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Propagation of TE, Waves in Curved Wave Guides
By W. J. ALBERSHEIM

TEq waves transmitted through curve wave guides lose power by conversion
to other modes, especially to TMy. .

This power transfer to coupled modes is explained by the theory of coupled
transmission lines. Tt is shown that the power interchange between coupled lines
and their propagation constants can be derived from a single coupling dis-

criminant.
Earlier calculations of TEy conversion loss in circular wave guide bends are

confirmed and extended to S-shaped bends.
Tolerance limits for random deflections from an average straight course are

given.

HE TEq mode of propagation in circular wave guides has great

potential value for the transmission of wide-band signals because
its attenuation decreases with frequency. In order to take full advantage
of this property one must use sufficiently large wave guides to operate well
above the cutoff of the lowest transmitted frequency. The difficulty of this
transmission method lies in the fact that TEq is not the dominant mode
and that energy may be lost by transfer to the many other modes capable
of transmission in the wave guide. Inan ideal wave guide, which is perfectly
straight, perfectly circular and perfectly conducting, the propagation is
undisturbed; but slight imperfections and especially a slight curvature of
the wave guide axis may produce serious disturbances.

The character of these disturbances has been investigated in several
publications by Prof. M. Jouguet' and in unpublished work by Mr. S. O.
Rice of the Bell Telephone Laboratories. Both Jouguet and Rice use the
method of perturbations, which is a form of calculus invented by astronomers
to compute the deviations from the exact elliptical orbits of the planets
which are caused by the disturbing influences of their fellow planets.
Although the above-mentioned authors obtained valuable results, the
interpretation of their solutions is difficult due to this rather abstract
mathematical formulation. To most engineers the understanding of a
physical problem is greatly helped if it is possible to use a method of analysis
which is elementary in character and easily interpreted in familiar physical
terms. The familiar concept on which the present treatment will be based
is that of coupled circuits.

1See References 2 and 3, listed on page 7.
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It has been stated by the earlier authors that the curvature of the wave
guide produces a coupling between modes. Before going into a detailed
analysis one may estimate by inspection the nature of this coupling and the
kind of modes that are most strongly coupled to each other. Figure 1a
shows the cross section and the longitudinal section of a straight cylindrical
wave guide. The location of every point inside the wave guide is determined
by three coordinates: the radial distance r from the cylinder axis; the
azimuth angle ¢ from an arbitrary O line and the axial distance 5 from the

- CYLINDRICAL CO-ORDINATES IN STRAIGHT WAVEGUIDE

b - TOROIDAL CO-ORDINATES IN CURVED WAVEGUIDE
Fig. 1

origin. If the wave guide is bent as shown on Fig. 1b, but a wave front
at right angles to the cylinder axis is to be maintained, the waves must be
shortened at the inside of the bend and lengthened at the outside of the
bend. Regarding compression as a positive and expansion as a negative
deformation, one sees that the distortion of the wave shape is proportional
to the curvature of the wave guide multiplied by the cosine of the azimuth
angle. It is natural to assume that the coupling between modes is propor-
tional to this distortion.

Now it is known that all modes of propagation in a circular wave guide
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can be derived from functions J.(xr) cos ne. In these functions, n is
called the aximuthal index because it indicates the type of symmetry around
the circumference of the wave guide. When these characteristic functions
are multiplied by the distortion factor cosine ¢, the resulting expressions
are proportional to the sum of cosine (# + 1) ¢ and cosine ( — 1) ¢. This
means that the bending of the wave guide couples mainly those modes which
differ by =1 in azimuth index. Since the TEj mode has the azimuthal
index 0, it is coupled to all modes of the type TE;,, and TM,,, .

In the above qualitative discussion we have claimed that coupling exists
without defining the physical coupling parameters and their effects. We
must now supply this definition and show that the TEq; mode is particularly
susceptible to coupling losses.
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Our investigation is guided by S. A. Schelkunoff’s statenrent? that a wave
guide mode has the same equation of propagation as a high-pass transmission
line. Schelkunoff further points out? that the high-pass character of circular
wave guide modes can be interpreted as the effect of interfering plane waves
whose directions of propagation deviate from the wave guide axis by a
constant slanting angle.

We therefore approach the problem of coupled wave guide modes by
studying the behavior of two coupled transmission lines such as shown on
Fig. 2a. Each transmission line is schematically shown as an array of small
ladder sections. The series impedances per unit length of the lines are z
and 2 ; their shunt admittances per unit length, y, and y2. The two
lines are loosely coupled by small mutual series impedances per unit length
(z») and by small mutual shunt admittances per unit length (ya).

A network of coupled ladder sections is more tractable than a wave guide
structure, but still somewhat complicated. Let us therefore carry the
analogy one step further. Figure 2b shows two resonant circuits, each

* Ref. 4, pp. 378 and 381 of the book.
3 Ref. 4, p. 410 of the book.
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consisting of single capacity C, and an impedance Z which includes an
inductance I and a damping resistance R. The resonators are coupled
by a small mutual inductance Z, and by a small mutual capacity ¥V

The behavior of coupled resonators is very well known to radio engineers.
They occur as tuned transformers in amplifier circuits, as band-pass filters
and as “tank circuits” in radio transmitters. Even before the advent of
radio, their acoustical equivalents were studied in the form of resonant
tuning forks. The mathematical aspects of this problem were already
clearly set forth in a paper by Wien written in 18974, He showed that the
interaction between the free vibrations of two tuned circuits depends on
the coupling coefficient and on the ratio of their complex resonance fre-
quencies. The closer the two frequencies are to each other, the less coupling
is needed to transfer energy between the two circuits. The reason is that
the individual free vibrations of two nearly synchronous circuits remain in
step long enough to accumulate the small energy transfer impulses of many
vibrations.

Now consider the two transmission lines of Fig. 2a and assume that a
constant frequency signal is impressed upon the input of one or both of them.
The signals are carried along the two lines as traveling waves. Again it is
true that loosely coupled signals affect each other strongly if they remain in
step. With traveling waves “remaining in step” means that they must
travel with approximately equal phase velocities. We conclude that the
phase velocities or phase constants of. coupled transmission lines play a
similar role as the resonant frequencies of coupled tuned circuits. This
intuitive reasoning is confirmed by analysis (see Section 1 of the analytical
part of this paper).

