A Set of Second-Order Differential Equations Associated with
Reflections in Rectangular Wave Guides—Application
to Guide Connected to Horn*

By S. 0. RICE

In dealing with corners and similar irregularities in rectangular wave guides
it is sometimes helpful to transform the system, conformally, into a straight
guide. Propagation in the straight guide may then be studied by an integral
equation method, as is done in a companion paper, or by a more general method
hased upon a certain set of ordinary differential equations. Here the second
method is developed and applied to determine the reflection produced at the junc-
tion of a straight guide and a sectoral horn—a problem the first method is unable
to handle. The WKB approximation for a single second-order differential
equation is extended to a set of equations and approximate expressions for the
reflection coefficient are derived.

N A companion paper! the disturbance produced by a corner in a rec-
tangular wave guide is examined by transforming the system, con-
formally, into a straight guide. Although the medium in the straight guide
is no longer uniform, an integral equation may be set up and approximate
solutions obtained.

In that paper the wave guide is assumed to have the same cross-section
at + o as at —e. When this is not so, a conformal transformation may
still be used to transform the system into a straight guide provided one

“dimension of the original cross-section is constant. However, now some
advantage appears to be gained by replacing the integral equation by a set
of differential equations. Since two cases appear, corresponding to £ and
corners, there are two sets of equations to be considered.

These two sets of equations are studied in the present paper. After their
derivation in Sections 1 and 2 several remarks are made in Section 3 con-
cerning their solution, special emphasis being laid on the problem of deter-
mining the reflection coefficient. In the remainder of the paper the general
theory is applied to a system formed by joining a rectangular wave guide
to a horn. (with plane sides) flared in one direction. The reflection coeffi-
cients for sectoral horns flared in the planes of the electric and magneiic
intensity, respectively, are given approximately by equations (6-1) and (7-1).
These approximations assume the angle of flare to be small so that, as it
turns out, only the first equations of the respective sets need be considered.

As was mentioned in the companion paper, Robert Piloty has recently
made use of conformal transformations in wave guide problems. In his

* Presented at the Second Symposium on Applied Mathematics, Cambridge, Mass.,

July 29, 1948,
1See list of references at end of paper.
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method the propagation function g(v, 6) is derived graphically from the
geometry of the wave guide irregularities and the result used in one or the
other of two sets of differential equations which are equivalent to those
derived below. Piloty’s work is scheduled to appear soon in the Zeitschrift
fiir angewandte Physik under the title “Ausbreitung el.-magn. Wellen in
inhomogenen Rechteckrohren.”

1. Differential Equations when Eleclric Vector is in (x, y) Plane

The partial differential equation to be solved is, from equation (2-3) of
the companion paper!, .

0 . 90 | .
a2 T T [1 + g(o, )IQ =0 (1-1)
where
ﬁ') =0atd =0andb =7
a0
1+ g(e,0) = 1+ 2 awcosnd = |f'(v + ib) /8" (1-2)
n=0

k= [(26/A) — (b/a)’]', o = free space wavelength

In (1-2), 5 = & + iy = f(v 4 i8) is the transformation which carries the
wave guide system in the (¥, ¥) plane into the straight guide of width 8 = =
in the (v, §) plane. For the sake of simplicity we shall always assume that
far to the left the system becomes a straight wave guide of dimensions
a, b (b < a) such that only the dominant mode is propagated without
attenuation. This insures that the a,’s (which are functions of ) will
approach zero as v — —. The dimension (of our system) normal to the
(x, ¥) plane is a throughout.

Since the normal derivative of ) vanishes on the wallsat § = 0Oand 6 = =
we assume

Q = Fo+ Fycos 0+ Fpcos 20+ -+, (1-3)

where Fy, Fa, --- are functions of », and substitute it together with the
Fourier series (1-2) for 1 + g(v, §) in (1-1).

The equations obtained by setting the coefficients of the resulting cosine
series to zero are

2 oo
Fy 4+ (1 + ao)k'Fo + ’2"—2:1 a.F, =0 (1-4)
Fo 4+ [(1 + a0 + /20K — m’|Fm + ank’Fo (1-5)

k2 0
T 5 Z-:: (@)n-mi + Gngm)Fn = 0
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wherem = 1,2,3,---, F = &F,/d, and the prime on X indicates that
the term # = m is to be omitted. In grouping the terms we have assumed
that F, is the major part of Q.

