Reflection from Corners in Rectangular Wave Guides—
Conformal Transformation*

By S. O. RICE

A conformal transformation method is used to obtain approximate expressions
for the reflection coefficients of sharp corners in rectangular wave guides. The
transformation carries the bent guide over into a straight guide filled with a non-
uniform medium. The reflection coefficient of the transformed system can be
expressed in terms of the solution of an integral equation which may be solved
approximately by successive substitutions. When the corner angle is small and
the corner is not truncated the required integrations may be performed and an
explicit expression obtained for the reflection coefficient. Although applied here
only to corners, the method has an additional interest in that it is applicable to
other types of irregularities in rectangular wave guides.

INTRODUCTION

HE propagation of electromagnetic waves around a rectangular corner

has been studied in two recent papers, one by Poritsky and Blewett!
and the other by Miles’. Poritsky and Blewett make use of Schwarz’
“‘alternating procedure” in which a sequence of approximations is obtained
by going back and forth between two overlapping regions. Miles derives
an equivalent circuit by using solutions of the wave equation in rectangular
coordinates. Several papers giving experimental results have been pub-
lished. Of these, we mention one due to Elson® who gives values of reflection
coefficients for various types of corners.

Here we shall deal with the more general type of corner shown in Fig. 1
by transforming, conformally, the bent guide (in which the propagation
“constant” of the dielectric is constant) into a straight guide in which the
propagation “‘constant” is a function of position—its greatest deviation
from the original value being in the vicinity of points corresponding to the
corner. This type of corner has been chosen for our example because it
possesses a number of features common to problems which may be treated
by the transformation method.

The essentials of the procedure used are due to Routh® who studied
the vibration of a membrane of irregular shape by transforming it into a
rectangle. After the transformation the density (analogous to the propaga-
tion constant in the guide) was no longer constant but this disadvantage
was more than offset by the simplification in shape.

Until this paper was presented at the Symposium I was unaware of any

* Presented at the Second Symposium on Applied Mathematics, Cambridge, Mass. ,

July 29, 1948.
! See list of references at end of paper.
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other wave guide work based on conformal transformations (as described
above) except that of Krasnooshkin®. At the meeting I learned that
the transformation method had also been discovered (but not yet published)
by Levine and by Piloty independently of each other. Levine has studied
the same corner, see Fig. 1, as is done here. However, his method of
approach is quite different in that he obtains expressions for the elements
in the equivalent pi network representing the corner, whereas here the
reflection coefficient is considered directly. This is discussed in more
detail at the beginning of Section 6. Piloty’s work is closely related to the
material presented in a companion paper® and is discussed in its introduction.

In this paper the partial differential equation resulting from the trans-
formation, together with the boundary conditions, is converted into a rather
complicated integral equation. Numerical work indicates that satisfactory
values of the reflection coefficient, in which we are primarily interested,
may be obtained by solving this integral equation by the method of succes-
sive substitutions. However, the question of convergence is not investigated.

Although they are here applied only to corners, the equations of Sections 3,
4 and 5 are quite general. In order to test their generality they were used
to check the expression’ for the reflection coefficient of a gentle circular
bend in a rectangular wave guide, E being in the plane of the bend. The
work has been omitted because of its length. It was found that the essential
parts of the transformation may be obtained by regarding the inner and
outer walls of the guide system as the two plates of a condenser, solving the
corresponding electrostatic problem (using series of the Fourier type), and
utilizing the relation between two-dimensional potentials and the theory of
conformal mapping.

When the angle of the corner is small we may obtain the series (7-5)
and (7-11) for the reflection coefficients corresponding to simple (i.e. not
truncated) £ and H corners, respectively (a corner having the electric
intensity E in the plane of the bend will be called an E corner or an electric
corner. H corners are defined in a similar manner). When the angle of
the general E corner shown in Fig. 1 is small we may use the series (7-18).

The series (7-3) and (7-11) giving the reflection from small angle corners
are related to the series giving the reflection coefficients for gentle circular
bends. In fact, if the radii of curvature of the latter be held constant
while the angle of bend is made small, the series for the circular bends
reduce to those for the corners.

As for the limitations of the method, note first that it can be used only
for wave guide systems in which the dimension normal to the plane of
transformation is constant throughout. Moreover, the integral equations
of the present paper, except for the work of Appendix III, are derived
on the assumption that the dimensions of the guide approach constant
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values at minus infinity and the same values at plus infinity. When this
assumption is not met, a conformal transformation may still be used to
carry the system into a straight guide. However, there appears to be some
doubt as to the best way of dealing with the resulting partial differential
equation. One method, discussed in the companion paper’, leads to an
infinite set of ordinary linear differential equations of the second order.
Again, possibly the Green’s functions appearing in Sections 3 and 5 may be
replaced by suitable approximations.

1. Representation of Field for Corner or Bend in Rectangular Guide

Quite often waves in rectangular wave guides are classed as “transverse
electric” or “transverse magnetic’. However, for our purposes it is
more convenient to class them as “electrically oriented” or “magnetically
oriented” waves.®® Thus, the electric and magnetic intensities are obtained
by multiplying

g o L4 _ B go%4, 1 0B
® 7 jwe 9x8F Ay 9y dwu dxdt
1 94 | 8B L) 1 o'B
= - - = - H, = — = = 77 -
Ev= e ayar  ox v ax T iwu 8yd¢ (1-1)
. 1 9°4 . 1 B
= — jwud — = He = — iweB + — —
By = —ad 4 e = el e

by ¢ and taking the real part. Here w, y, and e are the radian frequency,
the permeability of the medium filling the guide (u = 1.257 X 10~° henries
per meter for air), and the dielectric constant of the same (e = 8.854 X 10—
farads per meter for air), respectively. x,y, and { constitute a right-handed
set of rectangular coordinates in which the { axis is normal to the plane of
the bend. Equations (1-1) may be verified by substituting them in
Maxwell’s equations.
The potentials A and B satisfy the wave equation
a'A n a4 | P4
axr | 3yt | A
= im‘\/ﬁ = 12w /Ao

where Ao is the wave length in free space corresponding to the radian

frequency w.
When the electric vector lies in the plane of the bend, as shown in Fig. 1,

and the incident wave contains only the dominant mode we set

4 =0, B = Qsin (r{/a) (1-3)

(1-2)
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where a is the wide dimension of the rectangular cross-section, the guide walls

normal to the { axis are at { = O and { = a, and Q is a function of x and y
such that

3’0 | 0

70 4 29

ax’ ay*

I'yp = 2xhs (1 — Noa ?/4).)"?

—TWQ =0
(1-4)

The guide walls are assumed to be perfect conductors and hence the tan-
gential component of £ must vanish at the walls. This requires the normal
derivative of ( to vanish at those walls which are perpendicular to the

plane of the bend:
aQ _
ai% = (1-3)

When the magnetic vector lies in the plane of the bend and the incident
wave consists of the dominant mode, we set

4=P B=0 (1-6)
where P is a function of 1 and y such that
Fr  a'p .
Py + -, — I‘gop =1 Foo = lzr/f?\n (1-7)
da? 92

and
P=0 (1-8)

at the walls perpendicular to the plane of the bend. In this case the guide
walls parallel to the plane of the bend are at { = 0 and { = b.