We thus find that we must expect trouble for TEy wave guide trans-
mission if a mode with an azimuth index 1 has a propagation constant
close to that of the TEq . It so happens that there exists one mode, the
TMy;, which in an ideal wave guide has exactly the same propagation
constant as the TEq; . This then should be the principal source of trouble—
and from previous work it is known that such is the case.

Our discussion of coupled transmission lines has shown that the interaction
effects are functions of their relative uncoupled propagation constants and
of the coupling coefficient. The propagation constants of the TEqn and
TM,, wave guide modes are known but their coupling coefficient remains
to be found.

Since the energy of the transmission modes is located in the dielectric
inside the wave guide, we consider first the coupling between the plane
“slant wave” groups from which the modes are built up.

4 Reference 3.
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As shown in the analytical part, the coupling coefficient of these slant
waves may be defined as the energy interchanged between the modes per
unit length of line divided by the geometric mean of the energies per unit
length stored up in each of the modes.

From the coupling coefficient of the slant waves the coupling coefficient
of the wave guide modes is derived.

On the basis of the above physical interpretation the analysis is carried
out and the properties of TEy propagation through curved wave guides of
various shapes are derived in the analytical part of this paper which is
subdivided into the following nine sections:

Section 1 develops an approximate theory of loosely coupled, weakly
damped circuits. The theory is first derived for coupled resonators which
are familiar to communication engineers, and then applied in similar form
to coupled transmission lines. It is shown that the important interaction
properties of coupled lines are functions of a single coupling discriminant.
The relative energy content of the two lines in each of the two possible
coupled modes is plotted as a function of the coupling discriminant.

Section 2 contains the field equations of a straight circular wave guide
and their modification by a toroidal bend. .

Section 3 gives the solutions of the field equations for the uncoupled
TEo and TMy; modes in wave guides with infinite, and with small but
finite conductivity.

Section 4 applies the coupling theory to the TEq and TMi modes in
circular wave guide bends. The coupling coefficient, coupling discriminant
and energy division between the two modes are derived as functions of the
wave guide diameter bending radius and conductivity and of the signal
frequency.

Section 5 derives the critical bending radius and the attenuation of TEq
waves in long wave guides of constant curvature. Two numerical examples
are given.

Section 6 shows that in a curved section of wave guide which follows a
long straight section or other source of pure TEy the energy fluctuates
back and forth between a condition of pure TEq; and of predominant TMy; .
The length and magnitude of the fluctuations are derived.

Section 7 computes the increase in average attenuation caused by serpen-
tine bends of regular shapes. Numerical examples are tabulated.

Section 8 shows that the results of Section 7 can be applied to helical
bends and to small two-dimensional random deviations from a straight
course.

Section 9 shows that for any given statistical distribution of random
angular deviations the average attenuation is minimized by an optimum
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wave guide radius for each signal wave length and by an optimum signal
wave length for each wave guide radius.
Numerical examples are given for sinusoidal bends.

10.

11.

Summary of Results

. The energy loss of TEy, waves in curved wave guides by conversion

into the TM;; mode is interpreted as a case of coupling between
resonant transmission lines.

In a pair of coupled lines the energy cannot be confined entirely to a
single line but travels through both in one or both of two possible
combination modes.

. All important properties of coupled circuits, including wave guide

modes, are functions of a single discriminant.
When the discriminant is much smaller than one, most of the energy
can be carried in one line or component mode.

. When the discriminant is much larger than one, the energy flow is

nearly equally divided between the two lines or component modes,

. In wave guides of typical dimensions the coupling discriminant

becomes one for a ‘‘critical” bending radius greater than a mile.
For all sharper bends, that is for most practical installations, the
discriminant is greater than one.

. In a long wave guide section with more than critical curvature the

average attenuation constant is the arithmetic mean between those
of the TEg; and the TM1; modes.

. If a wave guide region carrying pure TEy, is followed by a curved

region, the energy in the curved region fluctuates back and forth
between pure TEy and predominant TMy; . The location of TE,
minima and maxima is a function of the signal frequency, the wave
guide diameter and the total bending angle.

. For highly supercritical curvatures the bending angles at which

minima and maxima occur are nearly independent of the curvature
and approach the limiting values previously computed by Jouguet
and Rice. The minima approach zero. When the bending radius
approaches or exceeds the critical value, the maxima and minima
become shallower and their spacing is increased by a function of the
coupling discriminant.

For regular serpentine bends or random angular deviations from an
ayerage straight course which are much smaller than the first extinc-
tion angle, the percentage increase in average attenuation is propor-
tional to the square of the maximum deviation and to the fourth
power of wave guide diameter and signal frequency.

Wave guide installations of practical dimensions for frequencies now
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attainable are tolerant to random angular deviations of the order of
1 degree.

12. For any expected distribution of random angular deviations there
exists an optimum wave guide radius for each signal wave length and
an optimum signal wave length for each wave guide radius, which
minimize the average attenuation.
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ANALYSIS
1. INTERACTION OF CoUPLED CIRCUITS

1.1 Free Oscillations of Coupled Resonators (Fig. 1B)
The circuits are coupled according to the following four equations:

e1 = —Zyy + Zniz 1141
ih= Yier + Ve 1.1-2
es = —Zsly + Znia 1.1-3
s = Vaees + Vner 1.14

where index ; refers to circuit 1, index , to circuit 2 and index , to the mutual
coupling impedance and admittance. The coupled oscillations have the
solution:

e1 = Epe™ + Ep e 1.1-5
€y = Ezuepﬂt + Ezbem‘ 11-6

“In the limiting case of zero coupling (¥, = 0,Z,, = 0) the obvious solution
shows independent oscillations in the two separate circuits:

€10 = Klim = Eluéplt 1.1-7
€y = Koiag = Ezoemi : 1.1-8

The wave impedance K, of the primary circuit is found by dividing equation

1.1-1 by 1.1-2
_a_ Jh
K, = i /‘/;l
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Similarly,
L N et
Ks 1y ¥,
By multiplying equation 1.1-1 by 1.1-2 one finds
—Zlyl = 1 11—9

from which one can compute the exponent p;. In the specific circuits
shown in Fig. 1b

Z1 = L1P1 + .R[ and 11—10
Yl = C]P] 11—11
From 1.1-9, 10 and 11
bt = 1RE
p= 01 +j(rJl. = 2L1 + oG - Eﬂ 1.1-12

and by analogy

e st R /1 R B
P2 = — b+ Jun = i, + 7 /‘/L2C2 Ly 1.1-13

In equations 1.1-7 and 1.1-8, Eyp and Eqy are amplitude constants determined
by boundary conditions. In equations 1.1-12 and 1.1-13, &; and & are the
decay or damping constants, w; and w» the radian frequencies.

