition; the local field is largely magnetic and the iris represents an
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inductive reactance. Since any variation of the magnetic field with time
always creates an electric field, there will be some capacitance in parallel
with the inductance. The same idea may be expressed by saying that the
inductance of the iris is not quite independent of the frequency. This
lack of constancy is not peculiar to ultra-high frequencies; it is true of
coils at low frequencies. Likewise, even at very low frequencies the in-
ductance varies with the frequency because of skin effect.

In the iris shown in Fig. (7b) there are alternating charge concentrations
on the upper and lower partitions. The local field is largely electric and
the iris is capacitive. A feeble magnetic field associated with charging
current is unavoidable, of course; this is also true of capacitors at low
frequencies but this time the effect is greater. Finally, an iris of the type
shown in Fig. (7c) may be designed to behave as an antiresonant circuit.

In that frequency range in which only the dominant wave is an effective
carrier of power to great distances, any discontinuity will behave as a
reactive T or II-network—assuming that observations are made at some
distance from the iris where the local field is too feeble to count. This
could not be otherwise since there are three parameters at our disposal:
two reflection coefficients for waves traveling in opposite directions and
one transmission coefficient across the discontinuity. The Reciprocity
Theorem requires that the transmission coefficients in the two directions
be equal. These three parameters determine the ratios of the reactance
elements of the equivalent T or IT-network to the characteristic impedance
of the guide.

If the operating frequency exceeds the second cutoff frequency, other
waves besides the dominant become effective carriers of power and the
equivalent network for the iris becomes more complicated. The iris behaves
not only as a dissipative impedance to the dominant wave but also as a
negative resistance, to one or more higher order waves.

BOUNDARIES

So far we have paid little attention to the boundaries of the electro-
magnetic field. Strictly speaking, in any actual situation the field always
extends to infinity; the only boundaries there are, are the geometric bound-
aries between media with different electromagnetic properties. This
means that we should solve electromagnetic equations for each homogeneous
region, or region with analytically varying properties, and then match
the solutions at the boundaries. In many cases, however, this procedure
would be very complicated and quite unnecessary. In the case of a cylin-
drical metal tube with a dipole as a source of power the exact solution may
be represented as a particularly formidable integral; but experimentally
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we would not be able to detect any difference between the “‘exact’ solution
and a much simpler approximate solution.

In the case of rectangular tubes we don’t even know how to obtain the
“exact” solution in any form; but good approximate solutions are exceed-
ingly simple. The word “exact” is in quotation marks because there can
be no really exact solutions of actual physical problems. In the first place
the properties of materials are not known exactly; the boundaries between
media do not exist in the exact sense of the term; and we just don’t know
the exact laws of nature. All we really want of any solution is to be ac-
curate enough for some particular purpose. And here is where the idea
of idealized boundaries helps in the formulation of simplified, clear-cut
mathematical problems. The idea lends flesh and blood to idealized
mathematical boundary conditions. Perfect conduclors have long been
mentioned in literature as idealizations of good conductors; but other
types of boundaries are of much more recent origin. Perfect conductors
are boundaries of zero surface impedance; they support electric currents of
finite strength when the tangential electric intensity is zero. At these
boundaries the tangential magnetic intensity is different from zero. The
natural counterpart is a boundary of infinite impedance at which the tan-
gential magnetic intensity vanishes but the tangential electric intensity
does not. The further generalization is a boundary with a given finite
surface impedance which is defined as the ratio of two mutually perpendic-
ular tangential components of the electric and magnetic intensity. The
boundary may be isotropic, with its swurface impedance the same in all
directions; likewise, the boundary may be aelotropic. The surface imped-
ance is defined as the ratio of the tangential components of £ and H. Since
it is necessary to adopt a convention regarding “positive directions” of
E and H, these are so chosen that a right-handed screw will advance into
the boundary if its handle is turned through 90° from the positive direction
of E to coincide with the positive direction of H. In accordance with this
convention the positive real part of the surface impedance is associated
with an average flow of power into the boundary—that is, with a passive
boundary. An aclive boundary is a boundary with a negative surface re-
sistance; such boundaries may be used to represent idealized generators of
electromagnetic waves and to eliminate from explicit consideration the
internal mechanisms of these generators.

FreLp EquaTtioNns

Thus far I have tried to present the ideas behind the physical and mathe-
matical analysis of electromagnetic transmission phenomena. These are
broader than the electromagnetic laws themselves and, with some super-
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ficial modifications, would apply to sound waves, for instance. There are
two fundamental equations of transmission of an electromagnetic state,
expressing Faraday’s law of induction of an electromotive force by a mag-
netic displacement current and Ampere-Maxwell’s law of induction of a
magnetomotive force by an electric current. In their most general mathe-
matical form the equations are

9
E.ds = —_ff H.dS,
?g o ds 3 wH,dS
3( . ds = f f oo dS + f f JE, ds+§! f f ¢E, dS,

where the subscript s indicates components tangential to a closed path of
integration and the subscript n designates components normal to any
surface bounded by this closed path. Thus on the left we have ‘‘sums” of
infinitesimal emf’s and mmf’s as we travel round some closed curve either
on the surface of a wire or just in free space, and on the right we have total
magnetic and electric currents linked with this curve. According to our
present physical conceptions the magnetic current is always a displacement
current defined as the time rate of change of magnetic flux or ““displacement”.
Not that there is anything inconceivable about an actual flow of magnetic
charge; it is simply that so far there has been no satisfactory evidence of
its existence. In the mathematical analysis it has long been a custom to
consider magnetic charges of opposite signs as if they existed; but this is
merely for convenience.