2. Electric Vector in Plane of Bend

Figure 1 shows a section of the bend taken parallel to the electric vector.
b is the narrow dimension of the guide. Let the frequency and the wide
dimension a of the guide (measured normal to the plane of Fig. 1) be such
that only the dominant mode is freely propagated. The position of any
point in this section is specified by the complex number z = x 4+ iy where
the origin and the orientation of the axes have been chosen somewhat
arbitrarily.

The constant % and related propagation constants which appear in the
formulas dealing with Q and electric bends are given by

ko= (26/N0) [1 — (Ao/22)7'"* = —ilyb/m
'szn=m2—k2; m=01112!“'; 70=f‘k (2'1)

Mo = free space wavelength
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Since, by assumption, only the dominant mode is freely propagated, & and
vm for m > 0 are real and positive.

We imagine an incident wave of unit amplitude coming down from z
in the upper left portion of Fig. 1. What are the amplitudes of the reflected
wave traveling back toward 7 and the transmitted wave traveling outward
to the right towards z;? Our task is to find a Q(x, y), satisfying the wave
equation (1-4) and the boundary condition (1-5), which represents a
disturbance of the assumed type.

Zo= et{rr—acz)
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The first step is to find the conformal transformation
2= x4 iy = flv + i6) = f(w) (2-2)
which carries the bent guide (shown in Fig. 1) in the (¥, y) plane over into
the straight guide (shown in Fig. 2) in the (v, 6) plane. This may be done
by the Schwarz-Christoffel method discussed in Appendix I. This trans-
formation carries the wave equation (1-4) and the boundary condition
(1-5) into

30 | &0 RO =
Se g T+ 20 0FQ = 0, (2-3)

‘;_BQ=0ate=0ande=w (2-4)
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where the upper and lower guide walls are carried into § = 0 and ¢ = =,

respectively, and g(v, ) is given by

14 g(v,0) = |f'(v + i) [ °/ (2-5)
[ch v + cos 6]**

[eh(v — 1) — cos 0]*[ch(v + &) — cos )=

Here ¢/ denotes the hyperbolic cosine, f'(v + i6) denotes the first deriva-
tive of f(w), and from Appendix I, 2za is the total angle of the bend. {isa
parameter which depends upon « and the ratio d/dy where d = | 25 — 2|
and do = |24 — 2 |in Fig. 1. A table giving values of { for a 90° bend
(¢ = 1/4) appears in Appendix I.

That the propagation constant is no longer uniform in the transformed
guide shows up through the fact that the coefficient of #2Q in (2-3) is now a
function of the coordinates (v, ). g(v, 8) measures the deviation of the
propagation constant from its value at » = — . For example, if we
consider a wave front coming down from z; we expect it to get past z, before
it reaches zp. In Fig. 2 the same wave front is tilted forward corresponding
to a high phase-velocity (or small propagation constant) at z, where » = 0
and § = . This is in line with the fact that the coefficient of £2Q in (2-3)
vanishes at z4 by virtue of (2-6). Similar considerations hold at z; and z, .

What is our reflection problem in terms of the transformed guide? In
addition to satisfying the two equations (2-3) and (2-4) Q must behave
properly at infinity. For large negative values of v, Q must represent an
incident wave plus a reflected wave. The incident wave is of unit amplitude
and the reflected wave is of the, as yet, unknown value Rs. For large
positive values of v Q must represent an outgoing wave. Thus Q must
also satisfy the two equations

Q = e~*° 4 Ryetko, ¥ —> — o0 (2-7)
Q=T , 15w (2.9

g(l', 6) = -1 (2'6)

where the subscript E appears on the “reflection coefficient” Ry and the
“transmission coefficient” T'x to indicate that here we are dealing with an
electric corner.

Our problem is now to take the four equations (2-3, 4, 7, 8) and somehow
or other obtain the value of Rg. We are not so much interested in 7'y
because it does not have the practical importance of the reflection coefficient.
There are at least two different ways we may proceed from here. One
is to transform the differential equation plus the boundary conditions
into an integral equation which may be solved approximately by iteration.
Another way is to assume Q to be a Fourier cosine series in # whose co-
efficients are functions of v. Substitution of the assumed series in the
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differential equation (2-3) gives rise to a set of ordinary differential equations
having v as the independent variable and the coefficients as the dependent
variables. The integral equation method is used in this paper. The
second method is discussed in the companion paper.’

3. Conversion of Differential Equation into an Integral Equation

The differential equation (2-3) may be converted into an integral equation
by using the appropriate Green’s function in the conventional manner.
The only modifications necessary are essentially those given by Poritsky
and Blewett! in a similar procedure.

The conversion is based upon Green’s theorem in the form

j (Q G _ G-‘"Q) ds = f f (OV'G — GV'Q) dv db (3-1)
on on

where the integrationon the rightextends over the rectangular regionv; < v <y,
0 < 8 <  (inside the straight guide associated with (v, 8), i.e. the guide of
Fig. 2) except for a very small circle surrounding the point (vy, 6o).
G = G(v, 0 ; v, 6) is the Green’s function corresponding to

i A o A

7 L% 4RV = -

o + 25 + £V =0 (3-2)
in the region —® < v < ©,0 < # < subject to the boundary condition
8V /dn = 0 on the walls (3V/36 = O at 6 = 0 and 6 = 7). G becomes
infinite as —log r when r — 0, r being the distance between the variable
point (v, 6) and the fixed point (vo, 60). Poritsky and Blewett* have shown
that, in the notation (2-1),

L

G = D enym cOSmby COS mhe ol (3-3)

m=0
e=16e,=2 for m=1,23---

Equation (3-1) leads to
) ) —_ O_G 62 ’ %}‘ — aQ
st + [0 4008+ [ [0 -0'0] o

va T
= sz dv[o ag g(v, QG
vy

from which the required integral equation for Q is found to be

Q(‘uol BU) =

—ikv k2 - " - -1 —|v—vply.

e "+ —1 di'f d0 g(v, 6)Q(v, 6) 2 €mym COS mby cos mf € olvm (3.5)
211' o (1} m=0

(3-4)

* We have replaced their i by —i since here we assume the time to enter through the
factor ef« ! instead of e™iv’.
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where v is given by (2-1). The term e~ "% comes from the first integral
on the left side of (3-4) as 1, — — «. Equation (3-5) is a general equation
which may be applied to a number of wave guide problems by choosing a
suitable function g(v, 8). For the corner of Fig. 1 g(v, 6) is given by (2-6).

If g(v, 6) approaches zero when |v| becomes large, as it does for the
corner, expressions for the reflection coefficient Rr and the amplitude T
of the transmitted wave may be obtained by letting vp — = in (3-5).
For very large values of | 7o | the contributions of all the terms in the summa-
tion except the first (m = 0) vanish. Comparison of the resulting expression
for Q(vo , 6o) with the limiting forms (2-7) and (2-8) defining R and T'x gives

ik ' " —ikv
Re = — ;—ﬂ_ "_m dv‘{ do g(v, 8) Q(z, B)e™™ (3-6)
Ts=1-— 211-‘3 f_ 3 dv fo " do g(o, 6) O(z, )™ (3-7)

Since the integrands involve the as yet unknown Q(, 6) these expressions
are not immediately applicable. In fact, if we knew Q(v, 6) it would not be
necessary to use these integrals for Rg and T z—we could simply let v — =4 o
and use (2-7) and (2-8). Nevertheless, (3-6) and (3-7) are useful in obtain-
ing approximations to Ry and T'r when approximations to Q are known.