The principal problem is to solve equations (1-4) and (1-5) when the
fundamental mode F; is of the form

F, = e—:’k'u R eeikr g —r — 0

0 + E ] (1—6) .
Fy = Tg(v), v — +

in which Ry is a constant and Tk(v) represents a wave traveling towards

v = o, Atv = +w F,, F;,--- have the form of waves traveling (or

being attenuated) away from the region around v = 0. As before, we shall
be mainly interested in determining the reflection coefficient R.

It is assumed that only the dominant mode is propagated without attenu-
ation in the straight wave guide far to the left and hence Fy, Fa, --- all
become zero as v — — .

2. Differential Equations when Magnelic Veclor is in (x, y) Plane

The partial differential equation is now given by equation (5-1) of the
companion paper!
6

N o+ W P4+ g, 0¢P =0 (2-1)

where the dimension of the system normal to the (¥, y) plane is now b, a is
the dimension (in the (v, y) plane) of the straight guide at the far left and

P=0atf#=0and b=

1+ g(v, 8) = 14+ 2 a, cos nf (2-2)
n=1
k = 2a/A¢, Mo = free space wavelength
c= (k¥ — 1)1
Since P = Oat 6 = 0 and # = = we assume
= > F,sinnf (2-3)
n=1

where the F’s are functions of v to be determined by the equations

2 o
Y K+ a0 — aa/2) — 1) + "5 22 (Gno1 — anp1)Fn = 0 (2-4)

2
Fi + (1 +ao — m/2) — | + 'i (&m-t — Gmi1)Fy
(2-5)

+ "2 ; (a]m—nl Il am-l-n)Fn =0
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in whieh m = 2, 3,4, --- and the primes on F, and ) have the same
significance as in (1-4) and (1-5).

The principal problem here is to solve equations (2-4) and (2-5) simul-
taneously subject to

Fl = g—icv + Rﬂeicv’ 97— — 0

2-6
Fy = Ty(v), 71— +w (2:6)

which again corresponds to a unit wave in the dominant mode incident from
the left. 7T4(v) and the remaining F’s correspond to outward traveling
waves as before. F,, Fy, --- all approach zero as v — — .

3. Remarks on Solving the Equations of Sections I and 2 for the Reflection
Coefficient

Suppose that we have a system in which the wave propagation is gdverned
by the single differential equation
d2 y 2
Y _py=0 3-1
g y (3-1)
where & = () is a positive imaginary function of », twice differentiable and
such that & — ic, ¢ being a constant; as v — —ow. We desire the solution

. of (3-1) which, together with its first derivative, is continuous everywhere
and at - e satisfies the conditions

y = ¢ v | Reie, ?— — o (3-2)
v+ (h+ 1'/(2h)y — 0,0 —> = (3-3)

The constant R (the reflection coefficient) is to be determined. Condition
(3-3), in which the primes denote differentiation with respect to », is sug-
gested by the fact that we want y to represent a wave traveling in the positive
v direction (the factor exp (iw!) is suppressed). In writing (3-3) we have
assumed that / is such that for large values of v the two solutions of (3-1)
are asymptotically proportional to*

y = it et (3-4)
£ = E(g) = ic + f" (h — iC) dv. (3'5)

Physical considerations suggest that solutions satisfying (3-2) and (3-3)
exist in most cases of practical importance. However, if the function /% is
picked arbitrarily the corresponding solutions may be incapable of satisfying

* S. A. Schelkunoff? mentions that this approximation, sometimes designated by

“WKB”, goes back to Liouville. The ideas we shall use are quite similar to those in
Schelkunoff’s paper.
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the conditions. For example, if & = ic/(1 + exp v) then & — ic exp (—1)
as v — «, and the solutions of (3-1) behave like Bessel functions of order
zero and argument ¢ exp (-v). It may be verified that these solutions do
not satisfy (3-3). Again, condition (3-3) may be satisfied without v having
much 1esemblance to an outgoing wave at v = . Thus if & — ia/v as
v — o,y inc eases like " whe e w—n—a =0 When0 <a<1/2both
values of # lie between 0 and 1, and both solutions satisfy (3-3). Despite
these sho' tcomings it still seems best to -etain (3-3) to specify the behavio-
of yatv = ==.