The electric current, on the other hand, consists of three components:
the convection curren! whose density is the product of the electric charge
density p and the velocity v; the conduction current whose density is pro-
portional to the electric intensity (the gE term in the above equation) and
the displacement current defined as the time rate of change of the electric
displacement. Strictly speaking, the conduction current is a convection
current but of such a kind that it would be extremely awkward to think of
it in terms of charged particles and their velocities.

At the same time the statistical result of the irregular movements of
these particles can be expressed, for purposes of transmission of an electro-
magnetic state, as a continuous movement of charge encountering some
resistance. There are, of course, such phenomena as resistance noise which
are thus automatically excluded from consideration.

In general to these electromagnetic transmission equations we should
add the dynamical equations of motion of electric charge; this is essential
when dealing with vacuum tubes. But, in considering passive transmission
systems, we either omit the convection current altogether, or else assume

(10)
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that the velocities of the charged particles are specified, and that the forces
which they exert on each other are completely neutralized by the forces
external to the field, in which case the convection current appears merely
as an “impressed current”.

Except for the above restrictions, equations (10) form a complete set;
but for mathematical convenience two other equations are usually ad-

joined. These are
ffe E, dS = g,

fqu,;ds:n,

where the double integration is extended over a closed surface. The first
of these equations states that the total electric displacement through a
closed surface is equal to the net enclosed electric charge; the second denies
the physical existence of magnetic charge. These equations can be derived
from (10) and for this reason are not quite on the same footing with them.

(11)

B8 Vap =0 D
] ]
VaB Vago ¥ Vaco Veo
Q n}
A VAC. =0 C

Fig. 8—A pair of parallel wires.

Equation (10) tells us that, except when the field is static, we cannot
speak of the electromotive force or the voltage between two points without
specifying the path along which we add up the elementary voltages. In
fact, equation (10) gives us the difference between the voltages along two
different paths connecting the same pair of points. To illustrate, consider
a wave along a pair of perfectly conducting wires, Fig. 8. Voltages 1"4¢
and Vgp along the wires are equal to zero; transverse voltages V4 and Vep
are usually unequal; hence Vg # icn .

If two points are infinitely close, then we can define the voltage un-
ambiguously as the product E.ds of the electric intensity and the distance
between the points. The difference between this voltage and the voltage
along any other infinitesimal path is an infinitesimal of the second order,
being dependent on the area enclosed by the two paths. In practice two
points are sufficiently close if the distance between them is small compared
with one quarter wavelength.

Since, except in electrostatics, we cannot speak of the voltage between
two points without specifying the path, we cannot speak of the polential
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difference. In mathematical terms we should say that the differential
voltage in a varying electromagnetic field is not an exact differential. To
illustrate: 2x dx + 2v dy is an exact differential equal to d(x* + ) and
for this reason its integral depends only on the difference between the values
of (x* 4+ ¥?) at the end points of the path of integration; but 2x dx + 2x dy
is not an exact differential and cannot be integrated except when v is given
in terms of x so that the path of integration is prescribed.

If equations (10) are applied to ‘infinitesimal closed curves, the following
differential equations are obtained:

iJil , oE

curl £ = —Hors LurlH—g]L-i-ea. (12)
The expressions curl E and curl H are merely the symbols for the maximum
emf’s and mmf’s per unit area. These equations are not as general as (10)
because they assume that E and H are continuous and at least once differ-
entiable. The equations do not hold across the boundary between different
media, where they have to be supplemented by the so-called boundary
conditions which are obtained from (10). Equations (12) do not hold at a
wavefront where E and H are discontinuous; there also we have to supple-
ment them by appropriate boundary conditions, which connect the solutions
on the two sides of the wavefront.

AnaLyTic FuncTions

An advance of fundamental importance is made when the field intensities
are represented by complex quantities F ¢ and H ¢’ where w is the fre-
quency in radians. The equations become

curl E = — jup H, curl # = (g + juwe)E, (13)

and are thus freed from one independent variable, the time /. This does
not mean that we have restricted our analysis to steady state fields; Fourier
analysis supplies a general rule for passing from steady states to any state
whatsoever. Computational difficulties are great but no greater than they
would be in any other method.