In Appendix IV it is shown that Ry is the stationary value, with respect to
variations of the function Q, of an expression made up of integrals containing
Q in their integrands. From the integral equation it follows that when
k — 0, i.e., when the frequency decreases toward the cut-off frequency of the
dominant mode, Q becomes approximately exp (—ikv). Furthermore, Ry
approaches zero. This is in contrast to the apparent behavior of Ry which,
according to the discussion given in Section 5, may possibly approach —1
under the same circumstances. Thus reflections from the two types of
corners, or more generally, irregularities in the E plane and in the H plane,
appear to behave quite differently as the cut-off frequency is approached.

Rg and T'g are not independent. Since the energy in the incident wave is
equal to the sum of the energies in the reflected and transmitted waves we
expect

ReR: + TxTh = 1, T (3-8)

where the asterisk denotes the conjugate complex quantity. In addition,
there is a relation between Ry and T'g which for a symmetrical irregularity,
i.e. for g(v, 8) an even function of », states that the phase of R differs from
that Tg by ==n/2. In this special case Tg is determined to within a plus or
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minus sign when Ry is given. These relations may be proved by substituting
various solutions of equation (2-3) for Q and () in the equation

[o-0F]-le%-e3], e

where 7, and v, are large enough (v; negative and v, positive) to ensure that
Qand ( have reduced to exponential functions of v. Equation (3-9) follows
from Green’s theorem. When Q is taken to be the solution for which (2-7)
and (2-8) holds and 0 its conjugate complex Q¥, equation (3-8) isobtained.
Keeping the same solution for Q but now letting 0 denote the solution
corresponding to an incident wave of unit amplitude coming in from the
right:

gikv + R]_G_i'h’, ?— o0

O
Ql=T18‘.k° ’ YP— —®

gives T = T, where we have dropped the subscript £ and have assumed
that g(v, 6) may be unsymmetrical. Taking Q to be Qf gives

RTY + RIT =0

which is the relation sought. In the symmetrical case R = Ry, R/T + R*/T*
is zero and hence R/T is purely imaginary as was mentioned above. The
same relations hold for Rz and Tx. These results are special cases of a
more general result which states that the “scattering matrix” is symmetrical
and unitary for a lossless junction.”

4. Approximale Solution of Inlegral Equation

A first approximation to the solution of the integral equation (3-5) is
obtained when we assume that the non-uniformity of the propagation
constant has no effect on Q. Thus we put

Qm(w, g) = g—ikv (4_1)

in the integral on the right and obtain an expression for the second approxi-
mation Q®(x, 6), and so on. Here we shall not go beyond Q®(v, 6).
It is convenient to expand g(v, 6) in a Fourier cosine series

g(v,0) = Zn(:] a,(v) cos nf

) (4-2)
a,,(v)=:r—"f g(v, 8) cos nf db, o =1;6=2,n>0.
0
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The second approximation, obtained by substituting (4-1) in (3-5), may then
be written as

0 (0, 8) = ¢ ™ + K27 3 ' cos mby
m=0
(4-3)

. [ a,,.(v)e‘””""""""’"‘ dv.

The nth approximation R to the reflection coefficient (when the
electric vector lies in the plane of the bend) is defined in terms of Q™ by

Limit Q™(v, 6) = ¢ " 4+ RE"e™ (4-4)

p—+—c0

" is also equal to the integral obtained by replacing Q in (3-6) by Q™.

We have

-]
R =0, RY = —ik2? [ ao(v)e ™ dv,

RY = RY — ik Y (dymem) (4-5)

m==(

L ]
. f dvo @ (7o) [ v am(2)e oo Ir—volm
- -

where v is given by (2-1).
The results of this section have the same generality as the integral
equation (3-5) in that they are not restricted to corners.

5. Truncaled Corner—Magnelic Vector in Plane of Bend

When the magnetic vector lies in the plane of the bend the reflection
may be calculated by a similar procedure. The wide dimension a of the
wave guide now replaces the narrow dimension b in Fig. 1. We shall call
the result of making this change the “modified Fig. 1”. We again assume
the frequency to be such that only the dominant mode is propagated without
attenuation. In place of equations (1-3, 4, 5) involving Q we have those of
(1-6, 7, 8) involving P.

The conformal transformation which carries the modified Fig. 1 into
Fig. 2 leads to

o’'P , &P 2y
5 + 5 + [+ g2, 0P =0 (5-1)

| P=0 at 6=0 and 6 ==
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where
k = 2a/h = —ilga/m, c= (k& — 1)1* = ak/b
e =mr— 1 —c=m?— &, 8, = ic (5-2)
Mo = free space wave length, m=1,2,3---
and

]

| froa(v + i0) [2n%/a® = 1 + g(v, 6). (5-3)

Here fmoa(w) pertains to the modified Fig. 1. Since the expression for
f'(w) given in Appendix I is proportional to b and since the modified trans-
formation contains a in place of b, it follows that g(v, 8) for the magnetic
corner is exactly the same function, given by (2-6), as for the electric corner.

It is again assumed that the incident wave coming down from the left
in the modified Fig. 1 is of unit amplitude and of the dominant mode.
At large distances from the corner

P = [ 4+ Rpe™)sin g, P— — o0
—1icy (5_4)
P = Tgpe *“ siné, 17—

which serve to define the coefficients of reflection and transmission. The
subscript H on the reflection and transmission coefficients indicate that
here we are dealing with a magnetic corner.

The conversion of the differential equation into the integral equation now
employs the Green’s function

-]

G =2 . 6, sin mf, sin mfe” 7Tl (5-5)

m=1

which corresponds to
Fv &V
372 + o
av a0

V=0 at 6=0 andf ==

+ &V =0

The integral equation for P is found to be

P(ry, 60) = € % gin 6y

2

40 T w0
+ %— f dv f 9 g(v,6)P(v,0) D 28, sin mfy sin mpe” " Polim
M Y=o 0 m=1

(5-6)

where the parameters are given by (5-2). This is a general equation.
For the corner of the modified Fig. 1 g(z, 6) is given by (2-6).
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By letting vy — — « we obtain the exact expression
= 2 L] T
Ry = — i—xg f dv f de g(v, ) P(v, )¢ "™ sin @ (5-7)
™ — 0

When dealing with the electric corner we saw that Rg — 0 as & — 0.
The presence of ¢ in the denominator of (5-7) suggests the possibility that
Ry— —lasc— 0. For Ry must remain finite and this may perhapscome
about through P(v, 8) — 0 in the region, say around v = 0, where g(v, 6) is
appreciably different from zero. This and the fact that P(v, ) must
contain a unit incident wave suggest that for » < 0 the dominant portion of
P(v, 0) is 27 sin cv which gives Ry = —1. Incidentally, it is apparent that
the approximations for P(», 6) given below in (5-8) and (5-10) (and therefore
also the approximations (5-11) for Ry) fail when ¢ becomes small.