It should be mentioned that P. S. Epstein® has obtained the reflected
wave by transforming the hypergeometric differential equation into the
form (3-1). This method has been extended by K. Rawer' who gives a
number of references in which the approximation (3-4) is used to study
propagation in a medium having a variable dielectric “constant”. An
interesting paper on the general subject of reflection in non-uniform trans-
mission lines has been written by L. R. Walker and N. Wax®.

1. When most of the reflection occurs in a short interval, say near v = 0’
R may be obtained by numerical integration of (3-1). One method is to
start at v = 0 with the initial conditions y = 1, 3" = 0 and work outwards
in both directions. Let V.(v) denote this solution and ¥4(v) the solution
obtained by starting with y = 0,5 = 1. The general solution is

y = C\V,(v) + Ce V(o). (3-6)
C, and C» are to be determined by the conditions

(constant) k1%t |, v > (3-7)

y
(ic/k) 2% + Ret] , v < u (3-8)

¥

where # and v. are large negative and positive values, respectively, of v.
These conditions lead to equations for Cy , C2, R:

[y + 6*Y)ems, = 0
[y — 6y + 2(ich)' e ¥]oms, = 0 ' (3-9)
[yl + 0y — 2(ich) *Re|smy, = 0
in which £ is given by (3-5) and
6° = I &= I'/(2h). (3-10)

The required value of R is obtained by letting 9, — —o, v, — « in the
expressions, which follow from (3-9),
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v = Co/Ci = —[(Va+ 6Va)/(Vy + 67V3)]omu,
= [y'/Y]ome, = [(Va +¥Y3)/(Va + YV8)]sms, (3-11)

R = [(6t 4 TI)/(6- — I')]uer, €xp I:—Q-iwl -2 j_dl (h — dc) d'u:l

where the arguments of ¥,(v) and ¥4(v) have been omitted for brevity.

If / should change from a positive imaginary quantity to a positive real
quantity in (v, , 22) and remain greater than some fixed positive number for
v > vq it may be shown that | R | = 1 (y and T are real and Im 6+ = Im 6,
Real 6+ = —Real —atv = v). This complete reflection is to be expected
from physical consideration.

2. An exact expression for the reflection coeflicient which holds when #
satisfies the conditions following (3-1) (in particular it must not pass through
zero anywhere in —w < v < ) is

R = ic)” f ¢ y(v)—h t o (3-12)

where ¢ is given by (3-5). Before this integral for R may be evaluated
y(v), and hence R itself, must be known. Nevertheless, when R is small a
useful approximation may be obtained by using the WKB approximation

J() = (ic/h) et (3-13)
Thus

2
R = lf ¢ h } L o

1™ 5 sn(dKY 1 _4pd'K
2i L. ¢ [EI‘ (E = L

in which K = — 7%
The expression (3-12) for R is obtained by letting 9y — — = in the integral
equation

(3-14)

Il

1 e
y(r) = (ic/ho) e * — f Gal10, w)y(w)k — k Yo,

eE—En’ v < 19

Ga(to,v) = =3 i* [ ot (3-15)
€

, 7> 7
vo
b — £ = f I dv, T = (), £ = £(w).

Ga(v , v) is the approximate Green’s function suggested by (3-13). The
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integral equation may be obtained from the differential equation (3-1) and
the boundary conditions (3-2) and (3-3) by the one-dimensional analogue
of the method used in Section 3 of the companion paper'. If we multiply
both sides of

&y e _

el Ky = s(2) (3-16)
(where s(v) has been added for generality) by Ga(v , v), integrate twice by
parts over the intervals (v, , %o — €), (%0 + ¢ v2) with € > 0 and » <
7 < 72, and finally let e — 0 we obtain '

() = j:z G, 1) l:s(v) — y('v)k* a%l h_{l dv

+ Galvo, 1)y — 0 Yo, — Galto, )y + 6 Yluce, -

(3-17)

Equation (3-15) follows when we put s(v) = 0 and let 5, — — w0, 7, — o,
It will be recognized that (3-17) and (3-15) are closely related to integral
equations occurring in the work of R. E. Langer® and E. C. Titchmarsh®.