With finite but loose coupling and small damping the circuits can oscillate
with either or both of the two frequencies.

o = P1+P2+P1_P2,\/1+K-—p1+05pz(1—\/1+x2)1114

py = DL P2 - P T e = po+ 0551 — VIF ) 1115

2
In the last two equations, the symbol x, defined by x = 1/ %

1 = 2
becalled the coupling discriminant. The first term of the product on the right
side of this expression is the reciprocal of the fractional difference between
the uncoupled frequencies; the second term % is the “coupling coefficient.”

When there is only one coupling impedance, the coupling coefficient is
usually defined as the mutual circuit impedance divided by the geometric
mean of the separate circuit impedances. A broader definition which
applies to all combinations of mutual impedances and admittances is

P12 PZI

VPP, /PP,

-k, may

1.1-16
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In this equation P, is the energy stored in circuit 1, P, the energy stored
in circuit 2 and P» is the energy transferred from one circuit to the other,
One finds

2 « 2 2
_ €1 ZlK _ 3_] 2y _
_Pl 2K+ 2 = . = 1|1&1 1.1 17
Py = L it K, 1.1-18
K,
Py = ‘*Kﬂ‘ N "%? + ini1 Ky 1.1-19

Equations 1.1-5 and 1.1-6 contain four amplitude constants. Two of these,
for instance k£, and Eg , can be adjusted to satisfy boundary conditions.
The other two are fixed by the equation

E3. K, _Pa—P _ P — P2 _ EL K,

Egu K, Pa — P2 b — Egb K,

The square root of this expression,

En K _ By E =4
E]a K2 E2b K 1

may be called the normalized amplilude ratio. Tt is a vector quantity

denoting the amplitude ratio and phase relation of each oscillation frequency

in the two circuits, assuming that they have been normalized to equal

resistances by an ideal transformer. The absolute value

2
E?a Kl — I'Va — 1_

E?a R’E | Wb

is the ratio of the energies stored in the two circuits oscillating at frequencies
pa and pp respectively.
From 1.1-14, 15, 16 and 18

I
We= | Y T8 = ey

A, = \/1+x“'—'—-r;_l = A

When the indexes are left off, W < 1and | 4 | < 1 by definition. One
sees that energy, amplitude and phase relations between the coupled
circuits at each oscillating frequency are governed by the coupling dis-
criminant. This also applies to the damping coefficients and frequencies

-
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of the coupled oscillations. It can be shown by combining and transforming
equations 1.1-14, 15, 19, that the coupled damping coefficients are

o + 6. W Wia Waa
“ 1 + w ! Wt.ot.al. + i Wtotal

OW + 8. - 6 Wy 82 Wap
1 + /4 Wtutal Wtota]

The damping constants of two coupled resonances are found by combining
the uncoupled damping constants in the same proportion as the energies
oscillating in the two resonators.

The coupled frequencies are

o =

_wl_an
wg = 1_Wa.nd
wb:m_wul

1-W

1.2 Forced lraveling waves in coupled transmission lines (Fig. 14).
The two lines are coupled according to the four equations

P81 = 211:1 + Zm‘iz
I'iy = yie1 + Yme2
Tep Zala + Zmil
Tiy = y2e2 + ymer
which may be compared to the corresponding equations of section 1.1.
There is a dimensional difference because in transmission lines the series
impedances z are measured in ohm/meter and the shunt reactances y in
mho/meter. T'is the propagation constant of the wave traveling in the
+s direction. If a sinusoidal signal with the radian frequency w isimpressed
upon the input of the lines, the coupled waves have the solution
e = El.,ej'"_r“' + Elbefut—l‘b: 1.2-1
€ = Emfjm_raa + Ezbéjm!_Pb. 1.2-2
For zero coupling one finds, in analogy to Section 1.1
e = K1ty = Eméjm_r"

. jwt—T
Kzig - E-mi'm 3

€20

it
K= A/ 2
N

K,: VE
Yo
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and

'y = v Mz
s = Vyz

Ey and Es are independent integration constants. For finite but loose
coupling and small attenuation constants one finds in analogy to 1.1-14
and 1.1-15

I, = I11+-P2—|- Pz\/1+x2"1‘1+05112(1—\/1 )
r= Do ‘PIZPQ\AT ¢ =T+ 05Tl - VIF o)
where
X I‘ AV TiT, 1.2-3
I, —

is the coupling discriminant. Just as in Section 1.1 the coupling coefficient
k is defined by the equation
-P 12 -P 21

k == = g
VPP, /PP,

P, is the energy per unit length stored in line 1; P, the energy per unit
length stored in line 2, and Pi; = Py, the energy per unit length inter-
changed between the lines. The waves can travel in the coupled lines with
either or both of two transmission constants. Two of the amplitude
vectors in equations 1.2-1 and 1.2-2, for instance Ei, and Ea, are free to
satisfy boundary conditions; the other two are determined by the equation

m&=n—n=n—n_%m
El.Ks To—T; T,—T, ELK,

Eza Ky _ Elb Kz_ ____1__ - .

4 is the normahzed amphmde and phase mtia for two lines transformed to
equal wave impedances.