The first approximation to the solution of the integral equation (5-6) is

PW(y, §) = e i gin 6 (5-8)
When we introduce the coefficients
2 [ . .
ba(v) = = [ g(v, 6) sin 0 sin né d
w Jo

) (59)
sin 0g(v, 6) = D ba(v) sin né

bi(v) = ao(v) — a2(v)/2,  ba(2) = [@8as(?) = @Gata(0)]/2, n>1

we find that the second approximation is

k]
PP, 00) = ¢ " sinfy + «*27" 2 6, sin mh,

m=]

- (5-10)
'-[ bm('y)e—icv—lvévglﬁm do.
The successive approximations to the reflection coeflicient are
2 3‘.‘\'2 e i
Ry =0, = -5 f dv by(v)e ™"
€ Jow
o +o0
R$ = RY — i* 2 (4cb,) " f dvo bm(0) (5-11)
m=1 — o

4
. f dv bm(vu)gﬁfclvwﬁ-uo)—\l'—c-nlb,,, .
— a0
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6. Series for R® When Corner Has No Truncation

The integrals which appear in the approximations for the reflection
coefficients are difficult to evaluate in general. This section serves to put
on record several expressions which have been obtained for R® when the
corner is not truncated. Corresponding evaluations of R® would be
welcome since the work of Section 7 for small angle corners indicates that
R® — R® ig of the same order as R®, However, I have been unable to
go much beyond the results shown here.

As mentioned in the introduction, H. Levine has studied the effect of a
corner in a wave guide by representing it as an equivalent pi network having
an inductance for the series element and two equal condensers for the shunt
elements. Early in 1947 he derived the following expressions (in our
notation) for the elements corresponding to a simpe £ corner:*

; [\1’ ("?%1) - w(—%)]
(In;')q cot (Bw/2)

where V, is the characteristic admittance of the straight guide, iB, the
admittance of one of the two equal shunt condensers, —iB; the admittance
of the series inductance, ¥(x) the logarithmic derivative of T'(x + 1), and
@ is the total angle of the simple corner (for no truncation we set 8 = 2e).

When the reflection coefficient for the corner is computed from the
equivalent network for the case 8 — 0 it is found to lie between the approxi-
mate value RE’ given by (7-3) and the considerably more accurate value
RS given by (7-5). All three approximations are of the form A8 + 0(8%)
where A differs from approximation to approximation but is independent of
B,and 0(8%) denotes correction terms of order 3. Since RY gives the exact
value of 4, it may be regarded as the standard when the three approxima-
tions are compared. If this comparison be taken as a guide, it suggests
that the rather cumbersome expressions (6-2) and (6-5) for RS given below
are not as accurate as the simpler expressions resulting from Levine’s work.
Dr. Levine has also obtained corresponding results for the general £E-corner
of Fig. 1. It is hoped that his work will be published soon.

When the corner is not truncated it is convenient, as mentioned above,
to replace 2a by B so that fr is the total angle of the bend. For no trunca-
tion ¢ = 0 and (2-6) becomes

g(v, 0) = [Cff” + cos "T —1 (6-1)

chy — cos @

B./Y,

I

By/Y,

I

*T am indebted to Dr. Levine for communicating these expressions to me.
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From (4-2) and (4-5), or from (3-6),
R = —ﬂa f dvf dfg(v, 0)e ™

P(ﬂ - 2k)r(n + ""k) = ( Zﬁ)i‘m(ﬂ)n—m
ik nz—:l Tl = 112 &(2m)! (n — m)!

(6-2)

where we have expanded g(v, 6) as given by (6-1) in powers of
cos 0/ck v and integrated termwise. The notation is (@) = 1, (&)y =
al@+ 1) - @+ n—1).

For a right angle corner 8 = 1/2, and a more rapidly convergent series
may be obtained by subtracting the sum of the series corresponding to
k = 0, namely

log 2 = i (1/2), (6-3)

n=1 #12n

Thus for g8 = 1/2

RY = —ik [log. . Z (1/2)" (1 - Au)]

ne=]

(6-4)

n—1

A, = =k/sinh =k, A, = 4, II‘ A+ Em™), n>1

The rate of convergence of the more general series (6-2) may be increased
in a somewhat similar way. It is found that

Ry = ’f [J = 26(1 — 4) - -‘3—2 2+ 80 - 45

~ 2 (034 208" + 26(1 — 49) — ]
J=K+L (6-5)
@
K = 2y T T—3 (1l — B) — 5772
_ < ( 2 )Em (ﬁ)n—m _ S (1/2 - ﬁ)rn____
—mz-:l_Z_._ Z(ﬂ—m)’ B 'Bmzq(l_ﬂ),,.m(m—ﬁ)
where .5772 - -- is Euler’s constant, ¥(x) is the logarithmic derivative of

(%) = I'(x + 1), and A, is given by (6-4).
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The results corresponding to R are quite similar. When the corner
is not truncated

e T — )T+ ic) s~ (—28)m(B)n-m

2) _ ~ e o (7 — m) !
Ry’ = —ik S+ D(n— 1)12cm=0 2m)!(n — m)!
- Wli-ga-a -Fe+eua- 0 66
c 3
g Y i
-5 (23 4 208° + 28°)(1 — 4y) — :[
J=1—-%01-p — 5772
B (1/2 = Bw

— 8(1 — R, S e Ty

Bl — ) ,.Z=:1 1/ mwm(m — B)(m — B + 1)
in which A, is obtained by replacing ¢ by # in the expression (6-4) for 4, .
The evaluation of the integrals for R§’ and R for general values of ¢

appears to be difficult although it is possible to obtain approximate expres-
sions for the case when ¢ is large.

7. Reflection from Small Angle Corners

The expressions for R® and R® may be evaluated approximately when
the angle of the corner is small, It turns out that, for ¢ = 0, they are of the
same order of magnitude and both of them must be considered. Moreover
R®™ for n > 3 differs from R® by terms of the same order as those neglected
in our approximations so that there is no point in going to the higher values
of .

We first obtain the approximation for R for a corner with no truncation
having the total angle 3. Since 8 is very small (6-1) may be written as

g(v, 6) = exp [Bg] — 1 = B¢ + B%*/2! + 0(6°)

(7-1)
¢ = log (chv + cos 8) — log (chv — cos 6)

where 0(3%) denotes terms of order 8%. The expression ¢ becomes very large
near the two points (0, 0) and (0, =) (the coordinates being (v, 8)). The
following considerations indicate that this does not invalidate our procedure.
The remainder, denoted by 0(8%), in (7-1) is less than | B¢ |* exp|Be|.
Near (0, 0) ¢ is approximately equal to 2log(2/r) where r* = ¢* + 6"
Consequently the remainder is less than (28 log 2/r)? (2/r)®. When the
expression (7-1) for g(v, 6) is set in the integral equation it is seen that all
terms, and in particular the remainder term (by virtue of the inequality
just stated), of the double integral converge at (0, 0). Hence the contribu-
tion of the remainder term is of order 8 even in the worst case when the
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Green’s function is replaced by —log . A similar result holds for the other
point in question, namely (0, 7).