When % has, for example, one or more simple zeros in —o < 3 <
the integral in (3-15) contains a factor which becomes infinite and the
integral equation fails. However, we shall not concern ourselves with this
case beyond remarking that it involves results obtained by H. Jeffreys!,
Langer”, Furry! and others.

3. So far we have been considering the solution of only one equation
whereas we really require the solution of a set of equations. If it is apparent
that most of the disturbance is given by the first equation of the set it may
be possible to proceed by successive approximations, each of the remaining
equations being of the form (3-16) with s(v) determined by the solution of
the first equation.

Another method of dealing with a system of IV equations is that of numeri-
cal integration. As a contribution towards obtaining the boundary condi-
tions at large positive and negative values of v we shall state a generalized
form of the WK B solution. Although this solution is related to the general
results obtained by Birkhoff'?, Langer®, and Newell'® concerning the asymp-
totic forms assumed by the solutions of a system of ordinary linear differen-
tial equations of the first order, it is worth mentioning explicitly.

Let the mth equation of the set be

N
5’m= ZAﬂmyn; m = 1,2,"',N (3-18)

n=1

where the 4.,,’s are relatively slowly varying functions of v (see equations
y y varying q
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(3-22) for a more precise statement of the assumptions) and the dots denote
differentiation with respect to 2. We shall reserve primes to denote trans-
position of matrices. It is supposed that Am, = A.. (equations(2-4)
plus (2-5) satisfy this condition and (1-4) plus (1-5) may be made to do so
by setting g = 22F,).

The solution of (3-18) is approximately

N
In = 2 Smletde + ¢ d7] (3-19)
{=1
where the d7 are the 2N constants of integration and

N
@t Smt = 2 AmnSue

n=1

N
e D2, S =1 (3-20)

n=1
v
£ = f ¢ dv
v3¢

serve to determine ¢ , £¢, and Su. (the last to within a plus or minus sign).
We assume the N roots ¢1, ¢z, - - - ¢y of the determinantal equation arising
from the first of equations (3-20) to be unequal, and denote by ¢, that square
root of ¢; which has a positive real part or, if the real part be zero, which has
a positive imaginary part. w3 is any convenient constant.

The approximation (3-19) may be obtained by setting the assumed form

Im = gm€, £ = j.vm
s
in (3-18). The result is a set of NV equations of which the mth is
i 2 £ gf + g6’ = 2 Amne (3-21)
We also assume
le| <], | &n| K| fme | K| gne? | (3-22)
En = gmo + gm1 + gmz + - -
where gn, and its first two derivatives satisfy inequalities of the type
| gmo |2 | gt | > | gma | ++-

The first and second order terms in (3-21) give, respectively,

o = 2 dengro = 0 (3-23)
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Although the WKB approximation has the same form as (3-30) in the
region where v is finite, we regard (3-30) and (3-31) as being the exact limiting
forms of y. Hence, gt may differ from f*.

Letting vy — — % in (3-29) and comparing the result with (3-30) gives the
exact result

=1 f_ TR — 208 — 85y() do (3-32)

which leads to an approximation for the reflected wave when y(v) is known

approximately.
The integral equation (3-29) may be obtained by premultiplying both
sides of § = Ay by the transpose of the approximate Green’s matrix

=y of
—1557" S, v < 7

B2 of
—15¢~"* Sy, 7> 1.

Ga('b'u 5 'l') = [

and integrating by parts twice. It is seen that each column of Ga(v , ©)
is an approximate solution of § = Ay, in which the columnar constants of
integration are the columns of Sy , and represents a wave traveling away
from v, in both directions. Ga(wo , v) is continuous at v = v, and

[E Galvo, v):I' — [—a— Galvo, t')] = So®Se = I
ay v=pp—0

a7 v=zg+0

Thus the nth column of G4(v, 7) gives the approximate values of y:(v),
y2(v), =+ , ¥a(v), subject to the conditions that all these and all of their first
derivatives are continuous at ¢ = 7y except ,(v) which has the jump
Fn(vo 4+ 0) — Jalvo — 0) = 1.

The presence of _
205 + bS' = &Y — 855

= 3(%'S — §°8)57"

in (3-29) and (3-32) makes the N variable case somewhat different from the
case N = 1.