1.2-4

Ei. K, | _ =_1_

Esz’ W

W, = h‘w{=
VIiFe+1)

is the ratio of energy flow in the two lines. At the propagation constantT,,
s= VIt -k =4 1.2-6
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When the indexes are left off, W < 1 and | 4 | < 1 by definition.
In a manner analogous to that of Section 1.1 it can be shown that the
coupled attenuation constants are

_ o + azl‘V _ lfVlu WEn

g =, = 1.2-7
“ 1+ W “ Wiotal + o Wiotar
as + a W W Was
== 7 = = 1.2-8
a“ 1 + W o Wtota] + o thtnl

The attenuation constants of the coupled waves are found by combining
the uncoupled attenuation constants in the same proportion as the energies
traveling in the two lines.

The coupled phase constants are

B — Wh '

Ba = T and 1.2-9a
_ B: — Wp

By = ToW 1.2-9b

From equations 1.2-5 to 1.2-8 one sees that the coupled propagation
constants are conveniently described in terms of the power ratio W. W
itself is a known function of the complex coupling determinant x which is
shown on the attached Fig. 4 for the following three special cases:

Case 1.

The two lines have equal phase constants and different altenuation con-
stants: @z = B1 @ S

« is an imaginary number.

W changes its character abruptly at the critical coupling.

| k critical | = 1
For|k| <1

W<1l;, wm2a; Bbv=2Fa
For|x| =1

W=1;, ay=as; Bb2be
Case 2,

The lines have different phase constants and equal allenualionconstants.
& is a real number
W changes asymptotically from

Wo = 0to
Wi = 0.172 and to
Weo =1
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Case 3.

The phase and attenuation constants differ by equal amounts. As shown
below, in section 4, this case applies to the coupling between the TEy; and
TM, modes in curved circular wave guides with finite conductivity.

«* is an imaginary number,

W changes asymptotically from

Wy = 0to
Wy = 0.217 and
We =1

For k2> 1 all three cases approach the limit

BB k
SNETTEY

cataf, k). ot
@ = 7 (1+2)' 2

2. DErivaTION OF FIELD EQUATIONS

Consider a straight circular cylinder with an inside radius such as shown
on Fig. 1 A, Let the radial coordinate equal r, the azimuthal coordinate
“equal ¢ and the longitudinal coordinate equal z. Let the dielectric losses
inside the cylinder be negligible.
The field equations inside the cylinder are®

9E. _9OE,

rop oz el
OE, OE,
"a-'g - 467 = —lwur H.p
d(rE,) 0E, _
or  op et
and
rdp 9z
oH, oH., .
az oy Jweke
a(rH,) oHr .
: o) O = joers,

5 See Ref. 4, pg. 94 of the book.
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The natural transmission modes which satisfy these equations have the

form ) _
E = f,;(f) em(w-i—wn)_ eml—rs 2-0

Each of these modes conforms to the same equations as a wave traveling
in a transmission line with an impedance and phase velocity dependent upon
the mode. In a straight cylinder with perfectly conducting walls, there
exists no coupling between the different modes so that any and all can
exist without interacting. If the conductivity of the walls in a straight
circular cylinder is finite, it produces a resistive coupling between modes of
equal azimuthal index (n in equation 2-0). In copper tubing and at the
frequencies now obtainable (w < 10') this coupling effect is negligible.

A stronger coupling may be caused by deviations of the wave guide from
the shape of a straight circular cylinder. The deformation considered
in the present analysis consists in a circular bend of the axis, as shown
schematically on Fig. 1b.

In such a circular bend the longitudinal coordinate is replaced by the
product of the bending radius R by the bending angle 6:

z = R#

This transforms the first two component equations of curl E into

d(RE) 0E, _ _.
Rrop R Jop Hr
dE, o(RE) _ .
R~ Rar ~ ewHe

The variable R can be eliminated by the relation
R=Ry—rcose

where Ry is the bending radius of the cylinder axis. The coordinate 6 can
be replaced by a longitudinal coordinate s, measured along the cylinder
axis. Hence,

§ = BRU

The progressive modes which we investigate have the approximate form

E = fn(f) EJ'ﬂ(p-hpn) ejwl—l‘l

Hence
a a
=Rz = — R

56- = jn for all field components.
¢
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o may be expressed by a prime:

oF _
ar

FI'

Thus the equations with curl E become

gnk, E, sin ¢ R,TE, i H
r Ry—rcose Ry—rcose Jok
—R,TE, ’ E, cos ¢ .
T B+t = —jouH
Ry — rcos g +Ro—'fCOS¢p Joh o
E, + tE, = jnE, = —jwpr H,
For gradual bends
Roy>a>r
One may therefore approximate
Ru r
. R A
Ry — rcos ¢ +RUCOSp

It is convenient to introduce the symbol

a

‘TR

15

which is proportional to the coupling coefficient. All powers of ¢ greater
than the first will be neglected. One can now write the approximate field

equations in the curved cylinder:
J"TE'+PE,+£E.sin¢+ oL E,coso = —jonH,
—-TE, — E, — cI‘iE,cos o+ ;E cos ¢ = —juu H,
E, + rE, — jnE, = —jwurH,
jn H, c . r .
T + I‘H‘p + (_)‘,H. sin ¢ '+‘ CP&H, COos ¢ ='?(IJEE,-
—rH, — 0, — cI‘iH,. cos ¢ + EH., cos ¢ = jue E,

H, + rH, — jnH, = jwer E,

2-1

2-2
2-3

2-4

2-5

2-6

The coupling terms all contain the factor cos ¢ or sin ¢. This means
that every transmission mode is coupled only to modes with an azimuth

index differing from its own by ==1.
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3. CuarAcCTERISTIC EquaTiONs OF TEo AND TM;; MoDES

The mode which one desires to propagate through the wave guide is the
TEq mode. In a straight wave guide with perfectly conducting walls
it is characterized by the following equations:

n=20 3-1
E,—l = Eﬂ = H,‘,l = 0 3-2
Ey=E €T (y) = eJi(y) 3-3
Ha= = %2 10) 34
JBo
Ha = *’5" To(3) 3-5
In these equations
n = /|/E = 377 ohm (intrinsic free space resistance) 3-6
€
2
Bo = wVeu = )\_:r 3.7
y = xr 3-8
=V — g 39
In a perfectly conducting wave guide
Xy = 3.832 3-10
a
gﬂ = '6%’ (cutoff factor) 3-11
0
= jBoV/1 — 2 = jB 3-12

If the wave guide has the conductivity of g mho/m, its intrinsic high
frequency impedance is

Zi= (1 + R = (1 +7)344 1/ B 3.13
. >

This changes x to
(1 - j)R(V

X = Xo — T and 3-14
s g iy TR 315

* Rel. 4 pg. 83.
t Compare Ref. 4, pg. 390.
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Due to the curvature of the guide, this desired mode is coupled to all modqi
which have the azimuthal index number 1.