Integrating (7-1) from 6 = 0 to 6§ = = and using equations (A2-1, 3) of
Appendix II gives

ao(v) = B41:(v, v) — I, v)] + 0(8°)

=45 n"’ e~ + 0(8%) (7-2)

n=1,3.5,- -

where v > 0. We consider only positive values of v since g(v, 8) and the
aa(v)’s are even functions of v. Thus (4-5) yields

R = —ik2g X w7l + B) + 0(8Y) (7-3)
n=13,5,+-

This is an approximation to the exact value given by the double series in
(6-2). Comparison of (6-5) and (7-3) when 8 and k& approach zero gives,
incidentally,

Lol o0

m—zz n—1/2)7" = Z m>.

m=1 2=

From (4-2), (7-1) and the expansions (A2-2) of log (chv = cos 6) it follows
that

am('v) = 457'5_[6_“["‘ + O(ﬁz): m = 1, 31 5: e

(7-4)
an(v) = 0(6?) , m=02406---

Equations (4-5), (A2-4), the relation vs, = m? — k2, and (A2-8) give us the
answer we seek:
RY = R — ik'28" 2, vu'm™ T (m, m, k, vm, 0,0) + 0(8)

m=13.6,---

= —ik28 > glm + 0 (7-5)

It is not necessary to go to R§" because it differs from R§’ by only 0(g8).

When H lies in the plane of the bend the reflection from a small angle

corner with no truncation may be obtained by much the same procedure.

For brevity we shall not write down the order of magnitude of the remainder
terms. From (5-9), (A2-1), and (A2-3)

b (2) ay(r) — as(2)/2 (7-6)
Bl — I — (I, — 1,)/2]
B‘[z —ap + 4 Z —-‘V —Enw — 4 Z (ﬂ2 _ 1)—1 e—!nv]

n=3.5, n=24,.--
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where we have written I for I(y, 7) and assumed » > 0. Then, using
(5-11),

RP = —idFl +2 X w70+ A
n=35, -

(7-7)
-2 X al® =170+ )7
n=2,4,
When we put
ba(v) = [aa-1(t) — ana(@)]/2, n>1 (7-8)
ba(v) = 28[(n — 1)@V — (n + 1)t~ HOF], n=246,-:"
ba(v) = 0(8%), =n=1,3,5 "
in (5-11) and use the results of Appendix IT we obtain
R};) = Rﬁf) —_ ix‘c_lﬁz Z 5:1[(13 - 1)-42]-(” - 1,"’ - 115!1) 0: 0)
ne=2,46--- '
+ M+ DI +1,541,¢8.,0,0) (7-9)

— 2w = 1) T —1,n 4+ 1,¢,8,0,0)]

The values of the first two J’s, obtained by setting m = n =& 1 in (A2-7),
may be simplified by using
E+ 14+ 8)2=2n=x1xn+9)
where we have dropped the subcript # from 8, . In order to eliminate 6

from the denominator we multiply both numerator and denominator by
n — & and use

=28 G+2mt2)=mx1P+c—dn=x2)
m—=8=14+cE=4

Setting in the value, given by (A2-9), of the last J and separating the
terms (into those which contain the first power of 8 and those which do not)
enable us to write the term within the square brackets in (7-9) as

4’ _g,.[ (n—1)—1 (n+1)+1
ot — 1 L= 1E+ (e — 12} (0 + 1P+ (2 + 1)
m{20n* + &) — (' — 1)}

] 0

It is found that when (7-10) is put in (7-9), the contribution of the first
two terms within the square bracket of (7-10) exactly cancels the summation

+

+
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which is taken over 3, 5, 7 - - - in the expression (7-7) for RS .

if we make use of

Moreover,

o 4w —1D)F=1
n=24.6,.-+
we see that the contribution of the last term within the square brackets of
(7-10) cancels the remaining terms in RY”. Only the contribution of the
first term in (7-10) remains and it gives
R = —iagc™ 3w’ — 1) + 0(8°) (7-11)
n=2,4,6,"-

The relative simplicity of this result indicates that there may be another
method of derivation which avoids the lengthy algebra of our method.

Recently approximate expressions for the reflection coefficient of gentle
circular bends have been published”. In our present notation these may be
written as

.2 —g| sinu cos u = ¢ “Ymlk
Ry = — ib'p ’[_- — 4k =z
* ! 24 m-l.sz.a.- . T Yom
. —udple 2
.2 —4|sinu cosu —e " 7
Rg = — id — —
" P [8‘"’262 ,.-2%...- T4Chn (n® — 1)‘]

where S8 is the angle of the bend, p; is the radius of curvature of the center
line of the guide and # is 2= times the length of the center line in the bend
divided by the wavelength in the guide:

u = Brkp/b = Bricp/a

The first expression for « is to be used in Ry and the second in Ry . If we
now let 8 — 0, keeping p fixed, then # — 0. The trigonometric and expo-
nential terms may be approximated by the first few terms in their power
series expansions, and part of the series which make their appearance may be
replaced by their sums given, for example, by equations (4.1-7) and(4.1-8)
of reference’. ~After some cancellation, the above expression for Rgand Ry,
which hold for gentle circular bends, reduce to (7-5) and (7-11), respectively,
which hold for the sharp corners. In other words, the reflection coefficients
for both the sharp and the circular bends approach zero as 8 — 0, and
furthermore their ratio approaches unity.

We shall merely outline the derivation of the approximation RS’ for a
truncated corner. Instead of (7-1) we have from (2-6),

g(v, 0) = exp [ag] — 1 = ap + a%?/2! + 0(’), (7-12)
¢ = 2 log[chv + cos 6] — log [ch(v — t) — cos 8] — log [ch(v + &) — cos 6]
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The Fourier coefficients of g(v, ) may be obtained by using the results of
Appendix II. Assuming v > 0, m > 0,

ao(v) = 2a(v — DY) + 27 {4(v, v) + Li(v — 4,0 — 1)
+ Lv+ b v+10) — 4o — b v) — 4+ 4,0) + 26— v+ 01,
an(t) = 2am—[—2(—)melel 4 gl - gmirH] (7-13)

where () = 1 when 0 < v < /and ¢(v) = 0 whenv > £ Substitution
of the values (A2-3) for I, and I, gives

aelo) = (200 — D) + 20 — WG (7-14)
+ aZi n—2[4e‘2uv + e—2nv—2ﬂl — 4(_)ne—2nv—-nt

+ 8ﬁ2n|1:—£| + 2e—n|v~l|—n|u+t| — 4(_)ng—n|v—t|—nn1
The second approximation to the reflection coefficient is
R® = jak ! sin®ki — iak221(2kt — sin 2kt)
— ika?D n(n? 4 k) {2—(—)"2e ™ ©(7-15)
n=1
4+ [1 — 2(—)me™t + e2]cos 2kt
+ nk et — (—)"2¢™|sin 2kt}
The typical term in the summation (4-5) for R is

ika e e —ik(v+og)—lv—vgly

dvy @m(0) dv an(v)e m  (7-16)
4'mem —a —a

Whenm = 0, &g = 1,0 = ik, and ao(v) is 2a(v — 1) + 0(?) for0 < v <!

and is 0(c?) for v > f. The integral may then be approximated by replacing

the upper limit =« in (A2-14) by /. The value of (7-16) for m = 0 is found

to be, to within 0(c?),

2102p(etikt — 1) — (3/4)ia®k*(sin 2kt — 2ki) (7-17)

When m > 0, em = 2, ve = m® — k2, and the substitution of the value
(7-13) for am(v) enables us to express (7-16) as the sum of six J 's where J is
defined by (A2-4). The J’s may be evaluated with the help of (A2-7) and
(A2-8). Substitution of this value of (7-16) and the value (7-17) for m = 0,
together with R given by (7-15), in the expression (4-5) for R§? gives
our final result

Ri-a) = jak lsin® bt + aﬂpz—l(e—zim — 1) g (7_18)

4 a2 [4-1k2(2kt — sin 2k1) — Bsin 2kt + k 2 w75 Aa]

n=1
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where

B = i.n—ﬂ[e—ht — 2(_)ue—nt]

n=1
A, = cos 2kt — [2cos kt — (=)"¢ ™

Equation (7-18) is an approximation, to within terms of order o?, for the
reflection coefficient of a truncated corner which turns through a small
angle 2ma.  The electric vector lies in the plane of the bend. When ¢ = 0,
(7-18) reduces to (7-5) by virtue of 2 = B.