5. When Zp,, and Y, are slowly varying functions of v the approximate
solution of the transmission line equations

N
dd% = = Z- Zmn Jn

n=1

. (3-32)
djm = = Z Ymn Vn

d‘l.' n=1
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where Zpn = Zymand YV = Viow is, as in (3-19),

M=

Vm = Sm! [efg d—t— + B_Et d_}‘]
{=1
N

Tm = 2 Tmelétdy — e d7). (3-33)
=1 .

Here £, is the integral of ¢, as given by (3-20), and ¢, is determined by
setting the determinant of the matrix ¢/ — ZV to zero. When ¢, is known,
Sme and T are determined (to within a plus or minus sign which may be
absorbed by the constants d7 of integration) by the relations

N

©“r Smt = - Z Zm'n Tnd

n=1

N

‘P{Tml = _Z Yon Sme (3-34)

n=1

N
El Smt Tml = 1

The last condition, which arises from the condition that the equations for
the second-order terms be consistent, may be regarded as a generalization
of Slater’s' result for the case NV = 1.

4. Transformation for Wave Guide Flus Horn

The system to which we shall apply some of the preceding equations con-
sists of a straight wave guide starting at ¥ = —c and running to x = 0
where it is connected to a sectoral horn. The horn is flared in the (x, y)
plane only. The dimension of the system normal to the (¥, y) plane is
constant and equal to a or b according to whether the electric or magnetic
vector is in the plane of the horn.

One might expect that the field in this system may also (in addition to
our method) be determined by an alternating procedure of the type described
by Poritsky and Blewett!® using the equations obtained by Barrow and
Chu" for transmission in the horn. However, we shall not investigate this
possibility as we are primarily interested in using the system as an example
to which we may apply the foregoing equations.

If the total angle of the horn is 2em, and if the sides of the straight guide
areaty = Oand y = b, (assuming the electric vector to be in the plane of the
horn), the equation of the lower side, i.e., the continuation of the side y = 0,
of the hornis y = —« tanar and that of the upperside is y = b + x tan ar.
Ifz = x + iy and w = v 4 40 then the Schwarz-Christoffel transformation
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z = f(w) which carries the guide plus horn in the z plane into the straight
guide with walls at § = 0, 8§ = = in the w plane may be obtained from

dz

= = =) /r (1)
This gives, upon setting .
‘% | |7/(v + i8) [} = [1 — 26" cos 260 + ¢"]*b°/x",
the relation (4-2)

1+ glv, ) = [1 — 2¢* cos 26 + e
from which the a,’s may be obtained in accordance with (1-2).

5. Expressions for the a,’s for Horn

The Fourier coefficients of 1 + g(v, ) appearing in (1-2) and (2—2). are
the same. It may be shown from (4-2) that

¢F(—a, —a; 156 ) , v>0

14+ a=TA1+ 27?1 +a) , v=20 (5-1)
F—a, —a; 15 €) , v<0
and
26 (—a) F(—a,r —ayr + 1; )/, >0
doy = 2(_a)r(1 ‘I‘ Go)u=u/(1 + a')r , U= 0 (5'2)
26" (—a) F(—a,r —a;r+ 1;€")/rl, v <0
where the F’s denote hypergeometric functions, r = 1, 2, - - - and we have
used the notation
Bo=1@.=B+1) - B+r—1) (5-3)

When # is odd, @, = 0 because of symmetry about § = /2. The expres-
sions for » > 0 in (5-1) and (5-2) may be verified by expanding the two
factors in

_ 1+ gv, 8) = (1 — &)1 — g2y

by the binominal theorem and picking out the terms containing ¢, When
v < 0 we use the relation 1 4 g(», 8) = ¢'*’[1 + g(—v, 6)], and when v = 0
we may sum the hypergeometric series.

Differentiation of (5-1) and (5-2) leads to

d 4o F(—a,1 — a;1;¢™), >0
= (1 + a0) = 4 2a(l + a¢)smo , =0 (5-4)
v 4" F(l — a,1 — a;2; €%, v<0



RECTANGULAR WAVE GUIDES 149

o (160" ¢'"(1 — €)Y " Fle, a5 15¢™), ©v>0

& (Lt a0) = 116&284”(1 — ")V Fa, a; 1; €), r <0 (5-5)

where in obtaining (5-5) use was made of Euler’s transformation
Fla,byc;2) = (1 — x)**F(c — a,c — b;¢; %)

It is seen that d(1 4 a,)/dv is continuous at » = 0 but the second deriva-
tive becomes infinite as v** .