However, for low curvatures, this coupling is very loose and only causes
appreciable effects if it can act over a great length of wave guide without
phase interference.

This means that the disturbing mode must have nearly the same phase
velocity as the desired mode. It so happens that in a perfectly conducting
circular cylinder there exists' one mode, the TM;;, which has exactly the
same velocity as the TE,; . Such a coincidence is called ‘““degeneracy.”

In the analysis of very gradual bends, only this TMi; mode need be
considered. Itischaracterized in a straight guide by the following equations:

n=1 3-16

E, = Eé ™ . Jl(y) 1) 317
y y

cos (¢ + ¢o) = € cos ¢

The TMy; mode can be polarized in all directions. But since only. the
component directed toward
® =0
is excited by the wave guide curvature, ¢ has been omitted in the last
term of eq. (3-17).

E., = fr’zd—J@ sin ¢ = e3Ji(y) sin ¢, where J = aJ
E, = J;(y) sin ¢
Fz
Hp = 8”'8" Ji(y) sin ¢
H, = e’j'sﬂ Jl(y) Cos ¢
Tir‘z
Hﬂ =

Ina perfectly conducting wave guide the x defined by eq. 3-8 is
X = x2 = xo and
Iy =T = jB
In a wave guide with an intrinsic impedance per 3-13,

(1-——_—1)R'- and 3-18
nay

1 R;
I, = jB, + iﬁ—ﬂyﬂ GI 3-19

From 3-15 and 3-19 one finds a; = ag? 3-20

X2 = Xo —
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4. InTERACTION BETWEEN TEp AND TMiyj MopEs i

Since the separate modes of propagation behave like traveling waves in
transmission lines?, their interaction can be derived from the coupling
equations derived in Section 1 of this analysis.

The uncoupled propagation constants I'y and T'y are known (equations
3-15 and 3-19). In order to find the coupling discriminant one must derive
the coupling coefficient from the field equations 2-1 to 2-6. The coupling
coefficient is defined as

b — Py _ Py
VPP, PP
In computing the coupling coefficient one may neglect the small attenua-
tion constant. The energy stored by the TE,, wave per unit length is

(eq. 1.2-4)

uEg a@ N
Pl = ._.21rrdr= H]_T"z‘ﬂ'fdr 4-1
0 7 0

This expression is not affected by the cutoff factor » because one may
consider the field inside the guide as composed of slanting plane waves with
the electric field strength E;. The energy stored by the TMi wave per

unit length is
or a Eg 2 a
Py = f f Zrdpdr = [ f Hj yr dpdr  The inter-
(] (I 0 (]
changed energy:
2r pa 2r pG
E,
pu=[ [ BB+ [ [ Hultindedr
[} n 0 0

Combining equation (4-1) with 3-3, 3-8 and 3-10

2rater [U
P = m]; yélll(y) dy

From reference 1, page 146 of the book

3.802 2
3.832
fn yo1Ji(y) dy = ° 5 Jo(3.832)
Hence
2 2
P, = (lSle;a 42
n
In a similar manner one finds
_ 0.51e3a" .
P o= +3

2 Loc. cit.
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and

0.51ce €2 a°
— = 4—4
Py = Pu 3.832
Substituting the values of 4-2, 4-3 and 4-4 into 1.2-4 one finds for the
coupling coefficient between the two groups of plane waves traveling at a

slant to the wave guide axis

/1 — 2
k, _ C‘\/ﬁsgé Vv — 0..’;?090‘, m

The coupling coefficient £ between the TEy and TM;; modes which are
the resultants of their slant wave groups is greater than &, according to the

following reasoning:
From 1.2-10

B = Bo(1 = 0.5 &,)

This makes the cutoff factors of the coupled modes

X Yo

8= 1+ 0.5k,

and the coupled propagation constants

I = BV1 - = foV/(1 = 05k)F — 4}

py =

For k., < 1
0.5k,
T = Bv/1— 1 (1 £ ,,g) = To(1 — 0.5%)

Hence, in view of eq. 1.2-10, the effective coupling coefficient of the wave
guide modes is

k _ kl _ 0.3690 4—5
—..1 - Ryv/1 — 12
From equations 3-15 and 3-19
I‘l—I‘g= —1—;%!13.-\/1-#2 4—6
VIl . B . —2ma a7

Ii—T: T1—=T: (1 —)RAVI— s
From 1.2-3, 4-5 and 4-7 one obtains the coupling discriminant

_ —0.369-27-377d"
RnR.‘)\g(l - _])(1 - Pz)

K

Since
R; = 0.00452 Ag™% p, * 4.8

*Loc. cit.
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with the relative high frequency resistivity

Pr = /‘/ £
pm)ppel‘

965101 + j)a’\ "
Ru p,-(l — Vﬂ)

Its absolute value
1.366-10°a’A""*

el = —F——
ROPr(l - Vg)
1.2 ’
- 1 CASE |
EQUAL PHASE
.0 i I L _C_OE.S.T_A'.”‘I__L--__-_:
/";:'--—
0.9 =
AT~
0.8 P
ES 4
- . _CASE 2
0 0.7 EQUAL ATTENUATION
> } / CONSTANTS
x 0.6 i
> ]
5 CRITICAL __ /,
g 03 COUPLING T2 4
z ! //
wo.4 ,' y
0.3 ] ,/. - CASE 3
. 7 // “=-~—-_TEg AND TM, MODES: 1
0.2 / EQUAL DIFFERENCES BETWEEN PHASE | |
7/ AND ATTENUATION CONSTANTS
v
0.1 ‘% i
o | HEEEEE N
ol 02 04 06 | 2 4 6 B 10 20 40 60 100
COUPLING DISCRIMINANT, |K|
Fig. 3