APPENDIX I
ConrFORMAL TRANSFORMATION OF TrRUNCATED CORNER

We shall use a Schwarz-Christoffel transformation* to carry the guide of
Fig. 1 into the straight guide of Fig. 2. The first step is to transform the
interior of Fig. 1 into the upper half of an auxiliary complex plane which we
shall denote by {. Let the points z1, 22, 23, 24, 2 in Fig. 1 correspond to
the points — k, &, 1, =, —1 in the { plane. A suitable transformation
is then

e
" 5=D+E jo (ro+ B)y-(r — )= — D)7(r + 1)7dr  (A1-1)

where D, E and h are to be determined from the geometry of Fig. 1. Because
of the symmetry of our transformation about the line joining % and 24
it follows that z = 3o corresponds to { = 0. Hence D = z,. As { travels
from 1 — eto 1+ ¢ ebeing very small and positive, along a semicircular
indentation above ¢ = 1, z as given by (A1-1) increases by

1+e .

EQ =i (r—1)7"dr = :;EE (1 —n)™

1—e
while, according to Fig. 1, it increases from = + i0 to = 4 ib. Hence we
set the real part of E equal to —2br'(1 — /i*)*. We have tacitly assumed
the factors in (A1-1) to have their principal values at = 1 + e and also
that 0 < 7 < 1. As z goes from z; to 22, { goes from —/ to +A. In this
range arg(t + &) = 0 and arg( — h) = m.
Consequently, if | 2 — 21| = (, then

h
5 — 3y = le 7 = —Ee_ia'f (B — )71 — ) dr
—h

* See, for example, S. A, Schelkunoff, Electromagnetic Waves, New York (1943)
pp- 184-187.
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and we see that E is purely real. Hence
h
= 2br1(1 — hﬂ)af (I — 1'2)—"(1 — ) ldr
—h
is an equation from which # may be determined as a function of £. Setting

= k%, expanding (1 — /%)~ in powers of #? and integrating termwise
leads to

{ "51‘(1 — @) 2\ &y 1—2a 1.3 L2

%= FE=a (1 — )% FQ, L8 — a; 1)
— _ ,
1 rfil‘(—a)

= - + B0 — B)°F(1, 351 + a1 — i)

smnre  T'(} — a)

where we have used relations from the theory of hypergeometric functions.
The term 1/sin wa is the reduced form of an original term containing a
hypergeometric function which has been evaluated by the binomial theorem.
The second and third expressions are suited to calculation when 42 < 1/2
and %#* > 1/2 respectively.

Now that the guide of Fig. 1 has been transformed into the upper half of
the ¢ plane, the next step is to transform this upper half into the straight
guide of Fig. 2, Wewant { = —1,i.e.25,togointov = —w and { = 1,
i.e. %, to go into v = 4. Again using the Schwarz-Christoffel formula
with w = v 4 8 (the exterior angles at v = = are equal to )

w=D + E .[ (r+ )7 — 1) dr (A1-3)

We take the point 2 in Fig. 1 to correspond tov = 0, 6 = 0 in Fig. 2. Since
this corresponds to { = 0, D; must be zero. Also dw/d{ is real because w
traverses the walls of the guide of Fig. 2 as { moves along the real axis in the
¢ plane. Hence E; isreal. As { goes from 1 — eto 1 4+ ¢ around a small
circular indentation above { = 1, w changes from =% to = + #r. Thus

ir = B2 (—ir) or Ey = —2 (A1-4)

When (A1-3) is integrated, (A1-4) inserted, and the result solved for ¢
we obtain

§ = tanh w/2 (A1-5)
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The function we require is obtained by differentiating (A1-1) and (A1-3):
& _ds [du
dw dt/ d¢

= E¢ —0)7¢ - )R -1
A = 1)@ = ¥)™b/x

fo + i) = fw) =

(A1-6)
_ f)[ ch'w/2 :l"
TLshi(w — o) shi(w + 8)
_ E (ew + 1)2 a
T (et — 1)(8w+¢ —1)
where
h = tanh #/2 (A1-7)
For a 90 degree corner & = 1/4 and
ey
5 = 2 (1 — d/dy) (A1-8)
where, in Fig. 1,d = |2z, — 20| and dy = |24 — 2. In order to obtain

the relation between ¢, defined by (A1-7), and d/d, various values of A?
were picked and the corresponding values of ¢ and d/dy (using (A1-2) and
(A1-8)) computed. Representative values are given in the following table.

1.000 0 .5796 1.2302
9041 .0633 .5385 1.4910
.8565 1417 .5000 1.7594
.8292 .2007 4615 2.0634
7745 .3500 3727 2.8872
.7196 .5421 .2804 4.0096
.6919 .6549 1708 5.987
.6273 9624 0959 8.204

APPENDIX II

INTEGRALS ASSOCIATED WITH CORNERS OF SMALL ANGLE

The derivation of the integrals encountered in Sections 7 and 8 will be
outlined here. The first ones are

Ii(u,v) = irl; log(ch u — cos 8) log (ch v — cos ) df
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Ta(w, v) = 1 f log(ch # — cos ) loz (ch v + cos 6) d6
T h
) (A2-1)
Is(u, v) = 2 f cos 20 log (ch u — cos 8) loz (ch v — cos 6) df
T d
Ii(u, v) = 2 f cos 20 log (ch u — cos 6) log (ch v + cos 6) df
o
Assuming « and v to be positive and using the expansions
log(ch u — cos 0) = log(e"/2) — 2 wlemcos nf
" (A2-2)
log(ch u + cos 8) = log(e"/2) — 23> (=)*n~'e mucos nb
n=1
leads to
Ii(u, v) = log(e*/2) log(e’/2) + 2) nemne
n=]
Ta(u, 1) = log(e"/2) log(e"/2) + 22 (—)rn—2e v
n=1
Is(u, v) = —elog(e’/2) — e log(et/2) + 2"
(A2-3)

+ ZZ }L_l(” + 2)—18—1m—n1:(e~2u + 8—21’)
n=1
Tw, v) = —elog(e?/2) — ¢**log (e%/2) — 27~
+ 22 (—)Vl];_l(" + 2)—18-"“4*“0(8—2:4 + 8_2“)
n=1

When # or v are negative they are to be replaced by their absolute values
in the expressions (A2-2, 3).
Now we consider the double integral

+oo teo
T, m, c,8;r,5) = f dvy f dv
—w — (A2-4)

cexp [—p |t — r| —m|o — 5| —ic(o + ) —8]v — w0 ]

in which g, m, ¢, 6 are real and positive and r and s are real. The double
integral may be reduced to a single integral by substituting