When 1 + ao and a, are expressed as the customary integrals defining the
Fourier coeflicients it is seen that one of the coeflicients occurring in equation

(2-4) for F, is given by

I

1+ a0 — a2/2 2 f (1 — 2¢” cos 20 + ¢")* sin” 0 do
m Jo

(5-6)
= (" + 1) F(—a, &; 2; sech’ v)
Aty =0,14 ay — as/2 and its first and second derivatives are continu-
ous, their values being o

_ TQA 2a) _2a1(2 + 2a)

'l 4+ a&)1'(2 + )’ T+ a)I'(2 + )’
4a(2a" 4 20+ 1)I(1 + 2a)
r(l+al2+a)

(3-7)

respectively. These may be obtained by differentiating the integral in
(5-6) and setting v = 0.
A second expression for 1 4+ a¢ — a2/2 follows from (5-1) and (5-2):
e F(—a, —a; 1; €) + ae2F(—a, 1 — a; 2; ¢7)),
. v >0
1 + ay — a2/2 =
F(—a, —a; 1; ) + ae’F(—a, 1 — a; 2; &'7),
v <0,
(5-8)
6. Approximation lo Reflection Coefficient of Horn, Electric Veclor in (x, y)
Plane

When the flare angle 2ar of the horn is very small the reflection coefficient
may be shown to be

Re = *;; + 0(a) (6-1)
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where 0(a?) denotes correction terms of the order o®. This result is based
upon the fact that when terms of order o® are neglected the set of dif-
ferential equations (1-4) and (1-5) reduce to the single equation

Fo 4+ (1 + ag)k?Fo = 0 (6'2)
where, from (5-1, 4, 5), ‘
v>0 v <0
14 a g 1
4 (14 ap) dacr 0
dy

&
o (L a0) 16ar(t — 4ot 1Gatetn(1 — o)t

The reflection coefficient (6-1) is the one corresponding to the differential

equation (6-2) and may be computed by setting
1+ a)k?= - =K (6-3)
in the integrals (3-14).

The expression (6-1) for Rg may be obtained quickly (but the procedure
is not trustworthy) by assuming that the principal contribution to the first
integral in (3-14) comes from the region close to v = 0, say in—e<v<eg
where the second derivative of £~/ is infinite but integrable. When the

integration is performed approximately by replacing the second derivative
by the first, (3-14) gives

Re = l:k—* :v/ :|_! (6-4)

1 i
Zlk [_ (1 + aﬂ) :|E = ZTE

where ¢ is assumed to be so small that 1 + a, is effectively unity and
d(1 + ao)/dv changes from 0 at — e to 4e at +e.

A more careful investigation based on the second integral in (3-14) also
leads to the value (6-1) for Rg. It further suggests that possibly most of
the correction term, denoted by 0(a?) in (6-1), is given by

txz © —2f—2av _ 1 Bw s _ oy
- fn ¢ do = o + 5 [Six) = w/2 4 iCi(x)]  (65)

with & = k/a and 2§ = ix[exp (2av) — 1]. Si(x) and Ci(x) denote the
integral sine and cosine functions. Incidentally, the rather curious result
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,g,;mn(m-i-n)_ 2;11

turned up in the investigation of the orders of magnitude of the various
terms.

7. Approximation to Reflection Coefficient of Horn, Magnetic Vector in (x, y)
Plane

The work of this section is quite similar to that in Section 6 except that
here we enter into more of the details. We shall show that when & is small
the reflection coefficient appearing in equation (2-6) is

Ry = 2:;3, + 0(a?). (7-1)

From (2-4) the analogue of the differential equation (3-1) is
F{ + [¢(1 4 a0 — a2/2) — 1]F1 = 0 (7-2)

and the K appearing in the second of equations (3-14) is now
K=—-@F=¢1+a — a/2) -1 (7-3)

The largest terms in the expression (5-8) for 1 4 ap — a2/2 yield, to within
terms of 0(a),