As shown in equation 4-6, the differences between the propagation
constants of the TMy; and TEn waves are proportional to the intrinsic
skin impedance R; which contains the factor (1 4 7). This means that the
phase and attenuation constants of the two waves differ by equal amounts
in accordance with “Case 3” of Section 1. For this case the power ratio

per 1.2-20 may be written
Vi+jl«p -1

W= VitilxF+1

The numerical value of this function is plotted on Fig. 3.
computed conveniently by means of the following auxiliary parameters:

4-9

It can be

V147« = ¢+ jg = coshx+ jsinha
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=05+ 054/1 + [« = coshx
V=05 +05/1 + [« = sinh «

W=1)_1ta.nhf
P 2

In analogy to Case I of Section 3, the condition of | k| = 1 may be called
critical coupling. It occurs at the critical radius of curvature

1.366-10° g\ 7%°
Rogp= = —
Pr(l - 7”2)

For subcritical coupling (Ry >> Riy,) W approaches

meters 4-10

2

I'V! uber. = — 0

For supercritical coupling (Ry < Re),

V2

H'ruupemr. = 1 - T 1
]

From the above results, it is possible to predict the behavior of waves
originating either as TEq or as TMy; modes, in any given wave guide
configuration. This is done for some typical cases in the following sections.

5. PropracaTioN IN LoNG WAVEGUIDES WITH CONSTANT CURVATURE

It has been shown in Section 3 that for each curvature there exist two
modes of propagation.

In one,
PTM]]
W, = <1 5-1
Preq
and the attenuation
e < artg + arm 5.2
2
In the other,
Wy = 1 >1 5-3
T W,
and the attenuation
> ate + ™ 5.4
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In a long wave guide the “»” mode will die down due to its greater attenua-
tion, no matter how much of it was initially present, so that one need only
consider the “a” mode.

This mode has a phase velocity slightly smaller than that of the uncoupled
TEq wave and an attenuation nearer to that of the TE, than the TMy

wave.
The magnitude of the critical radius is illustrated by the two examples

of Table I.

TaBLE I
CHARACTERISTIC VALUES

Parameter Symbol Equation Example 1 Example 2
Wave guide radius a .05 m .05m
Free space wave length Ao .03 m .0lm
Cutoff ratio v 3-11 .366 .122
Attenuation constant argeu) | 3-15,417 | 2.04 X 10 | 3.58 X 10—*
neper/m neper/m
Attenuation constant armeu) | 319 1.53 X 107 | 2.41 X 1073
neper/m neper/m
Critical Radius Rerit 4-10 2.12 km. 3.44 km.
TasLe II
RELATIVE ATTENUATION VERSUS RADIUS OF CURVATURE
General formulae Example 1 Example 2
o x .E)-'I.-R“ w aag T Rokm afap Rokm a/an
0 © 0 1 0 1.00 0 1.00
0.1 10 0.0025 14 0.0025 (»2 — 1) 19.7 1.02 | 34.15 | 1.17
0.2 5 0.01 14 0.01 “ 9.85| 1.06 | 17.08 | 1.66
0.5 2 0.06 1+ 0.057 “ 3.84 | 1.38 6.83 | 4.45
1 1 0.22 140.18 “ 1.97 | 2.16 3.42 | 12.94
2 0.5 | 0.48 140.32 “ 0.98 | 3.11 1.71 | 22.2
5 0.2 |0.75 1+4+0.43 “« 0.38 | 3.83 0.68 | 26.6
10 0.1 |0.87 14 0.46 “ 0.20 | 4.05 0.34 | 27.9
o 0 1.00 14 0.50 “ 0 4.30 0 34.1

The increase of attenuation in long wave guides with uniform curvature
is shown on Table II, with numerical values for the same examples as in

Table 1.

6. PROPAGATION IN A UntrorMLY CURVED SeEcTION OF WAVE GUIDE
ForrowinG A Long SrraicuT SEcTION. (FIc. 4)

No matter what mixture of modes may prevail at the beginning of the
wave guide, all modes except the TEq, die down in the long straight section
due to their higher attenuation, so that the wave form at the beginning

of the curved section is pure TEpn .
Since it has been shown in Sections 1 and 4 that each of the two possible



CURVED WAVE GUIDES " "/ 23

modes of propagation in a curved wave guide consists of both TEo and
TM,, waves, it follows that both modes must be superimposed in such a
manner that at the transition point the TM components cancel each other by
interference. :

Let the relative amplitudes of the two TE components equal a and b;
then the corresponding amplitudes of the TM modes are ada and b4,

Ro

20J

Fig. 4
respectively, where 4, and A, are the normalized voltage ratios per 1.2-5.
_ At the beginning of the curved section
at+b=1 (TE amplitude)
ads + Ay = ade — /A, =0 (TM amplitude)

Hence
_ 1
= 14 42
2

po A

1 Aa
* é=‘A§=W
a |

The two waves have different phase velocities and therefore interfere
with each other. According to 1.2-9, the difference between the phase
constants is
1+ W
1—-W
By means of equations 4-9, this can be transformed into

By — Ba= (B2 — B+ q) 6-1

By — Ba = (}82 - Bl)
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The length of one tomplete interference cycle is

2w
: (2 + q)(B — B1)
If both components had equal attenuation, the beats superimposed on the
decaying envelope of the TE,; wave would correspond to an amplitude ratio

euma§=li—W_P+q

€y min 1

Sor =

However, during the progress of the mixed wave through the curved section,
the intensity of the fluctuations is reduced by the greater attenuation
constant of the faster and weaker 4’ component. In one complete inter-
ference cycle, the differential attenuation reduces the weaker component to

éﬂ' — E—(az—alhh — E—'\'wap+q)