+eo
e—&lu—vul — ;‘?—f (52 1+ x2)fletz(1a4vu) d,'x, (AZ_S)
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interchanging the order of integration, and integrating with respect to v
and vo. Assuming s — r > 0, the integral is then evaluated by closing the
path of integration by an infinite semicircle in the upper half plane and
calculating the residues of the integrand at the poles i5, ¢ + im, —c + iu:

46umei'z(aﬁrj—t’c(r+s) dx

J(uy my ¢, 657, 5) = [m (8 + )2 + (x + o) + (x — o)

e—[&+:’c)u+(6—l’c)r
= 4§ _ _ _
Abum [&hﬂ + (c + w0)m? + (c — i)

—ms+(m—2ic)r
€
t m[6® + (c + im)[u? + (2¢ + im)Y
éJT—(ll+2l'f)a
= e
Substituting special values for the parameters gives the results required
in the text. Thus,
T(m, m, kyy; 1, 1) = e 2%t J(m, m, k,v;0, 0)
J(ml m! bl 'Yl ! {) = eglk‘ J(ml m’ k! ’Y; 0’ 2!)
J(m, m, kyy; —1, 0) = e*t J(m, m, k,v;0, 1) (A2-7)
) 2m(6 + 2m)
@+ )l + (m £ o7
which hold irrespective of any relations between the parameters. The
derivation of the last result is simplified by settinge = ¢ + im, & = ¢ — im
and factoring the denominators in (A2-6) so as to obtain terms of the

form & £ 15, & & 4.
When v = m? — &* considerable simplification is possible and we obtain

L m
k" y m® + k?

J(m, m, k, v;0,0) = "
—ikt — 7t —mi

. _ e e "'(m cos kt — k sin kt)
S,y i, 0,0) = T ': Y mt + k?

Hweputp=n—1,m=n-+ 1,andset 6 = n* — 1 — 2= n> — &*
where x> = 1 4+ ¢, (A2-6) yields, after some reduction,

(A2-6)

+

I(m, m, ¢, 8; 0, 0) =

(A2-8)

i (n — V5
Ho =Lt 165000 = T Y o F DA = i — i)
n (n + 1)8 (A2-9)

20 = DA = icf(n + ic)
=8 N w2 + &) — &' — 1))
o — 1) k(0 — 1)(n* + %)
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The form of the final expression has been chosen so as to be suited to the
use we shall make of it.
Another double integral which appears in our work is

+oo
Ik, v) = dvy a (o)

—0

® (A2-10)
. j:mdva(v) exp [—ik(v + 1) — v |2 — w0 ]

where a(2) is an even function of » and is such that all of the integrals
encountered converge. We begin our transformation by dividing the
interval of integration (— =, =) for v, into (— 0, 0) and (0, »). Making
the change of variable v = —1p, v = —¢' in the first interval, dropping
the primes and using a(—v) = a(v) leads to

I(k,v) =2 jn‘w dny a(zo) f_: dv a(@)e ™ cos k(v + 1) (A2-11)

We now split the interval of integration of v in (A2-11) into the intervals
(— e, 0), (0, ), (20, ®). In(—,0) we change the variable from v to
—o/, drop the prime, and use a(—%) = a(z). By paying attention to the
sign of ¥ — 1) we may remove the absolute value sign. By changing the
order of integration in the double integral arising from the third interval
(in which 0 < 25 < », 5y < v < ®) we may show that it is equal to the
double integral arising from the second interval. Thus

Ik, v) = 2f duy a(v) f dv a(v)e "7 cos k(w — v)
0 o

- v (A2-12)
+ 4f dvy a('ﬂo)f dv a(v)e ™" cos k(g + 1)
o 0
When a(v), v and & are real we may write (A2-12) as
@ 2
Ik, y) = 2 \ [ dsa@em™
1]
. . (A2-13)
+ 4 Realf duvga(zg)e " v f dv a(y) et
0 0
and when vy = ik we have
I(k, ik) = 2[ dvoa(vu)f dv a(v)e *™
0 o
(A2-14)

+ 2 fo ) dw a(v) fo"u dv a(®)[™ + 7).
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APPENDIX IIT

INTEGRAL EQuATION WHEN GUIDES ENTERING AND LEAVING IRREGULARITY
ARE OF DIFFERENT SIZES

Here we shall indicate how the integral equation method may be extended
to cover the case mentioned in the above title. It is supposed that only the
dominant mode is propagated freely in both guides.

E in Plane of Irregularity

Let the notation for the guide carrying the incident wave be the same as
for the E-corner. b denotes the narrow dimension of the guide and the
quantities # and vy, are given by (2-1). Both guides have the same wide

N \
1
1
| X
b INCIDENT WAVE H
AA"A
| B
| |
Y Y
o
Fic. 3

dimension ¢. The narrow dimension of the guide shown on the right of
Fig. 3is b, . We introduce the new quantity

ky = [(2by/M0)? — (b1/a)]'" (A3-1)

to correspond to k. Since, by assumption, only the dominant mode is
freely propagated in both guides both % and k; are real positive quantities
less than unity.

Let 2 = f(w) carry the system of Fig. 3 into a straight guide of width «
in the w = v 4 46 plane (see Fig. 2), and let g(v, 6) be defined by

1+ g0, 8) = | f'() [
The behavior of g(v, 8) at infinity is shown by the table

v dz/dw g(v, 6)
—» b/m 0
4 by/m R —1

where b1/ = ki/k has been used. It is convenient to introduce the ap-
proximation £(v) to g(v, 8). £(v) may be chosen at our convenience subject
only to the conditions that it be differentiable, §(—») = 0, and g(x) =
ik — 1.

When we define G by equation (3-3) so that, as before, it is the Green’s
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function corresponding to a guide of width b, we may use equation (3-4)
to derive the new integral equation

2 ] T
Oz, 8) = € ™" + -k—f d-uf L
27 L 0

{g(v, 0)Q(x, 0) — §()Ts e 1" 1G(w , 60 ; v, 6) (A3-2)
+ T F(T'O)
in which
Flo) = ¢ %70 g(r) /g(0) — ¢ "N () — ™" N (o)
—( ) — o1 -l o N itk ke
N(o) = 2 k(ky — &) f_ oL d (A5
M) = kG + D7 [ g
Here ¢'(v) denotes dg(v)/dv. Equation (A3-2) and
Limit Q(c, ) = Tge ™" (A3-4)

v+

are to be solved for the unknown function Q(z, 6) and the unknown quantity
T.. The method of successive approximations may be used in somewhat
the same fashion as in the simpler case but we shall not give a general

discussion.
The first approximations are found to be

T = 1/N~(»), R = —NH(—o)/N-(=)  (A35)

where the N’s may be obtained by setting vp = 2= in equations (A3-3).
One of the simplest choices for g(v) is to let it be zero for negative values
of v and to have the value (=) = k}E~* — 1 for positive values of v. Then

T = 2k(h+ &), RE = (k= k) (k+ k)™ (A30)

These are quite similar to the corresponding expressions for a transmission
line which have been used extensively in wave guide work.
In working with these formulas, when % is small, it is sometimes convenient

to use the result
vy L vg s
f dv f 0 g(e, 6) = 75 f do f 8/ @[ — (o — wr (A37)
vy 0 vy 0

where the evaluation of the double integral on the right is made easier by
the fact that it represents the area in the original guide (in the (x, y) plane)
enclosed by the lines corresponding to v = v1and v = v;. vz and 7, are
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chosen to be moderately large positive and negative numbers, respectively.
It turns out that, when £, and % are very small, this is related to the “excess
capacity” localized at the irregularity whose effect must be added to that
of the mismatch, indicated by (A3-6).