K=gl""+a?)—1, 2>0
K = k(da ¢® — 2ae~) (7-4)
K = x2(16a%'* + 4aev)
K=Kl4a) —1=c4kae™ , 2<0
K = 2ante® (7-5)
K = dan?e®
where the dots denote diff_t?rentiation with respect to » and ¢® = «* — 1,
We have retained theo® in K as given by (7-4) because at this stage we do not

know whether it may be neglected or not.
When v < 0, the definition (3-5) of £ and (7-5) yield

£ = ic-v—l—'ijj (K% —¢) dv
(7-6)

v
0

= ico + if;[ (1 + ¢ ae™)} — 1] dv = icv + 0(a)
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and we have
0

0
— - —2icy — 44
f e XK PR dy = [ e TP ke dy
| oo . )

(7-7)
= 0(a")
which may be neglected. The other integral suggested by (3-14) is
0 0
f XK K dv = [ ¢ ¢ don’ € dv
- N (7-8)
= 2a’ ¢ /(1 — ic)
When v > 0,
E — Ev:ﬂ + !'f [K2(64av + ag—z::) - 1]} d‘U
o
= 1f (e — 1)} dv + 0(a),
0 (7-9)

21 [ —tan'» — ¢ + tan"' ¢] + 0(&),
O
x = (e — 1)} Qadr = a(l + 2*) " dx

In the integrals containing exp (—2v) as a factor, £ may be taken to be icv
since the integrand becomes negligibly small by the time icv differs signifi-
cantly from (7-9). We have

f e HKTP R dv = f el e — 1) ' (46" — 267) dv
o o

= f R0 o 166 dy (7-10)
0

- -}
— 8(1[ efi[:t—t.nn_lz—c+tnn_1c]la(x—4 + x—2) dx
e

where the integrals containing e=*" and ¢—** have been neglected since their
contribution is 0{e?). When a becomes exceedingly small the exponential
term oscillates rapidly and the last line of (7-10) is likewise 0(a*). This may
be verified by integrating by parts, starting with ‘

exp ¥V dx = ia x7(1 + 2®)d(exp V),
= —i(x — tan™'x) /o

The last integral which must be considered is
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-] -]
[k R = [ ™ — )7 1606 + dae ] do
0 0

an
2 2 —2 —3 4
=16f<af Xt o
0

+ fw e—2|’cu—20 6—3 K2 4o do (7-11)
0

— Saf c—i[:-—-tnn“lx—c+tun—lc].'a: 2 dx + 20!1\'2 Gﬁs/(l + 1:6)
¢

= 0(a®) + 22k’ /(1 + ic).

That the integral having x as the variable of integration is 0(a*) may be shown
as in (7-10).
When we combine our results in accordance with (3-14) we obtain

Ry — % FEES KK — 1K K d
2 -3
ake 1 1 ) (7-12)
T T T4 [1—fc+1+fj+0(“)

I

ia/(2¢) + 0(a’)
which is (7-1).

If, instead of discarding (7-10) because it is 0(a*), we retain it and the
corresponding integral in (7-11) (in the hope that they represent most of the
difference between the approximate value (7-1) for Ry and the true value)
we obtain the approximation

Ry = E _ ff ® a—i(z—tnn_lzchrtnn‘lc).’a(sx—4 + x—z) dx (7_13)
. 263 4 ¢
in which the integral may be evaluated by numerical integration.

‘The approximations (6-1) and (7-1) for the reflection coefficients may also
be obtained from an equation given by N. H. Frank.'® However, care
must be taken to suitably define the wave guide characteristic impedance
which appears in his expression.

8. Speculation on the Reflection Obtained from Horn Flared in Both Directions

All the work from Section 4 onward applies only to a horn flared in one
plane. Nevertheless, it is interesting to speculate on how close an estimate
of the reflection from a three-dimensional horn may be obtained by super-
posing the two reflection coefficients (6-1) and (7-1). It must be kept in
mind that the flare angles (the a’s) may be different in the two directions,
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that & is given by (1-2) and ¢ by (2-2), and finally the difference (not the
sum) of Rz and Ry must be taken. In (6-1) Rg is the reflection coefficient
of the component of the magnetic vector normal to the (x, y) plane (which
is proportional to (), while in (7-1) Ry is the reflection coefficient of the
transverse electric vector (which is proportional to P) and there is a difference
in sign just as in the case of voltage and current reflection coefficients. If
@ > b and )\, is the wavelength in free space, the superposition gives the
following expression for the reflection coefficient of the electric vector:

R = Ry _— Rg
P 5 ) (8-1)
= 5[(2a/7\a) — 1] (aa/[(2a/\)" — 1] — aos/b)

where 2ray and 2may are the total horn angles in the planes of H and E,
respectively. Of course this approximation can be expected to hold only
when az and o are small.