Ay

A pproximation for Weak Coupling
For | x| K 1

Bo — Ba= (B2 — B+ 0.5]x|D)
From 3-15 and 3-19
B — o = /T2
an

_§ 71 _on
L12X10 1/(1 — )geu (1 + 0.5 | « [°) radian/m
a Aog

For intermediate coupling, 6-1 may be transformed into
By — Ba = kﬁlf(")

; _ VIt AT+ [cp+ V=14 V14 ][]
wuhf“]_\/ilxl IK 2|Ki le

A pproximation for Strong Coupling

For|x|> 1
foo = 140125 |k [™18s — Ba = kB:1(1 4 0.125 |k |~)

Substituting the value of % from 4-13 and transforming,

Bo— B = oS =y (L4 0125k [™) 6-2
ARy
The phase difference between the two components is
2.32as 2.32a8
Voo = R, fw = Tf(x) = Mo 6-3
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where 6 is the bending angle of the wave guide. The power carried by
the TEy wave is

Pre = cos’ ﬂg 6-4

Minima of TEp occur when this phase difference is an odd multiple of .
Hence, the bending angles producing minima of TEy; amplitudes are:

1.36) . (2n + 1)2.22
ol + 015k Juw

The initial fluctuation ratio approaches

o= pt g = V2«

€1 min

6-5

Omin = (2” + 1)‘

which is a large value tending to infinity.
The relative attenuation of the slightly weaker component during one
beat cycle is . '
A_ﬂ_r — E-—ﬂr.’p-ﬁ-q _ é—-\/t.T:rflxi =1 — ﬂ4
Au | K'J
which is a small reduction tending to zero. Hence, the fluctnations persist
through a large number of beats. The power is transformed back and
~ forth between the TEq; and the TM;; modes. o
In Section 5, it was shown that in a long, uniformly curved wave guide
the attenuation is intermediate between that of the TEy and TM,;; modes.
But from equations 1.2-7 and 8 it follows that the two modes contribute
to the attenuation in proportion to their relative power flow. Since at
the beginning of the bend the power of the TMy component is zero,
it is to be expected that the initial rate of attenuation equals that of the
TEqn wave alone. This is proved by differentiating with regard to s. One
finds for all values of « that

d| _r -T
— lae "+ be P = —a

ds 5=0

Discussion of Resulls

Equation 6-2 corresponds directly to an equation derived by S. O. Rice
and, after allowing for the different choice of variables, to M. Jouguet’s
equation (75)°. Tt differs from the results of these earlier calculations
by the factor f(k) = 1 + 0.125 | & |~ which is a reminder that the simplified
form of the equations given by the earlier authors is an extrapolation to
infinite conductivity or infinite curvature of the wave guide.

6 Reference 3, pg. 150 of Cables and Transmission, July 1947.
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From equations 6-3 and 6-4 it is seen that the TE,, wave is recovered by
bends which are an even multiple of 6nin. But such bends are efficient
transmitters of TEy waves only over a narrow frequency range since
Omin varies with frequency.

If the circular bend is followed by a long straight section, the TEq; and
TM;; components existing at the end of the bend are carried over into the
straight section, but the TM component dies down due to its greater
attenuation and constitutes a total loss.

Numerical examples for first extinclion angle.

Using the same dimensions as in Table I of Section 5, one finds from
eq. 6-5 for:

Example 1: f,.;. = 0.816 Radians = 46.8°
Example 2: i = 0.272 Radians = 15.6°

7. SERPENTINE BENDS

Sections 5 and 6 dealt with bends continued with uniform curvature
over large angles. * The present section considers the small random devia-
tions from a straight course which are unavoidable in field installations.

Actual deviations are expected to be random both with regard to maximum
deflection angle and to curvature; they are likely to approximate a sinusoidal
shape. For purposes of computation, the following analysis assumes as a
first case circular S-bends which consist of alternate regions of equal lengths
and equal but opposite curvatures. An exaggerated schematic of such
S-bends is shown on Fig. 5A.

Each circular bend tends to produce a single mode with an attenuation
per equation 1.2-7. However, the discontinuous reversals of curvature
at the inflexion points produce mixed modes, and the initial part of each
region reduces the amplitude of the TM components produced in the
previous region.

Each region may be treated as a discrete 4-terminal section of a trans-
mission network. Regardless of the wave composition at the input terminal,
differential attenuation will establish in a long serpentine wave guide a
steady state condition. In this steady state each region produces equal
attenuation. This attenuation per region and the resulting average
attenuation constant will now be derived.

The TEq and TM,;; waves each consist of “a’ and “b4” components with
separate amplitude ratios and propagation constants, as derived in Sections
1and 4. In the first region (between points 1 and 2 of Fig. SA) R, is taken
as positive, and

A=AIFret—ct 1.2:6
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In the second region, between points 2 and 3, the polarity of Ry, and
consequently of x and the ratio of TM to TE amplitudes, are reversed.

s S
2a

Q- CIRCULAR ‘S’ BENDS

b - SINUSOIDAL BENDS
Fig. 5

Except for this change of polarity the amplitude ratios at points 1 and 2
are equal. Introducing the symbols

—TI'sm

g = ¢
Em = %(gu + gb)

gd = 3(g — ga)
one can tabulate

point erE €T™M
1 a4+ b ad — j 7-1
a ad b
2 m b m -_ = 7—2
o) (5 - ie)
Calling g = v, one finds
1 + ygz — —A2 + ygg — &f . g _ Buverage
14y 42—y Gm S ga
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1
anerngn = F + - 101.J 1 :— yz Wlth

A— . _
y=73 M+ ghH + 4 gc?2+“—45(1+gf)2

This formal solution, is hard to evaluate. It can be greatly simplified
for the subcritical and supercritical cases.

1. Subcritical Curvature | k| K 1

K‘Z
YT a4 2
2 2
Paverage =T (1 ’i ! g;) =T, = Pl
214 g

For very low curvatures, the average attenuation approaches that of the
“a” mode, and this in turn approaches that of the TEy wave.
2. Supercritical Curvature. | x|>> 1

The differential attenuation constant is small compared to the differential
phase constant.

[yl =]4]=1

Substituting these values into 7-1 and 2, one finds
. 0.5

y= ¢

Expressed as a function of §:

vy = cos ¢ + 7 sin ¢ with

¥ =M@ — 0.5 0n) 7-3
M has the value per eq. 6-18.