When the entering and leaving guides are of the same size it is still possible
to use the formulas of this appendix. N—(v,) may be replaced by an expres-
sion which now has for its limiting value

o

N~(w) = 1+ ik/2) [ §) dv (A3-8)

H in Plane of Trregularity

Let the figure corresponding to the irregularity be Fig. 3 with & and b,
replaced by a and a;, respectively. In addition to the quantities ¢ and «
defined by equations (5-2) we define

ki = 2a1/N, o= K — D (A3-9)

where we assume « and &; to lie between 1 and 2. At » = —e= P(y, 6)
still consists of the unit incident wave plus the reflected wave given by the
first of equations (5-4) and g(v, @) is still zero. However, now, at v = =,

1)(7}, 8) = T;{Bﬁiclr sin g
=) =x"—1=x"(ci—c) (A3-10)

The integral equation for P(v, 6) and Ty is

2 E] T
Py, 6) = ¢ " sin 6, + X f dv f
27!' — 0 0

db{gle, O)P(t, 6) — ¢ T sin 0)G(zo, by ;0,0) 1Y
+ Ty sin 6 Fy(no)
in which
Falo) = ¢ 4o /() — ¢ M(w) — ¢ M*(xy)
M) = 07 @ — 97 [ g0 ds A312)

M (w) = «*(20) " (c + cl)élf §)e T gy

First approximations are

= 1/M~(»), RP = —M*(—=)/M~(») (A3-13)
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which, when we choose £(v) to be zero for » < 0 and KKkt — 1forv > 0,
become

TE = 2c(c + €)Y, RP =(c—ea)er+ o) (A3-14)

which again agrees with results obtained from transmission line considera-
tions. When the entering and leaving guides are the same size we may use

M (®) =14 i)~ f () do (A3-15)

It seems difficult to give any general rules for the choice of g{»). Since.
for Ry and Ty , the factor sin 6 reduces the effect of the singularities on the
walls of the transformed guide, the choice §(v) = g(v, 7/2) suggests itself.
The factor sin 6 is not present in the formulas for Ry and T's and regions
near the walls are more important. In this case the selection

(0 =7 [ 40,0

may be useful, especially since it allows us to use the result (A3-7) when %
and k, become small.

APPENDIX IV

VARIATIONAL EXPRESSIONS FOR REFLECTION COEFFICIENTS

The reflection coefficients are proportional to the stationary values of
certain forms associated with the integral equations. In order to obtain
these forms we proceed as follows. It is readily seen that the values of
#1 and %, which satisfy the symmetrical set of equations

aux1 + apr: = h
(A4-1)

a12%1 + Q2% = by

are the ones which make
J = au#i + 2013362 + anxy — 2b1y — 2boxs (A4-2)

stationary when a1 and x, are given small arbitrary increments. This
stationary value of J is

J. = '—b_[xl - bzxz

If we take the integral equation to be the analogue of the set of linear
equations, the reflection coefficient turns out to be proportional to J,.
Tn order to set down the actual expressions it is convenient to write r for
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(v, 6) and dS for the element of area dvdf so that the integral equation
(3-5) for Q(v, 6) may be written as

O(r) = 6" 4 B(2m)" f d(NO(Gro , 1) dS (A4-3)

where the integration extends over the interior of the guide and G(ro, r)
denotes the Green’s function (3-3).

If the number of equations in the set (A4-1) were increased from two to a
large number N, the set of x’s would correspond, say, to the values of Q(r)
or of g(r)Q(r), and the &’s would correspond to the values of exp(—ikuy).
In any event, we take the analogue of J to be

Ts= [ gomion - 27 ds
(Ad-4)

— #0n [ [ 4000100006 , 1) sy ds

where the subscript E indicates that we are dealing with an electric corner.
It may be verified,* by giving Q(r) a small variation §Q(r), that the function
Q(r) which makes J; stationary is the one which satisfies the integral
equation (A4-3). Furthermore, when we assume Q(r) to satisfy the integral
equation, the expression for J; reduces to an integral which is proportional
to the integral (3-6) for the reflection coefficient Rg. More precisely,
Rg is given by

Re = ;—k [Stationary value of J 5] (A4-5)
T

It follows that if, by some means, we have obtained a fairly good approxi-
mation to (), we may obtain a better approximation to Rg by computing
J 5 and using the formula

Ry = ik(2w) g

When we use the first approximation exp(—ikv) for Q to compute Jg it
turns out that the above formula gives the third approximation, R, to
the reflection coefficient.

The magnetic corner may be treated in much the same way. The

integral equation (5-6) for P(v, 6) becomes, in the notation of this appendix,
P(ry) = ¢ " sin 6, + «*(27)" f g P(r)G(ro, r) dS  (A4-6)
in which the vin dS = dvd@ is integrated from — % to 4= and 8 from 0 to r,

* See Courant and Hilbert, Methoden der Mathematischen Physik, Julius Springer,
Berlin (1931), page 176, where a similar problem is treated.
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as before, and G(ry , r) now denotes the Green’s function (5-5). We define
Ju by

Tu = f (NPOIP() — 26 sin 01dS
(A4-7)
() f f () P(P)g(ro) P(ro)Glra , 7) dSo dS.

Ju is stationary with respect to small variations in P(r) when P(r)
satisfies the integral equation (A4-6). Furthermore, from the integral
(5-7) for Ry,

Ry = i(mc)~! [Stationary value of Jy] (A4-8)

which may be used in the same way as equation (A4-5) for Rg.

J. Schwinger has used variational methods with considerable success to
deal with obstacles in wave guides.* However, his variational equations
differ somewhat from those given here. Some light on the relation between
Schwinger’s equations and the present one may be obtained by returning
to the simple algebraic equations (A4-1) and (A4-2). A rough analogue
of the expression required to be stationary in Schwinger’s theory is

(a1xi + 2a1%1%0 + aasxs)/ (b1%s + bawa)? (A4-9)

The essential point here is that the stationary value of the expression

corresponding to (A4-9) gives the value of an impedance or combination

of impedances appearing in some equivalent circuit. Expression (A4-9)
may be obtained by expressing J, defined by (A4-2), as a function of xy

and y = x/x;. J is still to be made stationary but now it is a function of |
xyand y. Solving 8J/dx, = 0 for x, and setting this value of x, in J gives

the following function of y

— (b1 + bay)? (@11 + 2810y + any™,

which is the stationary value of J with respect to variations in x1 when y is
held constant. This function is still required to be stationary with respect
to y. The same is true of its reciprocal which becomes (A4-9) when both
numerator and denominator are multiplied by #1 and the definition of y
used. When (A4-1) is replaced by a larger number of equations similar
considerations lead to a generalized form of (A4-9). The expression required
to be stationary by Schwinger is obtained when the sums in the general-
ized form are replaced by integrals.

* An account of the method together with applications is given in ‘““Notes on Lectures

by Julian Schwinger: Discontinuities in Waveguides’ by David S. Saxon. An account *
is also given Ly John W. Miles.n
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