9. Numerical Calculations—Ry for 60° Horn

The value of Ry , the reflection coefficient when the magnetic vector lies
in the plane of the flare, was computed on the assumption that only the
dominant mode need be considered.* Thus, instead of the system of
equations (2-4) and (2-5), only their simplified version, namely the single
second order differential equation (7-2), was used. This equation may be
written as

2
B kR =0 (9-1)
dv?

where, according to (5-6),
K= —-m=1+4a — a/2)—1 (9-2)
14 ap — a2/2 = (2 + 1)*F(—a, 1/2; 2; sech® v).

The problem was to obtain the Ry appearing in that solution F, of (9-1)
which satisfies the boundary conditions (2-6).
No computations for Ry were made.
In the first method of calculation the integrals in the approximation
(3-14), namely
L7 pugnd g, (9-3)
dv?

2 La

Ry
28 = 2icv + 24 [ (K = ¢) dv,

* T am indebted to Miss M. Darville for carrying out the computations of this section.
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were evaluated by Simpson’s rule. The second derivative of K—1/¢ was
computed from the even order central differences of K~ Fora = 1/6,
corresponding to an angle of r/3 between the two sides of the horn, calcula-
tions at two representative wave lengths led to the table

Ao ¢ K= 14¢ Ry (9-4)
1.549a, 8173 1.6680 —.0420 4+ 1.0724
1.610a 7376 1.5441 —.0551 + 1.0878

An idea of the variation of K may be obtained from its values at — oo,
—.6, 0, .6, 1.8, 3.6 which are approximately .67, .76, .98, 1.62, 4.56, 17.4,
respectively. The range of integration was —3 < » < 4.4.

The second method of computation used the formulas (3-11) with F,
playing the role of y. The differential equation (9-1) was integrated by the
Kutte-Runge method, the interval between successive values of v being
0.2. For ¢ = .8173 the values obtained were

T ¥ r Ry . (9-5)
—.6 .6 —.202 — 1981 —.142 — i.794 —.0167 + 1.0658
—12 12 —.218 — 41.004 —.049 — 7,696 —.0525 + i.0754
—18 1.8 —.225 — 1989 +.086 — i.716 —.0512 + i.0753
—24 24 —.220 — 1.000 136 — 1,842 —.0424 + 4.0722

In order to gain an idea of the meaning of these values of v it should be
recalled that w = v 4 6 and the walls of the guide areat § = 0 and § = =.
An interval of length = = 3.14 - - - in the v direction therefore corresponds
roughly to a distance equal to the width of the guide. The above table
indicates that, loosely speaking, most of the reflection occurs close to the
junction of the horn and wave guide.

The last value of Ry in (9-3) agrees quite well with the value —.0420 +
1.0724 obtained from the approximate expression (9-3). Itappears that the
method leading to (9-5) is superior to the one based on (9-3) since, in theory,
it may be made as accurate (insofar as the single equation (9-1) may replace
the set of equations (2-4, 5)) as desired. Moreover, less actual work seems
to be required.

The approximation (7-1) yields, for ¢ = .8173,

_da _i(§) .
Ru =35 = atsimy = W19

which is considerably in error, as we might expect, sincea = 1/6 is not small.
However, if we use the approximation (7-13) and evaluate the integral
by Simpson’s rule we obtain
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Ry = i.153 — (.061 + .077)
= —.061 + i.076

which is in better agreement with the earlier values of Ry .

No' similar computations have been made to test the corresponding
approximation for Rz obtained when the correction term (6-5) is added to
the leading term in (6-1). However, it appears that for a = 1/6 and the
representative value £ = .38, (6-5) is only about one sixth as large as i/ (2k)
and hence is relatively unimportant.
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