The power ratio of the combined TMi; and TE; waves is

Wy = tan? ¢/2

In view of equation 1.2-7 the instantaneous rate of energy loss is

ap = o COS' % + sinﬂg = a + (@ — ay) sin’ % 7-4

*8m Om
Upvernge — Sl' ./u 23 d.s = 8'1‘ j; a7} dg

1 in M6,
Uuverne = 01 + (2 — @) (i - %JT)

In view of 3-20

_ [v*+1 v — Lsin Mo,
Ouvernge — O] 2 2 Mﬂm
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For small deflection angles, M0, << 2

Qaverage = a [ em ]

If a $9 increase in attenuation is the tolerance limit

e L 6.
= IOM 1/ e Substituting the value of M from 6-3,

0.1054/p ¥A
a1 —

The maximum deflection equals

Ay = 0.56,,. Hence,in view of 3-11

Om =

2
Ay = O(f’/zﬁ\f radians = l'i?n i ? = degzrees
— y -

3. Sinusoidal Bends with Predominantly Supercrilical Curvature.

Sinusoidal bends cannot be supercritically curved over their entire length
because at the inflection points the curvature drops to zero. For sufficiently
short bends, however, no great error is caused by treating the entire length
as supercritical. In that case, equations 7-3 and 7-4 remain valid. @
takes the new value

0 =9—"'+8—'"sin1r—(s— m)

2 2 28m
Hence
MO, . w(s — sm)
Y = = sin ==
\ _ o M6, . s — 5,
Caversge = @1 T 2 Sm = ./; sin’ [_2_ sin W—( 25m )] ds
For small deflection angles, M6, < 2
ay — an MG, [ . aw(s = sp)
verage — —_— 77 d
@averag a + . T b sin 7 s
M6,
_a.+(a2—al)_4,,_a,[1+ 1M2]

degzrees

A _ 0026\ /7 radi 14973 ?
9 ; ans = — — [
\/1 — 2 a 4

The tolerance limit for sinusoidal deflections is 2097 smaller than for
circular S bends.
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The effect of supercritical but shallow circular and sinusoidal S bends is
illustrated by the following numerical examples.

TasiLE III
INCREASE OF ATTENUATION IN S BENDS

Maximum deflection A© (in degrees)
Attenuation — -
Increase $% Example 1 (» = .366) Example 2 (» = .122)
Circular ' Sinusoidal Circular Sinusoidal

10 2.25 1.82 0.23 0.19

20 3.18 2.58 0.33 0.27

30- 3.89 3.15 0.41 0.33

40 4.50 3.64 0.47 0.38

50 5.03 4.07 0.52 0.42

8. HericAr BENDs AND RanpoM Two-DIMENSIONAL DEVIATIONS

A helical bend may be treated as a bend which has a constant absolute
magnitude, but a changing direction of curvature. As indicated in eq. 3-17,
the TMy; wave can be polarized in all directions. At any differential
element of wave guide length, the TM1; component polarized in the local
bending plane is coupled to the TEq; wave; the TMn component polarized
at right angles is not coupled and persists unchanged. By requiring that
the absolute magnitude of the TM;/TEy; amplitude ratio remain constant,
a steady state solution can be found.

Shallow helical bends of small curvatures may be treated as the super-
position of two sinusoidal bends offset by 90°in the longitudinal direction
and in the bending plane. The increases in attenuation due to these two
sinusoidal bends are computed from eq. 7-5 and added.

It is believed that random deviations from a straight course approach
sinusoidal shape more closely than circular shape, hence equation 7-5 may
be used to establish a tolerance limit for such random deviations. For
quantitative results the statistical distribution of the squared deviation
maxima must be taken into consideration.

9. OpriMa oF WaveE Gume Rabprus, SioNAL WAVE LENGTH AND
ATTENUATION AS A FUNCTION OF ANGULAR DEVIATION

In a straight wave guide the attenuation decreases with wave guide radius
and signal frequency. However, the deterioration due to wave guide
curvature increases with wave guide radius and frequency. Hence, for a
given tolerance limit to angular deviation from the straight course there
exists an optimum radius for each wave length and an optimum wave length
for each radius. This will be shown for the case of uniform sinusoidal bends,
under the simplifying assumption that the cutoff radio » < 1.
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Solving 7-5 for p one obtains
p = 0.45A% 9-1

where p si the percentage increase in attenuation, and A the deviation angle
in degrees.
Hence the average attenuation

as = a(l + 0.01p) 9-2
From 3-15 and 3-11
VR
ay

= 107 R\ a™? 9-3

aé

Introducing the R; value from 4-8
a = 4.5 10 5p\!-5¢73 9-4

where p is the high-frequency resistance of the wave guide relative to copper.
From 9-1, 2 and 4

as = 4.5 107°p\1-5a3(1 + gA—a¥) 9-5
with
g = 4.5 107%A?

The attenuation reaches a minimum when
f(\, @) = Mg + gh~*-%¢ = minimum
Case 1. X\ 1is given
6f/da = —3NtPa~t + g 2B =0
Qope = 1.320g70% = 5.20A08
From 9-5
Qpopt = da = 1,29 107 px—1-ALS
Case 2. ais given
8f/8\ = 1.5\"3g=% — 2.5qx"3:5¢ = 0
Aopt = 1.14ag%?% = 0.294gA"5

From 9-5
Qaope = 1.6a = 1.15 10~%pa 1A
Numerical Example
Let A = 0.42°
a = 005m

A=001m
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From Table III
asr = 1.50 & = 5.4 10~5p neper/m

Case 1: X fixed at 0.01 m
ope = 0.08 m
Qopt = 2.76 10~5p neper/meter

Case 2: a fixed at 0.05 m
Aot = 0.0097 m
aope = 5.36 10~%p neper/m

Assuming sinusoidal bends with a 0.42° maximum deviation, the attenua-
tion of centimeter waves can be reduced to one half by increasing the wave
guide radius from 5 to 8 cm. For a 5 cm wave guide radius, 1 centimeter
wavelength is close to the optimum.