A still more important advance is made when the field intensities are
represented by E ¢, H ¢”, where the oscillation constant p = & + jw is a
complex number. The equations become

curl E = — puH, curl H = (g + p e)E. (14)
The solutions of these equations are analytic functions of the complex

variable p and a way is open for application of the theory of functions of a
complex variable.
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Thus if we write

£ -]
E=2¢ep', H=22 Iy, (15)
n=0 n=>0
and substitute in (14), we obtain
curl ¢ = 0, curl .0 = — u
(16)
curl i1y = gey, curl I = geusr + e .

If these equations are solved subject to the prescribed boundary conditions,
E and H will be expressed as power series in the oscillation constant .

The function theory has already been used successfully in the restricted
circuil theory; that is, in the theory of finite networks composed of ideal
(independent of the frequency) resistances, inductances and capacitances.
Likewise, some very general theorems have been established concerning
any physical input impedance. Whereas the poles and zeros of a function
can be anywhere in the complex p-plane, the poles and zeros of the input
impedance of a passive system never lie to the right of the imaginary axis.
This leads to a theorem to the effect that all poles and zeros on the imaginary
axis are simple. The resistance components of the input impedance on
the imaginary axis determine the reactance component and hence the
complete impedance function except for a purely reactive impedance. The
zeros and poles of an impedance occur always in conjugate pairs. These
are some of the general theorems of impedance analysis. Not very long
ago I came across an expression for the input impedance of a spherical
antenna which was obtained by what appeared superficially as a straight-
forward conventional method; but as soon as I observed that some poles
were situated to the right of the imaginary axis, T knew that the expression
had to be false. The existence of poles in this region meant a possibility
of oscillations which would increase indefinitely of their own accord.

The difference between finite and infinite networks consists in that the
former possess a finite number of zeros and poles. All physical structures
always possess an infinite number of such singularities; but a finite number
of them may form a cluster in the vicinity of the origin, far removed from
all other zeros and poles. When this happens we have a physical finite
network. In a reactive network all zeros and poles lie on the imaginary
axis. In a slightly dissipative system these zeros and poles move a little
to the left of the imaginary axis. This happens, for instance, in the case
of a thin antenna. The field in the vicinity of a thin wire is large and the
radiated power is only a small iraction of the stored energy. The distribu-
tion of poles (the solid circles) and zeros (the hollow circles) is illustrated



508 BELL SYSTEM TECHNICAL JOURNAL

in Fig. 9. The zero frequency is always a pole for an open type antenna
and a zero for a perfectly conducting loop antenna. As the frequency
passes through a zero, the antenna impedance passes through a minimum.
As the frequency goes through a pole, the antenna impedance passes through
a maximum. The disposition of zeros and poles gives us a qualitative idea
of the behavior of the impedance as the frequency varies.

As the radius of the antenna increases, the zeros and poles move farther
to the left of the imaginary axis. At the same time some zeros and poles,
which for a thin antenna are so far to the left that they have very little
effect on the impedance, niove nearer the origin. For spherical antennas
the number of zeros and poles around the origin is considerably larger than
for thin doublets.

o

Fig. 9—Distribution of zeros and poles in a dipole antenna: solid circles
represent poles; hollow circles zeros.

Circurr AND Fierp EQUATIONS

In conclusion T should like to make a few remarks on the relationship
between Kirchhoff’s circuit equations and Maxwell’s field equations. Are
the former approximations; and, if so, in what sense? The answer depends
on what is meant by Kirchhoff’s equations, for their meaning has changed
with passing years. It was exactly a hundred years ago that Kirchhoff
stated his equations in a kind of postscript to his paper in Poggendorf
Annalen; but he contemplated only the d-c networks. Yet nowadays
we interpret these equations in such a way that they are applicable to a-c
circuits. Some thirty years went by before Maxwell thus generalized the
original Kirchhoff equations with the aid of Lagrange’s concepts. Maxwell
wrote his circuit equations (not the field equations) in a form applicable
only to networks with a finite number of degrees of freedom; but nowadays
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we interpret these equations in such a way that we can apply them to one-
dimensional transmission lines. In so doing we refrain from making ap-
proximations which we normally make when applying Kirchhoff laws to
networks of lumped elements. In the latter case it is usual to ignore the
inductance of the connecting leads or rather the inductance associated
with the loop formed by the leads; but in the case of two-wire transmission
lines the “connecting leads” constitute the entire network and the loop
inductance is no longer ignored. In the case of lumped networks the
capacitance between the connecting leads is normally neglected; but this
capacitance is scrupulously included in the analysis of two-wire lines since
in this case the “lead capacitance” is all the capacitance there is. And I
have already referred to a recent contribution of Kron’s who presented a
three-dimensional network such that if we apply Kirchhoff’s laws to it, we
shall obtain Maxwell’s field equations. The merger between the two points
of view is now complete. In its growth, each theory has developed concepts
peculiar to itseli. The net result is that we are now in a position to under-
stand electromagnetic phenomena better than ever.



